

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN ENGINEERING

ISSN:2147-67992147-6799 www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2022, 10(3s), 214–226 | 214

Supporting BIT*-Based Path Planning with MPC-Based Motion

Planning of the Self-Driving Car

1Ahmed A. Al-Moadhen, 2Haider G. Kamil, 3Ali R. Khayeat

Submitted: 12/09/2022 Accepted: 24/12/2022

Abstract: This paper presents the enhanced operation of the path planner integrated with a predictive controller for a self-

driving vehicle to accomplish trajectory planning and avoid obstacles. The path planner used the Batch Informed Trees (BIT*)

planning algorithm approach and the tracking controller is designed based on the model predictive control (MPC). BIT*

algorithm is used to find the best path between the start and the goal nodes. Then the MPC tracks the route and controls the

vehicle's movement to its destination. Path planning control is vital point in avoiding autonomous car the obstacles during

serious traffic scenarios. The MPC controls the main parameters of the vehicle: velocity, acceleration, and orientation. The

traditional BIT* operation is enhanced by subjecting the generated trajectory to a basis spline (B-Spline) planner. This

enhancement solves the hard angle and manoeuvre presented in the path, improves the trajectory points connections, and then

swiftly obtains a collision-free trajectory. In addition, this paper tackles the issues related to avoiding local obstacles and the

follow up of dynamic goal points in a complex and dynamic world. The model predictive controller is used to track the

enhanced trajectory plan generated by the BIT*planner approach by using the kinematic model of the vehicle. A modal

description of the approach for building the graph-search for these cases and displaying simulated and real-world examining

data shows this method's practical application. In the simulation, the controller selects the best trajectories as references. Also,

it enhances the performance of trajectory planning and ensures that the casual obstacle can be avoided in real-time and the

robot can arrive at the final point smoothly. The results of the simulation show a reasonable accomplishment in navigation

performance, the planned path is softer, and the efficiency of the search is higher in composite environments and different

scenarios. Also, the test shows that the autonomous car can pursue the reference path accurately, even with sharp corners.

Keywords: sampling-based planning, MPC, self-driving car, BIT*, motion planning

1 Introduction

Recently, industrial and academic research centres have

witnessed rapid evolutions in developing the technologies

of self-driving vehicles. The traditional transportation

roads will be reshaped in terms of safe, comfortable and

intelligent mobility, controlling the motion planning of

self-driving cars provided that they perform driving tasks.

These cars face some challenges when moving in dynamic

environments, such as moving obstacles, controlling the

speed, braking, and steering during their journey. Path

planning and motion control are important concepts for

avoiding collision in autonomous vehicle scenarios. So, it

is necessary to support system functionality with a strong

real-time planning system.

In the recent decade, the autonomous vehicles have seen

essential progress in terms of software and hardware on

computing, perception, control and decision-making [1].

By swift expansion in technologies for both control and

sensor, advanced driver assistance systems (ADAS) be

more robust [2]. Driving autonomously contributes to

improving the integrity of traffic, particularly by

minimizing the mistakes that may make by drivers [3] [4].

In addition, driving autonomously can ease the fruitful

utilisation of transport period for everyday passengers [5].

Path planning is among the different parts that advance

Autonomous Vehicles (AVs) because it has the ability to

compose one of the core methods.

The vehicle is considered as a non-holonomic and

nonlinear system, so this system requires to be controlled

in order to preserve the wished-for performance, e.g.,

driving at a wanted speed, maintaining riders relaxed

while bypassing clashes with nearby cars and

infrastructure [3]. The autonomous vehicle drives into

and out of a sequence of separated points’ list between

1Department of Electrical and Electronics Engineering,

College of Engineering - University of Kerbala, Karbala 56000, Iraq.

ahmedh1333@uokerbala.edu.iq

2Department of Computer Engineering Techniques, AlSafwa University College,

Karbala 56000, Iraq.

Department of Electrical and Electronics Engineering, College of Engineering-

University of Kerbala, Karbala 56000, Iraq.

3Department of Computer Science, College of Computer Science and

Information Technology, University of Kerbala, Karbala 56000, Iraq.

Correspondence should be addressed to Ahmed A. Al-Moadhen;

ahmedh1333@uokerbala.edu.iq

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2022, 10(3s), 214–226 | 215

the initial and the goal. These points represent a net area

and make a whole driving scenery. Finally, vehicles reach

the destination point by crossing the sequence of

neighbouring networks, which are acquired by the

heuristic algorithm.

In navigation, there are two types of algorithms for path

planning: global and local. Global trajectory planning is in

charge of creating a trajectory from an initial point to a

destination point, while local trajectory planning is in

charge of avoiding the dynamic obstacles as the robot

progresses. The ant colony algorithm [6], Dijkstra

algorithm [7], A∗ algorithm [8], and rapidly exploring

random tree (RRT) algorithm [9]–[12] and its successor

Batch Informed RRT* [13] are global path planning

algorithms. There are three types of mobile robots:

autonomy, semi-autonomy, and remote control. The

autonomous mobile robots can sense, fit in their

environment, and make decisions so that they can satisfy

a broad range of task demands [14]. The research of

making the mobile robot accomplish a pre-decided task

autonomously in a composite environment is an active,

focused and difficult mobile robot research.

The navigation in a mobile robot can be defined as the

operation of a mobile robot finishing pre-planned tasks

autonomously. The mobile robot can significantly

recognize the orientation of the target movement and

finish the navigation task when precisely catches its pose

and the pose of obstacles in its world [15]. Yet, the lack of

required technologies directed to the immature field of

autonomous vehicle. Many challenges need to be solved

in order to achieve fully automated vehicles for people.

The principles of perceiving the environment, making

decisions, planning paths, controlling motion, networking

cars, and human with vehicle interaction are the key

technologies of self-driving vehicles. Planning the

vehicle’s path and controlling its motion are the two most

essential key technologies. Both are considered core

modules and play a vital role in driving safely and

comfortably [2]. Many works of literature show the

progress in controlling the longitudinal motion of a

vehicle by exploiting the PID controller. While

controlling the lateral motion of a vehicle is a relative

composite problem that requires more solid methods to

secure comfort in addition to safety.

The PID controller parameters and these parameters are

difficult to determine because of the need for high

precision to deal with systems with nonlinearities. The

MPC method has been demonstrated as an encouraging

scheme to resolve valuable control achievement over the

cutting edge of autonomous driving machinery. The MPC

controller exploits the vehicle kinematics to anticipate its

planned motion states by linking current states and goal

states developed by the planner [2].

The essential role of the MPC controller is to keep track

of the generated states to enable the vehicle to reach the

target with maintaining efficiency [16]. It is vital to boost

the efficiency of the energy at the same time [17]. The use

of MPC with an autonomous vehicle to avoid the obstacles

was presented in [18]. In addition, the autonomous vehicle

can be endowed with state-of-the-art functions, like the

planning and control techniques both display the driver’s

behaviour [19]. The driver model based on MPC

meditates distinct drivers’ skilfulness by regarding the

stochastic aspects of drivers’ steering traits [20].

 In this paper, we present a framework that permits to

embody the motion elementary and exterior perceptual

stimuli that based on MPC directly into the planning

process. So, a standard illustration of the suggested

approach of assembling the searching graph in these cases,

in addition to showing real-world and simulated

experiment data, shows the functional application of this

method. The framework integrates a tracking controller

and local path planner to support autonomous vehicles.

The path planner based on BIT* generates a real-time

reference path for the tracking controller based on model

predictive control. The path planner is enhanced to be

utilised on medium-speed and low-speed metropolitan

routes and highways [2].

BIT* improves the trajectory constantly throughout

iterations. This paper uses the sampling process of BIT*,

and then a B-Spline planner [21], [22] is used to decrease

the initial’s path cost and further curb the area of sampling

to achieve the randomness of sampling adequately, then

quickening the convergence speed and smoothing the

sharp angles in the path.

This paper tackles avoiding local obstacles and tracking

the dynamic destination positions in environments.

Therefore, an effective path planning approach that

integrates MPC with BIT* algorithm is proposed.

Therefore, a BIT* framework that allows the autonomous

car to incorporate MPC-based motion actions and the

generated trajectory directly into the planning process is

presented.

The essential contributions in this paper are: (1)

improving the control accuracy, the model inconsistency

induced by irregular road circumstances, the sharp curve,

and the zigzag path generated is used to simplify the

model by adopting a smother approach (B-Spline). This

method decreases the cost of the initial trajectory. The

enhanced BIT* with the B-spline planner reduces the size

of the elliptical shape region to accelerate the converging

rate. (2) We use the B-Spline planner to match the global

reference trajectory positions in the frame of the robot to

get a steady local trajectory reference to enable a robot to

track. (3) An implementation scheme of MPC is selected

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2022, 10(3s), 214–226 | 216

for trajectory tracking controller and speed generation by

regarding obstacles close to a robot.

The rest of this paper is structured as follows: the

illustration of the path tracking issue and the design of the

controller used is presented in Section 2. The MPC

controller is explored in Section 3. The implementation of

the MPC controller is discussed in Section 4. Section 5

presents the experimental platform. Section 6 explains the

analysis of the results. Section 7 provides the conclusion

and suggestions for future works.

Figure 1 shows the block diagram of the proposed

framework in this paper [23]. The BIT* planner gets a

trajectory according to the initial state, final state and the

task. The B-Spline deals with tortuous paths and makes

them smoother. Then the MPC tracker locates the best

series of controlling v and ω and then sends motion

commands to the robot’s platform.

Figure 1: BIT* and MPC Path Planning and Tracking Framework.

2 Path and Motion Planning by the BIT* with MPC

Typically, a graph is constructed by connecting points

from the state space that are sampled randomly by using

sampling-based algorithms. The regular graph represents

a set of collision-free paths, and then these algorithms

answer queries by calculating the shortest (best)

trajectory, which joins the starting state with a target state

through the map. The BIT* is one of the methods of

building a graph which is established by applying metric

motion for going from the centre point of one cell to the

centre point of another.

The methodology in this paper establishes constructing

the BIT* by inserting edges that belong to the robot, which

executes various controllers available. The resultant

structure, a BIT* expanded with MPC, is called

BIT*MPC.

2.1 Vehicle Kinematic Model

In this paper, we use the vehicle mathematical model,

which is obtained to design a trajectory-tracking

controller. We specify the vehicle model by considering

kinematics principles in the stationary or robot coordinate

system with basis vectors (�̂�𝑥, �̂�𝑦, �̂�𝑧) coordinate system.

Besides, the aim of this paper is to how to follow the

referenced path quickly and regularly, which corresponds

to vehicle handling solidity; hence a basic ‘bicycle’ model

is used.

The vehicle kinematics model is given by Equation 1 [24],

[25] [26]:

 ⌈

�̇�
�̇�

�̇�

⌉ = ⌈

cos 𝜃
sin 𝜃
tan 𝛿

𝑙

⌉ × 𝑣 𝑜𝑟 �̇� = 𝑓(𝐱, 𝐮) (1)

Where 𝐱 = [𝑥 𝑦 𝜃]𝑇 means the vehicle pose in the global

coordinate system. 𝐮 = [𝑣 𝛿] means the variables of the

control, which are obtained from the outputs of the MPC.

The [𝑥 𝑦]𝑇 vector represents the coordinate that is

attached at the centre of the vehicle’s back axle. 𝜃 is the

vehicle heading angle. 𝑣 represents the longitudinal

velocity. 𝛿 means the steering angle of a front tire. Finally,

𝑙 is the rear shaft length of the vehicle. In Figure 2, the

following self-driving car equations model can be used [5]

.

 �̇� = 𝑣 cos 𝜃 (2)

 �̇� = 𝑣 sin 𝜃 (3)

 �̇� =
𝑣

𝑙
 tan 𝛿 (4)

 𝑥�̇� = 𝑣𝑓 cos(𝜃 +𝛿) (5)

 𝑦�̇� = 𝑣𝑓 sin(𝜃 + 𝛿) (6)

 �̇� =
𝑣𝑓

𝑙
 tan 𝛿

(7)

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2022, 10(3s), 214–226 | 217

 𝑣

𝑣𝑓

= cos 𝛿 (8)

Where 𝑣 is the reverse speed, 𝑣𝑓 is the front speed.

The steering angle δ, within the limits of the vehicle

mechanics, δ ∈ [δmin, δmax], and the front velocity 𝑣 within

an acceptable range 𝑣 ∈ [𝑣min, 𝑣max] should be selected

appropriately in order to solve the controlling and

planning problems.

The heading rate ω is selected instead of steering angle δ

in a simplified version of the model. So:

 𝛿 = tan−1(
𝑙𝜔

𝑣
) (9)

Simplifying the heading angle rate to:

 �̇� = 𝜔, 𝜔 ∈ [
𝑣

𝑙
 tan δmin ,

𝑣

𝑙
 tan δmax] (10)

Figure 2: Kinematic bicycle model

2.2 Model Predictive Control (MPC) [27]

MPC is a combination between control and optimization.

A control method finds the control input by optimizing a

fitness function (J) dependent on restrictions. The fitness

function computes the preferred control parameters by

using the model of the system to predict future system

outputs. Typically, MPC operates by solving an

optimization issue at every sample time k to choose the

control inputs for the next N sample times, known as the

prediction horizon. A quadratic cost function commonly

minimises control action and the error between the

predicted and reference path, r. It is essential that the

prediction and optimization work jointly to yield a series

of the controller output u and the resultant system output

y. The optimization problem is:

𝑚𝑖𝑛 𝐽 = ∑||𝑟(𝑘 + 𝑖) − 𝑦(𝐾 + 𝑖)||𝑄
2

𝑁

𝑖=1

+ ∑ ||∆𝑢(𝑘 + 𝑖)||𝑆
2

𝑀−1

𝑖=0

(11)

the model restrictions,

𝑥(𝑘 + 𝑖) = 𝑓(𝑥(𝑘 + 𝑖 − 1), 𝑢(𝑘 + 𝑖

− 1))

= 𝐴𝑥(𝑘 + 𝑖 − 1)

+ 𝐵𝑢(𝑘 + 𝑖 − 1)

𝑦(𝑘 + 𝑖) = 𝑔(𝑥(𝑘 + 𝑖))

= 𝐶𝑥(𝑘 + 𝑖)

+ 𝐷𝑢(𝑘 + 𝑖)

𝑥(0) = 𝑥0

(12)

and,

𝐴𝑥 ≤ 𝑏

𝐶𝑥 ≤ 0

𝑢𝑚𝑖𝑛 ≤ 𝑢(𝑘 + 𝑖) ≤ 𝑢𝑚𝑎𝑥

(13)

in which 𝐴 ∈ ℝ𝑛×𝑛 means the state-transition matrix. The

input matrix is 𝐵 ∈ ℝ𝑛×𝑚. The output matrix is 𝐶 ∈

 ℝ𝑝×𝑛. 𝐷 ∈ ℝ𝑝×𝑛 is used to allow a direct joining

between u and y. In this paper 𝐷 = 0.

During a prediction horizon, the state variables of the

MPC are predicted at each sampling point. The MPC

controller controls vehicle speed and steering based on

linearized model.

The state of the vehicle at sample time k is:

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2022, 10(3s), 214–226 | 218

 𝑧𝑘+1 = [𝑥𝑘 , 𝑦𝑘 , 𝑣𝑘 , 𝜃𝑘] (14)

x: longitudinal pose, y: lateral pose, v: velocity, 𝜃: yaw

angle

The control input is:

𝑢𝑘 = [𝛼𝑘 , 𝛿𝑘]

(15)

𝛼: linear acceleration (𝑣
.
= 𝛼), δ: steering angle.

The autonomous vehicle is modelled using a kinematic

model:

𝑧𝑘+1 = 𝑧𝑘 + 𝑓(𝑧𝑘 , 𝑢𝑘). 𝑇

𝑓(𝑧𝑘, 𝑢𝑘) = [𝑣𝑘 cos 𝜃𝑘, 𝑣𝑘 sin 𝜃𝑘 , 𝜔𝑘 , 𝛼𝑘]
𝑇

(16)

The MPC controller minimize this cost function for path

tracking:

𝑚𝑖𝑛 𝑄𝑓(𝑧𝑇,𝑟𝑒𝑓 − 𝑧𝑇)
2

+ 𝑄 ∑(𝑧𝑘,𝑟𝑒𝑓 − 𝑧𝑘)
2

𝑇

𝑘=2

+ 𝑅 ∑ 𝑢𝑘
2

𝑇

𝑘=1

+ 𝑅𝑑 ∑(𝑢𝑘+1 − 𝑢𝑘)
2

𝑇

𝑘=1

(17)

Where T is the horizon length, 𝑄𝑓 is the state-final matrix,

𝑄 is the state-cost matrix, 𝑅 is the input cost matrix, and

𝑅𝑑 is the input difference cost matrix. 𝑧𝑟𝑒𝑓 comes from

target path and speed and subject to:

• Linearly vehicle model:

 𝑧𝑘+1 = 𝐴𝑧𝑘 + 𝐵𝑢 + 𝐶 (18)

• Maximum steering speed:

 |𝑢𝑡+1 − 𝑢𝑡| < 𝑑𝑢𝑚𝑎𝑥 (19)

• Maximum steering angle:

 |𝑢𝑡| < 𝑢𝑚𝑎𝑥 (20)

• Initial state:

 𝑧0 = 𝑧0 (21)

• Maximum and minimum speed:

 𝑣𝑚𝑖𝑛 < 𝑣𝑘 < 𝑣𝑚𝑎𝑥 (22)

• Maximum and minimum input:

 𝑢𝑚𝑖𝑛 < 𝑢𝑘 < 𝑢𝑚𝑎𝑥 (23)

You can get a discrete-time mode with Forward Euler

Discretization with sampling time:

 𝒛𝒌+𝟏 = 𝒛𝒌 + 𝒇(𝒛𝒌, 𝒖𝒌)𝒅𝒕 (24)

So:

 𝑧𝑘+1 = 𝐴𝑧𝑘 + 𝐵𝑢𝑘 + 𝐶 (25)

Where:

𝐴 =

[

1 0 cos(𝜃) 𝑑𝑡 −𝑣 sin(𝜃) 𝑑𝑡

0 1 sin(𝜃) 𝑑𝑡 𝑣 cos(𝜃) 𝑑𝑡
0 0 1 0

0 0
tan(𝛿)

𝐿
𝑑𝑡 1]

(26)

𝐵 =

[

0 0
0 0
𝑑𝑡 0

0
𝑣

𝐿𝑐𝑜𝑠2(𝛿)
𝑑𝑡

]

(27)

 𝐶 =

[

𝑣 sin(𝜃) 𝜃𝑑𝑡

−𝑣 cos(𝜃) 𝜃𝑑𝑡
0

−
𝑣𝛿

𝐿𝑐𝑜𝑠2(𝛿)
𝑑𝑡

]

 (28)

2.3 Batch Informed Trees (BIT*) [13] [28]

Commonly, the planners, based on graph search, are

decomposing the SDC world into an m-dimensional net.

Each cell in this net becomes a node located on the graph.

BIT* method of creating a graph uses the RRT, which is

structured by providing each node a metric motion

planning.

BIT* utilises a specific heuristic suitable to search a

sequence of growingly intensive implied RGGs while

using prior information [29]. It is regarded as an expansion

of incremental graph-based search methods, such as

Lifelong Planning A* (LPA*) [30]. This anytime

expression constructs sampling-based planners practical

on many continued path planning in spite of dependence

on sampling [28].

BIT* uses a heuristic sampling domain for the problem to

minimise the path length. The search begins with start

state xstart to reach a goal state xgoal. These points are called

the focal points for the elliptical shape of the batch search,

as shown in Figure 3. The style of the ellipse relies on both

the xstart and xgoal to find the lower cost cmin and the best

cost of the solution found cbest. The ellipse eccentricity is

given by
cmin

cbest
.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2022, 10(3s), 214–226 | 219

Figure 3: BIT* heuristic to discover the minimum length of the path.

BIT* includes a line ordering identical to a lazy TLPA*.

In BIT*, a starting RGG with implied links is spread

uniformly across the random samples. The RGGs edges

have to a k-nearest graph [31] or r-disc graph [32]. So, the

RGG r or k is picked to decrease graph complexity while

preserving asymptotic prerequisites as a function of the

samples’ number. Then, a detailed tree is created from the

begin, directed to the destination by a heuristic search (see

Figure 4). This graph has edged with free collision, and its

building finishes when a solution is discovered, or it can

no longer be extended (Figure 5). This is the batch. If the

solution is located, these samples are restricted to the

subproblem that has a more suitable solution [33].

Figure 4: the batch of samples

Figure 5: In every batch, the search expands around the min solution using a heuristic.

2.4 B-Spline Planner

B-spline [21], [22] curves contain all the benefits of Bezier

curves and overpower the disadvantages that Bezier

curves do not have on the local revision. The B-spline

equation is:

 𝑝(𝑢) = ∑ 𝑑𝑖 𝑁𝑖,𝑘 (𝑢)

𝑝−1

𝑖=0

 (29)

The di (i = 0, 1, …, p-1) means points in the collection S

of samples, and the Ni,k(u) represents the essential function

and the declaration of this function is:

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2022, 10(3s), 214–226 | 220

𝑁𝑖,0(𝑢) = {
1 𝑢𝑖 ≤ 𝑢 ≤ 𝑢𝑖+1

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑁𝑖,𝑘(𝑢)

=
𝑢 − 𝑢𝑖

𝑢𝑖+𝑘 − 𝑢𝑖

𝑁𝑖,𝑘−1 (𝑢)

+
𝑢𝑖+𝑘+1 − 𝑢

𝑢𝑖+𝑘+1 − 𝑢
𝑁𝑖+1,𝑘−1(𝑢)

𝐷𝑒𝑓𝑖𝑛𝑒
0

0
= 0

(30)

And ui(i = 0, 1, …., p-1) is the node parameter.

3 Results and Discussion

3.1 Environment setting

We implemented BIT* to display the efficiency of the

proposed method using B-Spline and MPC under spyder

(python 3.9) environment and used a global planner to

develop reference trajectory. When an obstacle appears on

the map, it will have a high “cost value”. So, we can check

collisions based on the cost. Both the environment and

trajectories are shown using the plot function in python.

First, we use BIT* and the B-Spline to develop a global

reference trajectory. The length of the path is taken as the

path cost, and then we compare the path length, the loops

and time in different algorithms to demonstrate the more

acceptable achievement of the BIT* with B-Spline, as the

fewer loops mean a quick converging rate. The B-Spline

with BIT*is used to get the reference trajectory, then the

MPC approach is applied for path tracking and controlling

motion, and the achievement of our proposed work is

explained in various scenarios.

3.2 BIT* and B-Spline Planner

The first scenario deals with a few obstacles with a narrow

channel, as displayed in Figures (6-9). The positions of the

beginning and the destination points are (-1, 0) and (3, 8),

respectively. The red or blue solid lines are the trajectory

created by using the global planner. In the map, we can

see that there are three obstacles (circle shape) between

the beginning and the destination, and the best trajectory

for the mobile robot is through the selected channel among

the obstacles.

Figure 6: Initial state with few Obstacles

Figure 7: Path generated by BIT* only

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2022, 10(3s), 214–226 | 221

Figure 8: BIT* path after modified by Approximated B-Spline

Figure 9: BIT* path after modified by Interpolated B-Spline

Table 1 shows the statistics of the planner with few obstacles.

Table 1: The results of the proposed work with few obstacles.

Path generated by Path

length

Computational

Time (s)

Iteration

BIT* 10.38 73.63 80

BIT* with Approximated B-

Spline

9.92 73.94 80

BIT* with Interpolated B-

Spline

11.05 74.1 80

The second scenario deals with multiple obstacles. Mobile

robots require to plan a free-from-obstacles trajectory in

an environment has multiple obstacles (Figures 10-13)

with many obstacles are used to test the achievement of

the framework. The coordinates of the beginning and the

destination points are (-1, -1) and (4, 12), respectively.

There is a good path from the start to the goal. The path

crosses the top left of the goal, so this is the best solution

for the planner to see according to the initial state of the

environment.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2022, 10(3s), 214–226 | 222

Figure 10: Initial state with many Obstacles

Figure 11: Path generated by BIT* only in many obstacles’ environment

Figure 12: BIT* path after modified by Approximated B-Spline in many obstacles’ environment.

Figure 13: BIT* path after modified by Interpolated B-Spline in many obstacles’ environment.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2022, 10(3s), 214–226 | 223

Table 2: The results of the proposed work with many obstacles.

Path generated by Path

length

Computational

Time (s)

Iteration Sample Size

BIT* 16.43 77.63 100

9296

BIT* with Approximated

B-Spline

15.32 77.84 100

BIT* with Interpolated

B-Spline

17.62 78.31 100

3.3 The Overall Framework

This section describes the whole framework to

demonstrate the efficacy of our suggested method. The

BIT* supported by the b-spline planner investigates the

reference trajectory based on the current start and

destination points. The MPC technique aws suggested to

calculate the optimal linear speed and angular speed

(control inputs) and passed them to the robot. The settings

of some essential parameters are shown in Table 3.

Table 3. MPC Parameters in the framework.

Parameters Value Parameters Values

Sampling Time 0.2 input cost matrix diag([0.01, 0.01])

prediction horizon 5 input difference cost

matrix

diag([0.01, 1.0])

execute horizon 2 state cost matrix diag([1.0, 1.0, 0.5, 0.5])

Figures (14-17) show the yaw angle changes and path curvature in a map with few and many obstacles and the reference

trajectory created by BIT* with a B-Spline planner.

Figure 14: Yaw angle changes in few obstacles.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2022, 10(3s), 214–226 | 224

Figure 15: Curvature of the generated path in Few obstacles.

Figure 16:Yaw angle changes in many obstacles.

Figure 17: Curvature of the generated path in many obstacles.

4 Conclusions

This article describes planning the motion of a mobile

robot by proposing a BIT* planner with a B-Spline

method. The B-Spline method decreases the sharp and

hard angle of the path generated by BIT. Besides, the B-

Spline strategy bypassed some undeserved curves in the

route. With this strategy, a reference trajectory

appropriate for the robot could be acquired. Then, we use

the MPC approach for path pursuit and controlling

motion. Finally, we compare the performance of BIT*

only, the BIT*with B-Spline approximation and the BIT*

with B-Spline interpolated in two various environments,

and the results display that the suggested BIT* with

approximate B-Spline could discover the best trajectory

with quick converging rate and shorter length. The entire

framework’s significance is also demonstrated in an

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2022, 10(3s), 214–226 | 225

environment which has a few and more obstacles. The

outcomes indicate the true path deviated from the

reference path, but the parameters should be

accommodated to balance the pursuit achievement and the

direction to hold far from the obstacles. For future plans,

it is important to demonstrate and test the strategy on a

real robot’s platform and enhance and develop our

strategy to be used on distinct robots. Similarly, the

dynamics of mobile robots in our controller design will be

evaluated.

References

[1] H. Yang and X. Teng, “Mobile Robot Path Planning Based

on Enhanced Dynamic Window Approach and Improved

A∗ Algorithm,” Journal of Robotics, vol. 2022, p.

2183229, 2022, doi: 10.1155/2022/2183229.

[2] C. Zhang, D. Chu, S. Liu, Z. Deng, C. Wu, and X. Su,

“Trajectory Planning and Tracking for Autonomous

Vehicle Based on State Lattice and Model Predictive

Control,” IEEE Intelligent Transportation Systems

Magazine, vol. 11, no. 2, pp. 29–40, 2019, doi:

10.1109/MITS.2019.2903536.

[3] C. Liu, S. Lee, S. Varnhagen, and H. E. Tseng, “Path

planning for autonomous vehicles using model predictive

control,” IEEE Intelligent Vehicles Symposium,

Proceedings, no. Iv, pp. 174–179, 2017, doi:

10.1109/IVS.2017.7995716.

[4] S. Singh, “Critical Reasons for Crashes Investigated in the

National Motor Vehicle Crash Causation Survey,” 2015.

[5] B. Paden, M. Čáp, S. Z. Yong, D. Yershov, and E.

Frazzoli, “A survey of motion planning and control

techniques for self-driving urban vehicles,” IEEE

Transactions on Intelligent Vehicles, vol. 1, no. 1, pp. 33–

55, 2016, doi: 10.1109/TIV.2016.2578706.

[6] G. N. Ambewadkar and S. P. Gajre, “Probe path planning

for flatness measurement on coordinate measuring

machine using ant colony optimization,” Advanced

Engineering Forum, vol. 41, pp. 86–91, 2021.

[7] M. Li, F. Zhang, and J. Y. Fang, “Optimal path solution

based on Dijkstra algorithm,” Frontiers in Economics and

Management,” Frontiers in Economics and Management,

vol. 2, pp. 170–176, 2021.

[8] J. Santos, P. M. Rebelo, L. F. Rocha, P. Costa, and G.

Veiga, “A∗ based routing and scheduling modules for

multiple AGVs in an industrial scenario,” Robotics, vol.

10, no. 2, p. 72, 2021.

[9] S. Karaman and E. Frazzoli, “Incremental sampling-based

algorithms for optimal motion planning,” in Robotics:

Science and Systems, 2010, vol. 6, pp. 267–274. doi:

10.15607/rss.2010.vi.034.

[10] S. Karaman and E. Frazzoli, “Sampling-based algorithms

for optimal motion planning,” The international journal of

robotics research, vol. 30, no. 7, pp. 846–894, 2011, doi:

10.15607/rss.2010.vi.034.

[11] J. Dai, D. Li, J. Zhao, and Y. Li, “Autonomous Navigation

of Robots Based on the Improved Informed-RRT∗

Algorithm and DWA,” Journal of Robotics, vol. 2022, p.

3477265, 2022, doi: 10.1155/2022/3477265.

[12] S. Karaman, M. R. Walter, A. Perez, E. Frazzoli, and S.

Teller, “Anytime motion planning using the RRT,” in

Proceedings - IEEE International Conference on Robotics

and Automation, 2011, pp. 1478–1483. doi:

10.1109/ICRA.2011.5980479.

[13] J. D. Gammell, S. S. Srinivasa, and T. D. Barfoot, “Batch

Informed Trees (BIT∗): Sampling-based optimal planning

via the heuristically guided search of implicit random

geometric graphs,” in Proceedings - IEEE International

Conference on Robotics and Automation, 2015, pp. 3067–

3074. doi: 10.1109/ICRA.2015.7139620.

[14] B. Sahu, P. K. Das, M. R. Kabat, and R. Kumar, “Multi-

robot cooperation and performance analysis with particle

swarm optimization variants,” Multimedia Tools and

Applications, vol. 5, no. 9, pp. 1–24, 2021.

[15] H. Huang, G. Tan, and L. Jiang, “Robot Path Planning

Using Improved Ant Colony Algorithm in the

Environment of Internet of Things,” Journal of Robotics,

vol. 2022, p. 1739884, 2022, doi: 10.1155/2022/1739884.

[16] X. Du, K. K. K. Htet, and K. K. Tan, “Development of a

Genetic-Algorithm-Based Nonlinear Model Predictive

Control Scheme on Velocity and Steering of Autonomous

Vehicles,” IEEE Transactions on Industrial Electronics,

vol. 63, no. 11, pp. 6970–6977, 2016, doi:

10.1109/TIE.2016.2585079.

[17] F. Oldewurtel et al., “Use of model predictive control and

weather forecasts for energy efficient building climate

control,” Energy and Buildings, vol. 45, pp. 15–27, 2012,

doi: 10.1016/j.enbuild.2011.09.022.

[18] M. A. Abbas, R. Milman, and J. M. Eklund, “Obstacle

avoidance in real time with Nonlinear Model Predictive

Control of autonomous vehicles,” Canadian Conference

on Electrical and Computer Engineering, vol. 40, no. 1,

pp. 12–22, 2014, doi: 10.1109/CCECE.2014.6901109.

[19] A. Koga, H. Okuda, Y. Tazaki, T. Suzuki, K. Haraguchi,

and Z. Kang, “Realization of different driving

characteristics for autonomous vehicle by using model

predictive control,” IEEE Intelligent Vehicles Symposium,

Proceedings, vol. 2016-Augus, no. Iv, pp. 722–728, 2016,

doi: 10.1109/IVS.2016.7535467.

[20] C. Wang, X. Zhang, K. Guo, F. Ma, and D. Chen,

“Application of Stochastic Model Predictive Control to

Modeling Driver Steering Skills,” SAE International

Journal of Passenger Cars - Mechanical Systems, vol. 9,

no. 1, pp. 116–123, 2016, doi: 10.4271/2016-01-0462.

[21] A. Biran, Geometry for naval architects, First edit.

Elsevier Ltd, 2018. doi: 10.1016/C2014-0-03962-7.

[22] J. Gallier, Curves and Surfaces In Geometric Modeling:

Theory And Algorithms. 2018.

[23] P. Xu, N. Wang, S. L. Dai, and L. Zuo, “Motion planning

for mobile robot with modified BIT* and MPC,” Applied

Sciences (Switzerland), vol. 11, no. 1, p. 426, 2021, doi:

10.3390/app11010426.

[24] Campion G, Bastin G, and D’andrea-Novel B, “Structural

Properties and Classification of Kinematic and Dynamic

Models of Wheeled Mobile Robots,” IEEE transactions

on robotics and automation, vol. 12, no. 1, pp. 47–62,

1996.

[25] F. Kühne, W. F. Lages, and J. G. da Silva Jr, “Model

Predictive Control of a Mobile Robot Using

Linearization,” International Journal of Control,

Automation and Systems, vol. 13, no. 4, pp. 1868–1879,

2015, [Online]. Available:

http://dx.doi.org/10.1016/j.advengsoft.2015.10.008%0Ah

ttp://dx.doi.org/10.1016/j.robot.2015.04.005%0Ahttp://w

ww.ece.ufrgs.br/~fetter/mechrob04_553.pdf

[26] R. Rajamani, “Vehicle Dynamics and Control,” Springer.

p. 496, 2012. doi: 10.1016/b978-0-08-100390-9.00001-4.

[27] F. Borrelli, A. Bemporad, and M. Morari, Predictive

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2022, 10(3s), 214–226 | 226

Control for Linear and Hybrid Systems. 2017. doi:

10.1017/9781139061759.

[28] J. D. Gammell, T. D. Barfoot, and S. S. Srinivasa, “Batch

Informed Trees (BIT*): Informed asymptotically optimal

anytime search,” International Journal of Robotics

Research, vol. 39, no. 5, pp. 543–567, 2020, doi:

10.1177/0278364919890396.

[29] M. Penrose, Random Geometric Graphs. Oxford: Oxford

University Press, 2003. doi:

10.1093/acprof:oso/9780198506263.001.0001.

[30] S. Koenig, M. Likhachev, and D. Furcy, “Lifelong

Planning A∗,” Artificial Intelligence, vol. 155, no. 1, pp.

93–146, 2004, doi:

https://doi.org/10.1016/j.artint.2003.12.001.

[31] F. Xue and P. R. Kumar, “The number of neighbors

needed for connectivity of wireless networks,” Wireless

Networks, vol. 10, no. 2, pp. 169– 181, 2004.

[32] E. N. Gilbert, “Random plane networks,” SIAM, vol. 9, no.

4, pp. 533–543, 1961.

[33] J. D. Gammell, S. S. Srinivasa, and T. D. Barfoot,

“Informed RRT∗: Optimal sampling-based path planning

focused via direct sampling of an admissible ellipsoidal

heuristic,” 2014 IEEE/RSJ International Conference on

Intelligent Robots and Systems, pp. 2997–3004, 2014, doi:

10.1109/IROS.2014.6942976.

