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Abstract: This paper presents the enhanced operation of the path planner integrated with a predictive controller for a self-

driving vehicle to accomplish trajectory planning and avoid obstacles. The path planner used the Batch Informed Trees (BIT*) 

planning algorithm approach and the tracking controller is designed based on the model predictive control (MPC). BIT* 

algorithm is used to find the best path between the start and the goal nodes. Then the MPC tracks the route and controls the 

vehicle's movement to its destination. Path planning control is vital point in avoiding autonomous car the obstacles during 

serious traffic scenarios. The MPC controls the main parameters of the vehicle: velocity, acceleration, and orientation. The 

traditional BIT* operation is enhanced by subjecting the generated trajectory to a basis spline (B-Spline) planner. This 

enhancement solves the hard angle and manoeuvre presented in the path, improves the trajectory points connections, and then 

swiftly obtains a collision-free trajectory. In addition, this paper tackles the issues related to avoiding local obstacles and the 

follow up of dynamic goal points in a complex and dynamic world. The model predictive controller is used to track the 

enhanced trajectory plan generated by the BIT*planner approach by using the kinematic model of the vehicle. A modal 

description of the approach for building the graph-search for these cases and displaying simulated and real-world examining 

data shows this method's practical application. In the simulation, the controller selects the best trajectories as references. Also, 

it enhances the performance of trajectory planning and ensures that the casual obstacle can be avoided in real-time and the 

robot can arrive at the final point smoothly. The results of the simulation show a reasonable accomplishment in navigation 

performance, the planned path is softer, and the efficiency of the search is higher in composite environments and different 

scenarios. Also, the test shows that the autonomous car can pursue the reference path accurately, even with sharp corners. 

Keywords: sampling-based planning, MPC, self-driving car, BIT*, motion planning 

1 Introduction 

Recently, industrial and academic research centres have 

witnessed rapid evolutions in developing the technologies 

of self-driving vehicles. The traditional transportation 

roads will be reshaped in terms of safe, comfortable and 

intelligent mobility, controlling the motion planning of 

self-driving cars provided that they perform driving tasks. 

These cars face some challenges when moving in dynamic 

environments, such as moving obstacles, controlling the 

speed, braking, and steering during their journey. Path 

planning and motion control are important concepts for 

avoiding collision in autonomous vehicle scenarios. So, it 

is necessary to support system functionality with a strong 

real-time planning system. 

In the recent decade, the autonomous vehicles have seen 

essential progress in terms of software and hardware on 

computing, perception, control and decision-making [1]. 

By swift expansion in technologies for both control and 

sensor, advanced driver assistance systems (ADAS) be 

more robust [2]. Driving autonomously contributes to 

improving the integrity of traffic, particularly by 

minimizing the mistakes that may make by drivers [3] [4]. 

In addition, driving autonomously can ease the fruitful 

utilisation of transport period for everyday passengers [5]. 

Path planning is among the different parts that advance 

Autonomous Vehicles (AVs) because it has the ability to 

compose one of the core methods.  

The vehicle is considered as a non-holonomic and 

nonlinear system, so this system requires to be controlled 

in order to preserve the wished-for performance, e.g., 

driving at a wanted speed, maintaining riders relaxed 

while bypassing clashes with nearby cars and 

infrastructure [3]. The autonomous vehicle drives into 

and out of a sequence of separated points’ list between 
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the initial and the goal. These points represent a net area 

and make a whole driving scenery. Finally, vehicles reach 

the destination point by crossing the sequence of 

neighbouring networks, which are acquired by the 

heuristic algorithm. 

In navigation, there are two types of algorithms for path 

planning: global and local. Global trajectory planning is in 

charge of creating a trajectory from an initial point to a 

destination point, while local trajectory planning is in 

charge of avoiding the dynamic obstacles as the robot 

progresses. The ant colony algorithm [6], Dijkstra 

algorithm [7], A∗ algorithm  [8], and rapidly exploring 

random tree (RRT) algorithm [9]–[12] and its successor 

Batch Informed RRT* [13] are global path planning 

algorithms. There are three types of mobile robots: 

autonomy, semi-autonomy, and remote control. The 

autonomous mobile robots can sense, fit in their 

environment, and make decisions so that they can satisfy 

a broad range of task demands [14]. The research of 

making the mobile robot accomplish a pre-decided task 

autonomously in a composite environment is an active, 

focused and difficult mobile robot research.  

The navigation in a mobile robot can be defined as the 

operation of a mobile robot finishing pre-planned tasks 

autonomously. The mobile robot can significantly 

recognize the orientation of the target movement and 

finish the navigation task when precisely catches its pose 

and the pose of obstacles in its world [15]. Yet, the lack of 

required technologies directed to the immature field of 

autonomous vehicle. Many challenges need to be solved 

in order to achieve fully automated vehicles for people. 

The principles of perceiving the environment, making 

decisions, planning paths, controlling motion, networking 

cars, and human with vehicle interaction are the key 

technologies of self-driving vehicles. Planning the 

vehicle’s path and controlling its motion are the two most 

essential key technologies. Both are considered core 

modules and play a vital role in driving safely and 

comfortably [2]. Many works of literature show the 

progress in controlling the longitudinal motion of a 

vehicle by exploiting the PID controller. While 

controlling the lateral motion of a vehicle is a relative 

composite problem that requires more solid methods to 

secure comfort in addition to safety.  

The PID controller parameters and these parameters are 

difficult to determine because of the need for high 

precision to deal with systems with nonlinearities. The 

MPC method has been demonstrated as an encouraging 

scheme to resolve valuable control achievement over the 

cutting edge of autonomous driving machinery. The MPC 

controller exploits the vehicle kinematics to anticipate its 

planned motion states by linking current states and goal 

states developed by the planner [2].  

The essential role of the MPC controller is to keep track 

of the generated states to enable the vehicle to reach the 

target with maintaining efficiency [16]. It is vital to boost 

the efficiency of the energy at the same time [17]. The use 

of MPC with an autonomous vehicle to avoid the obstacles 

was presented in [18]. In addition, the autonomous vehicle 

can be endowed with state-of-the-art functions, like the 

planning and control techniques both display the driver’s 

behaviour [19]. The driver model based on MPC 

meditates distinct drivers’ skilfulness by regarding the 

stochastic aspects of drivers’ steering traits [20]. 

 In this paper, we present a framework that permits to 

embody the motion elementary and exterior perceptual 

stimuli that based on MPC directly into the planning 

process. So, a standard illustration of the suggested 

approach of assembling the searching graph in these cases, 

in addition to showing real-world and simulated 

experiment data, shows the functional application of this 

method. The framework integrates a tracking controller 

and local path planner to support autonomous vehicles. 

The path planner based on BIT* generates a real-time 

reference path for the tracking controller based on model 

predictive control. The path planner is enhanced to be 

utilised on medium-speed and low-speed metropolitan 

routes and highways [2].  

BIT* improves the trajectory constantly throughout 

iterations. This paper uses the sampling process of BIT*, 

and then a B-Spline planner [21], [22] is used to decrease 

the initial’s path cost and further curb the area of sampling 

to achieve the randomness of sampling adequately, then 

quickening the convergence speed and smoothing the 

sharp angles in the path. 

This paper tackles avoiding local obstacles and tracking 

the dynamic destination positions in environments. 

Therefore, an effective path planning approach that 

integrates MPC with BIT* algorithm is proposed. 

Therefore, a BIT* framework that allows the autonomous 

car to incorporate MPC-based motion actions and the 

generated trajectory directly into the planning process is 

presented. 

The essential contributions in this paper are: (1) 

improving the control accuracy, the model inconsistency 

induced by irregular road circumstances, the sharp curve, 

and the zigzag path generated is used to simplify the 

model by adopting a smother approach (B-Spline). This 

method decreases the cost of the initial trajectory. The 

enhanced BIT* with the B-spline planner reduces the size 

of the elliptical shape region to accelerate the converging 

rate. (2)  We use the B-Spline planner to match the global 

reference trajectory positions in the frame of the robot to 

get a steady local trajectory reference to enable a robot to 

track. (3) An implementation scheme of MPC is selected 
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for trajectory tracking controller and speed generation by 

regarding obstacles close to a robot. 

The rest of this paper is structured as follows: the 

illustration of the path tracking issue and the design of the 

controller used is presented in Section 2. The MPC 

controller is explored in Section 3. The implementation of 

the MPC controller is discussed in Section 4. Section 5 

presents the experimental platform. Section 6 explains the 

analysis of the results. Section 7 provides the conclusion 

and suggestions for future works.  

Figure 1 shows the block diagram of the proposed 

framework in this paper [23]. The BIT* planner gets a 

trajectory according to the initial state, final state and the 

task. The B-Spline deals with tortuous paths and makes 

them smoother. Then the MPC tracker locates the best 

series of controlling v and ω and then sends motion 

commands to the robot’s platform.

 
Figure 1: BIT* and MPC Path Planning and Tracking Framework. 

2 Path and Motion Planning by the BIT* with MPC 

Typically, a graph is constructed by connecting points 

from the state space that are sampled randomly by using 

sampling-based algorithms. The regular graph represents 

a set of collision-free paths, and then these algorithms 

answer queries by calculating the shortest (best) 

trajectory, which joins the starting state with a target state 

through the map. The BIT* is one of the methods of 

building a graph which is established by applying metric 

motion for going from the centre point of one cell to the 

centre point of another. 

The methodology in this paper establishes constructing 

the BIT* by inserting edges that belong to the robot, which 

executes various controllers available. The resultant 

structure, a BIT* expanded with MPC, is called 

BIT*MPC. 

2.1 Vehicle Kinematic Model 

In this paper, we use the vehicle mathematical model, 

which is obtained to design a trajectory-tracking 

controller. We specify the vehicle model by considering 

kinematics principles in the stationary or robot coordinate 

system with basis vectors (�̂�𝑥, �̂�𝑦, �̂�𝑧) coordinate system. 

Besides, the aim of this paper is to how to follow the 

referenced path quickly and regularly, which corresponds 

to vehicle handling solidity; hence a basic ‘bicycle’ model 

is used. 

The vehicle kinematics model is given by Equation 1 [24], 

[25] [26]: 

 ⌈

�̇�
�̇�

�̇�

⌉ =  ⌈

cos 𝜃
sin 𝜃
tan 𝛿

𝑙

⌉  × 𝑣 𝑜𝑟 �̇� = 𝑓(𝐱, 𝐮) (1) 

Where 𝐱 = [𝑥 𝑦 𝜃]𝑇 means the vehicle pose in the global 

coordinate system. 𝐮 = [𝑣 𝛿] means the variables of the 

control, which are obtained from the outputs of the MPC. 

The [𝑥 𝑦]𝑇 vector represents the coordinate that is 

attached at the centre of the vehicle’s back axle. 𝜃 is the 

vehicle heading angle. 𝑣 represents the longitudinal 

velocity. 𝛿 means the steering angle of a front tire. Finally, 

𝑙 is the rear shaft length of the vehicle. In Figure 2, the 

following self-driving car equations model can be used [5]

. 

 �̇� = 𝑣 cos 𝜃 (2) 

 �̇� = 𝑣 sin 𝜃 (3) 

 �̇� =
𝑣

𝑙
 tan 𝛿 (4) 

 𝑥�̇� = 𝑣𝑓  cos(𝜃 +𝛿) (5) 

 𝑦�̇� = 𝑣𝑓  sin(𝜃 + 𝛿) (6) 

 �̇� =
𝑣𝑓

𝑙
 tan 𝛿 

(7) 
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 𝑣

𝑣𝑓

= cos 𝛿 (8) 

Where 𝑣 is the reverse speed, 𝑣𝑓 is the front speed. 

The steering angle δ, within the limits of the vehicle 

mechanics, δ ∈ [δmin, δmax ], and the front velocity 𝑣 within 

an acceptable range 𝑣 ∈ [𝑣min, 𝑣max ] should be selected 

appropriately in order to solve the controlling and 

planning problems. 

The heading rate ω is selected instead of steering angle δ 

in a simplified version of the model. So: 

 𝛿 =  tan−1( 
𝑙𝜔

𝑣
 ) (9) 

Simplifying the heading angle rate to: 

 �̇� =  𝜔, 𝜔 ∈  [
𝑣

𝑙
 tan δmin ,   

𝑣

𝑙
 tan δmax] (10) 

 

Figure 2: Kinematic bicycle model 

2.2 Model Predictive Control (MPC) [27] 

MPC is a combination between control and optimization. 

A control method finds the control input by optimizing a 

fitness function (J) dependent on restrictions. The fitness 

function computes the preferred control parameters by 

using the model of the system to predict future system 

outputs. Typically, MPC operates by solving an 

optimization issue at every sample time k to choose the 

control inputs for the next N sample times, known as the 

prediction horizon. A quadratic cost function commonly 

minimises control action and the error between the 

predicted and reference path, r. It is essential that the 

prediction and optimization work jointly to yield a series 

of the controller output u and the resultant system output 

y. The optimization problem is: 

 

𝑚𝑖𝑛 𝐽 =  ∑||𝑟(𝑘 + 𝑖) − 𝑦(𝐾 + 𝑖)||𝑄
2

𝑁

𝑖=1

+ ∑ ||∆𝑢(𝑘 + 𝑖)||𝑆
2

𝑀−1

𝑖=0

 

(11) 

the model restrictions, 

 

𝑥(𝑘 + 𝑖) = 𝑓(𝑥(𝑘 + 𝑖 − 1), 𝑢(𝑘 + 𝑖

− 1))

= 𝐴𝑥(𝑘 + 𝑖 − 1)

+ 𝐵𝑢(𝑘 + 𝑖 − 1) 

𝑦(𝑘 + 𝑖) = 𝑔(𝑥(𝑘 + 𝑖))

= 𝐶𝑥(𝑘 + 𝑖)

+ 𝐷𝑢(𝑘 + 𝑖) 

𝑥(0) =  𝑥0 

(12) 

and, 

 

𝐴𝑥 ≤ 𝑏 

𝐶𝑥 ≤ 0 

𝑢𝑚𝑖𝑛 ≤ 𝑢(𝑘 + 𝑖) ≤ 𝑢𝑚𝑎𝑥 

(13) 

 

in which 𝐴 ∈  ℝ𝑛×𝑛 means the state-transition matrix. The 

input matrix is 𝐵 ∈  ℝ𝑛×𝑚. The output matrix is 𝐶 ∈

 ℝ𝑝×𝑛. 𝐷 ∈  ℝ𝑝×𝑛 is used to allow a direct joining 

between u and y. In this paper 𝐷 =  0. 

During a prediction horizon, the state variables of the 

MPC are predicted at each sampling point. The MPC 

controller controls vehicle speed and steering based on 

linearized model. 

The state of the vehicle at sample time k is: 
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 𝑧𝑘+1 = [𝑥𝑘 , 𝑦𝑘 , 𝑣𝑘 , 𝜃𝑘] (14) 

x: longitudinal pose, y: lateral pose, v: velocity, 𝜃: yaw 

angle 

The control input is: 

 
𝑢𝑘 = [𝛼𝑘 , 𝛿𝑘] 

 
(15) 

𝛼: linear acceleration (𝑣
.
= 𝛼), δ: steering angle.  

The autonomous vehicle is modelled using a kinematic 

model:  

 
𝑧𝑘+1 = 𝑧𝑘 + 𝑓(𝑧𝑘 , 𝑢𝑘). 𝑇 

𝑓(𝑧𝑘, 𝑢𝑘) =  [𝑣𝑘 cos 𝜃𝑘, 𝑣𝑘 sin 𝜃𝑘 , 𝜔𝑘 , 𝛼𝑘]
𝑇  

(16) 

 

The MPC controller minimize this cost function for path 

tracking: 

 

𝑚𝑖𝑛 𝑄𝑓(𝑧𝑇,𝑟𝑒𝑓 − 𝑧𝑇)
2

+ 𝑄 ∑(𝑧𝑘,𝑟𝑒𝑓 − 𝑧𝑘)
2

𝑇

𝑘=2

+ 𝑅 ∑ 𝑢𝑘
2

𝑇

𝑘=1

+ 𝑅𝑑 ∑(𝑢𝑘+1 − 𝑢𝑘)
2

𝑇

𝑘=1

 

(17) 

Where T is the horizon length, 𝑄𝑓  is the state-final matrix, 

𝑄 is the state-cost matrix, 𝑅 is the input cost matrix, and 

𝑅𝑑 is the input difference cost matrix. 𝑧𝑟𝑒𝑓  comes from 

target path and speed and subject to: 

• Linearly vehicle model: 

 𝑧𝑘+1 = 𝐴𝑧𝑘 + 𝐵𝑢 + 𝐶 (18) 

• Maximum steering speed: 

 |𝑢𝑡+1 − 𝑢𝑡| < 𝑑𝑢𝑚𝑎𝑥 (19) 

• Maximum steering angle: 

 |𝑢𝑡| < 𝑢𝑚𝑎𝑥 (20) 

• Initial state: 

 𝑧0 = 𝑧0  (21) 

• Maximum and minimum speed: 

 𝑣𝑚𝑖𝑛 < 𝑣𝑘 < 𝑣𝑚𝑎𝑥  (22) 

• Maximum and minimum input: 

 𝑢𝑚𝑖𝑛 < 𝑢𝑘 < 𝑢𝑚𝑎𝑥 (23) 

 

You can get a discrete-time mode with Forward Euler 

Discretization with sampling time: 

 𝒛𝒌+𝟏 = 𝒛𝒌 + 𝒇(𝒛𝒌, 𝒖𝒌)𝒅𝒕 (24) 

So: 

 𝑧𝑘+1 = 𝐴𝑧𝑘 + 𝐵𝑢𝑘 + 𝐶 (25) 

Where:  

 

𝐴 =

[
 
 
 
 
1 0 cos(𝜃) 𝑑𝑡 −𝑣 sin(𝜃) 𝑑𝑡

0 1 sin(𝜃) 𝑑𝑡 𝑣 cos(𝜃) 𝑑𝑡
0 0 1 0

0 0
tan(𝛿)

𝐿
𝑑𝑡 1 ]

 
 
 
 

 

(26) 

 

𝐵 =

[
 
 
 
 
0 0
0 0
𝑑𝑡 0

0
𝑣

𝐿𝑐𝑜𝑠2(𝛿)
𝑑𝑡

]
 
 
 
 

 

(27) 

 𝐶 =

[
 
 
 
 

𝑣 sin(𝜃) 𝜃𝑑𝑡

−𝑣 cos(𝜃) 𝜃𝑑𝑡
0

−
𝑣𝛿

𝐿𝑐𝑜𝑠2(𝛿)
𝑑𝑡

]
 
 
 
 

 (28) 

2.3 Batch Informed Trees (BIT*) [13] [28] 

Commonly, the planners, based on graph search, are 

decomposing the SDC world into an m-dimensional net. 

Each cell in this net becomes a node located on the graph. 

BIT* method of creating a graph uses the RRT, which is 

structured by providing each node a metric motion 

planning. 

BIT* utilises a specific heuristic suitable to search a 

sequence of growingly intensive implied RGGs while 

using prior information [29]. It is regarded as an expansion 

of incremental graph-based search methods, such as 

Lifelong Planning A* (LPA*) [30]. This anytime 

expression constructs sampling-based planners practical 

on many continued path planning in spite of dependence 

on sampling [28]. 

BIT* uses a heuristic sampling domain for the problem to 

minimise the path length. The search begins with start 

state xstart to reach a goal state xgoal. These points are called 

the focal points for the elliptical shape of the batch search, 

as shown in Figure 3. The style of the ellipse relies on both 

the xstart  and xgoal to find the lower cost cmin and the best 

cost of the solution found cbest. The ellipse eccentricity is 

given by 
cmin

cbest
.  
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Figure 3: BIT* heuristic to discover the minimum length of the path. 

 

BIT* includes a line ordering identical to a lazy TLPA*. 

In BIT*, a starting RGG with implied links is spread 

uniformly across the random samples. The RGGs edges 

have to a k-nearest graph [31] or r-disc graph [32]. So, the 

RGG r or k is picked to decrease graph complexity while 

preserving asymptotic prerequisites as a function of the 

samples’ number. Then, a detailed tree is created from the 

begin, directed to the destination by a heuristic search (see 

Figure 4). This graph has edged with free collision, and its 

building finishes when a solution is discovered, or it can 

no longer be extended (Figure 5). This is the batch. If the 

solution is located, these samples are restricted to the 

subproblem that has a more suitable solution [33]. 

 

 

Figure 4: the batch of samples 

 

Figure 5: In every batch, the search expands around the min solution using a heuristic. 

 

2.4 B-Spline Planner 

B-spline [21], [22] curves contain all the benefits of Bezier 

curves and overpower the disadvantages that Bezier 

curves do not have on the local revision. The B-spline 

equation is: 

 𝑝(𝑢) =  ∑ 𝑑𝑖  𝑁𝑖,𝑘  (𝑢)

𝑝−1

𝑖=0

 (29) 

The di (i = 0, 1, …, p-1) means points in the collection S 

of samples, and the Ni,k(u) represents the essential function 

and the declaration of this function is: 
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𝑁𝑖,0(𝑢) = {
1     𝑢𝑖 ≤ 𝑢 ≤ 𝑢𝑖+1

0         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  
 

𝑁𝑖,𝑘(𝑢)

=
𝑢 − 𝑢𝑖

𝑢𝑖+𝑘 − 𝑢𝑖

𝑁𝑖,𝑘−1 (𝑢)

+
𝑢𝑖+𝑘+1 − 𝑢

𝑢𝑖+𝑘+1 − 𝑢
𝑁𝑖+1,𝑘−1(𝑢) 

𝐷𝑒𝑓𝑖𝑛𝑒 
0

0
= 0 

(30) 

And ui(i = 0, 1, …., p-1) is the node parameter. 

3 Results and Discussion 

3.1 Environment setting 

We implemented BIT* to display the efficiency of the 

proposed method using B-Spline and MPC under spyder 

(python 3.9) environment and used a global planner to 

develop reference trajectory. When an obstacle appears on 

the map, it will have a high “cost value”. So, we can check 

collisions based on the cost. Both the environment and 

trajectories are shown using the plot function in python.  

First, we use BIT* and the B-Spline to develop a global 

reference trajectory. The length of the path is taken as the 

path cost, and then we compare the path length, the loops 

and time in different algorithms to demonstrate the more 

acceptable achievement of the BIT* with B-Spline, as the 

fewer loops mean a quick converging rate. The B-Spline 

with BIT*is used to get the reference trajectory, then the 

MPC approach is applied for path tracking and controlling 

motion, and the achievement of our proposed work is 

explained in various scenarios. 

3.2 BIT* and B-Spline Planner 

The first scenario deals with a few obstacles with a narrow 

channel, as displayed in Figures (6-9). The positions of the 

beginning and the destination points are (-1, 0) and (3, 8), 

respectively. The red or blue solid lines are the trajectory 

created by using the global planner. In the map, we can 

see that there are three obstacles (circle shape) between 

the beginning and the destination, and the best trajectory 

for the mobile robot is through the selected channel among 

the obstacles.

 

 

Figure 6: Initial state with few Obstacles 

 

Figure 7: Path generated by BIT* only 
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Figure 8: BIT* path after modified by Approximated B-Spline 

 

Figure 9: BIT* path after modified by Interpolated B-Spline 

Table 1 shows the statistics of the planner with few obstacles. 

Table 1: The results of the proposed work with few obstacles. 

Path generated by Path 

length 

Computational 

Time (s) 

Iteration 

BIT* 10.38 73.63 80 

BIT* with Approximated B-

Spline 

9.92 73.94 80 

BIT* with Interpolated B-

Spline 

11.05 74.1 80 

 

The second scenario deals with multiple obstacles. Mobile 

robots require to plan a free-from-obstacles trajectory in 

an environment has multiple obstacles (Figures 10-13) 

with many obstacles are used to test the achievement of 

the framework. The coordinates of the beginning and the 

destination points are (-1, -1) and (4, 12), respectively. 

There is a good path from the start to the goal. The path 

crosses the top left of the goal, so this is the best solution 

for the planner to see according to the initial state of the 

environment. 
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Figure 10: Initial state with many Obstacles 

 

Figure 11: Path generated by BIT* only in many obstacles’ environment 

 

Figure 12: BIT* path after modified by Approximated B-Spline in many obstacles’ environment. 

 

Figure 13: BIT* path after modified by Interpolated B-Spline in many obstacles’ environment. 
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Table 2: The results of the proposed work with many obstacles. 

Path generated by Path 

length 

Computational 

Time (s) 

Iteration Sample Size 

BIT* 16.43 77.63 100 

9296 

BIT* with Approximated 

B-Spline 

15.32 77.84 100 

BIT* with Interpolated 

B-Spline 

17.62 78.31 100 

3.3 The Overall Framework 

This section describes the whole framework to 

demonstrate the efficacy of our suggested method. The 

BIT* supported by the b-spline planner investigates the 

reference trajectory based on the current start and 

destination points. The MPC technique aws suggested to 

calculate the optimal linear speed and angular speed 

(control inputs) and passed them to the robot. The settings 

of some essential parameters are shown in Table 3. 

 

Table 3. MPC Parameters in the framework. 

Parameters Value Parameters Values 

Sampling Time 0.2 input cost matrix diag([0.01, 0.01]) 

prediction horizon 5 input difference cost 

matrix 

diag([0.01, 1.0]) 

execute horizon 2 state cost matrix diag([1.0, 1.0, 0.5, 0.5]) 

 

Figures (14-17) show the yaw angle changes and path curvature in a map with few and many obstacles and the reference 

trajectory created by BIT* with a B-Spline planner.  

 

Figure 14: Yaw angle changes in few obstacles. 
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Figure 15: Curvature of the generated path in Few obstacles. 

 

Figure 16:Yaw angle changes in many obstacles. 

 

Figure 17: Curvature of the generated path in many obstacles. 

4 Conclusions 

This article describes planning the motion of a mobile 

robot by proposing a BIT* planner with a B-Spline 

method. The B-Spline method decreases the sharp and 

hard angle of the path generated by BIT. Besides, the B-

Spline strategy bypassed some undeserved curves in the 

route. With this strategy, a reference trajectory 

appropriate for the robot could be acquired. Then, we use 

the MPC approach for path pursuit and controlling 

motion. Finally, we compare the performance of BIT* 

only, the BIT*with B-Spline approximation and the BIT* 

with B-Spline interpolated in two various environments, 

and the results display that the suggested BIT* with 

approximate B-Spline could discover the best trajectory 

with quick converging rate and shorter length. The entire 

framework’s significance is also demonstrated in an 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2022, 10(3s), 214–226  |  225 

environment which has a few and more obstacles. The 

outcomes indicate the true path deviated from the 

reference path, but the parameters should be 

accommodated to balance the pursuit achievement and the 

direction to hold far from the obstacles. For future plans, 

it is important to demonstrate and test the strategy on a 

real robot’s platform and enhance and develop our 

strategy to be used on distinct robots. Similarly, the 

dynamics of mobile robots in our controller design will be 

evaluated. 
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