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Abstract: Electricity theft becomes a major concern for utilities in this new era of high tech, self-sufficient dwellings. Finding and 

reducing energy losses or theft has proven challenging due to insufficient inspection methods. In terms of energy, both technical and 

non-technical losses (NTL) are included in distribution. Energy theft is a significant factor in NTL that can strain the finances of service 

providers. Wireless data transmission is used in modern smart metres. It follows that hi-tech dwellings can be easily hacked to steal 

power. Many new technologies have been implemented into Advance Metering Infrastructure (AMI) to combat energy theft. It is 

necessary to derive the consumption pattern in order to identify illegal energy customers. Using data mining methods, a computational 

system is designed for examining and identifying energy consumption patterns. Through the use of machine learning, we are able to 

improve our customers' energy consumption statistics and provide them with early warning of any irregularities. Multiple supervised 

learning techniques are examined and contrasted in relation to their predictive accuracy, recall, precision, AUC as well as F1 score. 

These include the decision tree (DT), ANN, Deep ANN, Modified ANN and AdaBoost. Based on the results of the study, MDANN is 

superior to alternative classifiers for supervised learning including ANN AdaBoost as well as DT according to recall, F1 Score along 

with AUC. The upcoming research should focus on testing different supervised learning algorithms using various datasets and including 

appropriate pre-processing procedures to boost performance. 

Keywords:  include power theft detection; deep learning; smart grid; accuracy; recall; precision; area under the curve (AUC); F1 score; 

1. Introduction

Power companies around the world face a big difficulty 

in the form of energy waste during electricity’s 

distribution and transmission. The loss of energy are 

often classified as either nontechnical losses (NTLs) or 

technical losses (TLs) [1, 2]. A term "net total losses" 

(NTL) refers to the sum of all losses minus all theft losses 

(TLs). In fact, the vast majority of power theft [3] is the 

result of physical operations like tapping lines, damaging 

metres and tampering with metre readings. Potential 

revenue losses for utilities may occur from fraudulent 

electricity practises. About $5.5 billion in ann1ual losses 

are attributed to electricity theft alone. In many 

developing nations, electricity theft is seen as a major 

barrier for economic development. One recent study, for 

instance, found that fraud and theft account for nearly 

20% of total electricity produced in India [38]. 

 

Concerning circumstances exist in numerous Asian and 

African nations, including, but not limited to, Nepal, 

Pakistan, Lebanon, Kenya, Tanzania and Uganda. Not 

only emerging markets are affected by the issue. [9] 

Energy theft is thought to be responsible for about $6 

billion in financial losses annually in the United States 

alone, or about 80% of all commercial losses.  

American citizens [4]. The US. Additionally, electricity 

theft costs utilities upwards than $25 billion annually [5]. 

Also, there is concern that electricity stealing habits 

could compromise the safety of the grid. Electricity theft, 

which can lead to overloaded electrical networks, poses 

a threat to public safety in several ways. For this reason, 

it is crucial for the security and reliability of the power 

grid that electricity theft be detected accurately. Power 

companies were able to acquire massive amounts of 

frequent electricity usage data from smart metres thanks 

to an advanced metering infrastructure (AMI) in smart 

grids [6, 7]. While there is always two sides to a story, 

it's important to note that the AMI network opens up 

fresh avenues for electricity theft. Various ways, 

including digital tools and cyber-attacks, can be used to 

launch such attacks on the AMI. Human inspection of 
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unauthorised line diversions, comparison of malicious 

metre records with benign records and inspection of 

malfunctioning equipment or hardware are the 

fundamental techniques for identifying power theft. 

However, these steps take a long time and cost a lot of 

money to complete during the entire metre verification 

process for a system. 

Not even resorting to manual processes can safeguard 

against cybercrime. In recent years, many different 

approaches have been offered for overcoming the 

aforementioned problems. You can broadly categorise 

these approaches as either game theory, state or artificial 

intelligence (AI) based models [8]. 

In [12, 17] multiple deep learning architectures are 

assessed for detecting electricity theft. These designs 

include convolutional neural networks (CNNs), recurrent 

neural networks (RNNs), long short term memory 

(LSTM) and stacking auto encoders. Conversely, 

functionality of the detectors are evaluated utilising 

simulated data that prevents an accurate comparison with 

shallow systems [39]. Moreover, a customer specific 

deep neural network (DNN) detector was proposed by 

the authors of [14, 19], which might be used to 

successfully thwart such cyber-attacks. Recently, CNN 

has been employed for a number of purposes [20-22] 

owing to its ability for extracting beneficial as well as 

distinguishing features from raw data. For the purpose of 

detecting power theft, these usage cases utilize CNN 

extraction of features over high resolution smart metre 

data. Smart grid electricity theft was analysed using a 

large as well as deep convolutional neural network 

(DCNN) framework developed in [12]. 

The conventional methods for detecting theft of 

electricity primarily depend heavily on the project 

schedule for technicians, who are employed for power 

distribution companies. A process involves reading an 

electricity metre, followed by manual analysis and 

calculation, recording, counting and analysis [21]. It is 

possible to prevent energy theft on a hardware level 

through a variety of actions, including the installation of 

a specialised watt hour metering box, connection of a 

conductor to reduced voltage outlet as well as its closure 

to metering device, addition of an anti-thief function to 

watt hour metre [30] along with an increase in electrical 

acquisition system's application rate. On the other hand, 

the majority of such conventional anti-theft detection 

techniques concentrate on power device advancement. 

[26, 27] It is challenging for identifying power 

consumption traits of power stealing users as well as 

detecting stealing of electricity behaviour carried out via 

sophisticated assault means because there aren't enough 

anti-power stealing methods for analysing large 

historical data sets on power consumption [31, 32]. The 

advancement of novel information, automation and AI 

technologies must therefore be bolstered for supporting 

the growth of power industry. Studying an intelligent anti 

power theft approach based on big data of power 

consumption for identifying power theft behaviour is of 

great engineering significance with a continuous 

enhancement of dynamic monitoring as well as 

acquisition technology of energy consumption data for 

power grid consumers [33, 34]. 

For effectively identify electricity theft, it has to be 

expected that MDANN will automatically collect several 

aspects of clients' consumption patterns using smart 

metre data. The RF is used in place of the MDANN 

classifier, which identifies consumer patterns using 

extracted attributes, to improve detection performance. 

All of the electricity customers in Tirunelveli and 

Tuticorin were used in training and validation of the 

suggested framework. 

2. The Literature Survey 

Bhat et al. compared CNN, RNN, LSTM [36] as well as 

loaded auto encoders (LAEs) for the purpose of detecting 

electricity theft. However, the performance of the 

detectors in shallow architectures was tested using 

generated data, which is not a credible metric [23]. An 

elaborate CNN model ETD was introduced for SGs by 

Zheng et al. They found that the majority of existing 

methods are not very effective at detecting electricity 

theft because they failed of preventing the periodicity of 

electrical consumption and also rely on one dimensional 

(1-D) statistics of electricity usage. [24]. 

To alleviate these problems, this work aims to develop a 

reliable ETD system. Specifically, we introduce a model 

for detecting electricity thieves using CNNs and a Meta 

heuristic optimization approach [25, 37] that takes cues 

from nature. There are a number of convolutional, 

pooling and fully linked layers, which make up CNN a 

part of the system. In particular, CNN is well suited to 

recording the regularity of information like electricity 

usage. This is the first study that we are aware of that 

proposes and uses deep algorithm model (combining 

CNN with MDANN algorithm) to investigate electricity 

theft in smart networks. Additionally, a vast accurate 

dataset of energy use was subjected to rigorous testing. 

3. Supervised Learning Algorithms  

Each supervised learning method for detecting electricity 

theft is broken down here, along with the underlying 

theory and equation. The fundamental steps of 

supervised learning algorithms are depicted in Figure 1. 

For constructing prediction model, ML algorithm 

initially employs training data, feature vectors as well as 

label data as inputs. 
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3.1. DT 

As a supervised learning technique, Decision Tree (DT) 

has the capacity of solving both classification as well as 

regression issues [12]. This article discusses the Decision 

Tree (DT) [13), a method for categorising instances 

based on the values of their attributes. Each node in the 

DT algorithm's tree stands in for a different quality of an 

instance that needs to be classified 

 
Fig.1. The Decision Tree 

In addition, the tree presupposes that each node 

represents a numerical value. Figure 1 is an easy to 

understand example of DT. 

3.2. ANN 

 A single input layer, one or more hidden layers and one 

or more output layers are shown in Fig. 2 as the three 

layers that comprise an ANN's architecture [10]. It's 

worth noting that a multilayer feed forward neural 

network or multilayer perceptron are other names for 

ANN. The brain's network of neurons served as 

inspiration for this approach. Dendrites (which are found 

in the human brain) are used to represent the inputs of an 

ANN as they transfer electrochemical signals received 

from neurons to the cell body. There is a weight 

associated with each input that determines which hidden 

layer it transmits signals to. Often, the sigmoid function, 

an activation function, is what drives a neuron. In 

addition to the step function, the Gaussian function and a 

linear function, the hyperbolic tangent function is also 

mentioned as a possible activation function [16]. 

 
Fig.2. The structure of an ANN 

An ANN's axon, which connects two neurons and 

continues to the synapse, is its very last layer. Typical 

architectures for ANNs have one output, two inputs and 

a hidden layer. Neural Network (NN) periods are defined 

by the neurons' bidirectional traffic between input and 

output. (The optimal epoch for NN training is determined 

by the amount of error that can be tolerated during 

training and the ANN output equation looks like this: 

 

3.3. Deep Artificial Neural Network (DANN) 

Artificial neural networks with two or several hidden 

layers are recognised as deep neural networks (DNN) 

[13]. It takes a lot of power and data for deep learning 

(DL) for capturing a lot of information from original 

input data of additional layers of a neural network (NN). 

The terms "deep learning" and "deep neural network" are 

synonymous; however, "deep artificial neural network" 

is a somewhat different phrase (DANN). DANN's 

several layers allow it to categorise attributes in their 

various manifestations. Understanding the myriad ways 

in which data from lower levels is combined to yield 

higher level features is the key to unlocking all of these 

layers. See Figure 3 for a visual representation of the 

MDANN structural design. 

 

 
Fig.3. DANN model 

3.4. Adaboost 

AdaBoost, a method of ensemble learning, as presented 

by Freund and Schapiro [11]. It excelled in classifying 

data to an unprecedented degree. To a greater extent than 

other learning approaches, AdaBoost can handle 

complex prediction problems without becoming overly 

specialised. The strategy aids the development of 

incompetent learners by keeping a set of weights from 

the training dataset. Then, after every cycle of ineffective 

learning, it will make an adaptive adjustment to the 

students' performance. Misclassified weights tend to 

grow and correctly classified weights tend to decrease in 

the training dataset [8]. 

4. Existing System 

Prior efforts to identify electricity thieves relied on 

customers' power use profiles. The spot where electricity 

is not being properly billed for [35]. Every single 

customer in that area is being treated as a possible 

criminal. One drawback of the preceding efforts is that 

they have been based on the unproven supposition that 

certain consumers are engaging in fraudulent activity 
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when it comes to stealing electricity [28, 29]. 

Possibilitative clients might be exposed as scammers in 

this case. The motivation for this study comes from the 

need to combine the real energy consumption statistics 

with the hypothetical data based on our clients' 

hypothetical behaviour. Data clusters are analysed with 

machine learning techniques, while clients are 

categorised with deep learning. Based on how often and 

where a customer's information is used, we can tell if it's 

legitimate or fake. 

4.1. System Modeling 

This new approach to preventing energy theft in smart 

homes is both cutting edge and effective. The energy 

monitoring device was really put to use in a real home 

because of a non-invasive method of data collection. 

Time arrangement details and power consumption in an 

uncontrolled home environment are among the data sets 

collected. Keen Houses are built by integrating IoT and 

smart metres. Advanced Metering Infrastructure 

monitoring and regulation (AMI), 

Reconciling the underlying foundation was the primary 

goal of the Energy Management System (EMS). The 

DSMS (Request Side Management System) is built into 

the Enterprise Management System (EMS). As such, its 

primary value is in the administration of interest 

responses and commitments. It gathers demand 

information to guide load-shifting and other forms of 

optimal force application that maximise profits from the 

power market at both peak and off-peak times. Within 

the safety of the user's home, they can use their 

smartphones to manage their IoT devices. Data generated 

from smart homes could be analysed using newly 

discovered and designed frameworks to inform 

judgments that are both smart and energy-efficient. 

Energy theft is problematic in the dense matrix network. 

Damages in the billions of dollars range have been 

incurred by several countries. 

5. Methodology 

Theft of electrical power occurs when someone uses 

electricity without paying the appropriate tax on the 

amount of power used. The suggested framework has 

been depicted in Figure 4. 

 
Fig.4. Suggested Model for Identifying Electrical Theft 

5.1. Data Collection 

For this study, data was gathered twice. To train the 

intelligent system to recognise normal usage patterns 

from those that might be cause for concern, initial data 

collecting focused on billing and consumption 

information from past clients. In the second phase of data 

collection, the same kinds of details were acquired as in 

the first, but they were used to put a fraud detection 

system through its paces, looking for and identifying 

potentially suspicious customers. 

There are two types of customer information gathered: 

• The data from the Enhanced Customer 

Information Billing System (e-CIBS) 

• Information with a Very High Potential for 

Harm. 

5.2. Information on Power Useage 

Data sets of actual customer power consumption from 

State Grid Corporation of China are used for the study 

(SGCC). Totalling 42,372 rows and 1,035 columns, this 

data set is quite substantial. The customer's ID is in the 

first column, the "Flag" prediction indicator is in the 

second and the third through the last columns are the days 

of the week (1,035). The Metadata types in the dataset 

consist of a mishmash of alphabetic characters, numeric 

values and blanks (NaN). The amounts of power 

(electricity signals) used by each consumer over a two 

year period are represented numerically, along with any 

missing or inaccurate information. 

Additionally, the flag column's metadata is (zero and 

one) as well as refers to the type of consumers (normal 

or thief), whereas a number of zeroes in "Flag" column 

denotes the number of typical power consumers and sum 

of zeroes represents a total number of normal electricity 

users (38,757). There are two thieves, represented by the 

character one in "Flag" column as well as one flag, shown 

by the number one in that column (3,615). Ultimately, it 

shows that a number (42,372) signifies information about 

users' power consumption patterns over the past 1,035 

days (from Jan. 1, 2018 to Oct. 31, 2020). 
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5.3. Modifying the Database 

A provided power use dataset has been altered at multiple 

phases using numerous methods for use in developing 

ETD blueprints. Since the neural network only allows 

numerals and these values aren't specified, a new dataset 

has been generated via substituting all the null and non-

values in the prior dataset using zeros until the neural 

network recognises them. Next, a new dataset is divided 

into training set (consisting of 80% of the data) and 

testing set, which comprises 20% of data using 80/20 

rule. 

5.4. Customer Selection and Filtering 

Only customers with extensive and relevant data were 

selected from the UCI repository for the building of the 

MLP model because the e-CIBS data collected from 

TANGEDCO is in raw format and therefore requires pre-

processing to extract important and meaningful 

information. Since the information was collected in a 

database, we employed Structured Query Language 

(SQL) data mining methods to ensure that we met the 

following four requirements: 

• It is recommended that monthly data be cleaned 

of repeat customers. 

• Customers who use no energy at all over the 

course of a year should be cut off. 

• Customers that aren't there during the whole 

year should be removed. 

5.5. Data Preprocessing 

Metrics and user profiles are aggregated for a certain 

area. Every single customer in that area has been 

authentically profiled. The percentage of reliable 

customers has been calculated employing a Deep 

Learning system. After splitting the data in two ways, the 

deep neural network is utilised to determine which 

customer profile displays the more realistic pattern of 

energy use. According to the data from their smart 

metres, the customers are separated into distinct groups. 

The readings from a representative customer's smart 

metre are used here; they are taken every 30 minutes and 

expressed in kilowatt hours over the course of 28 days. 

The normal consumers are the negative class and the out 

of the ordinary ones are the positive class. Data extracted 

from the confusion matrix includes the following: 

➢ TP: Anomalies in consumer behaviour are 

correctly predicted as outliers. 

➢ TN: Normal consumers are expected to be 

normal with high confidence. 

➢ FP: An ordinary shopper is viewed as 

suspicious. 

➢ FN: Consumer Anomaly Considered Typical   

5.6 Theft detection using Modified Deep Artificial 

Neural Network 

The normal multi-layered neural networks, which are 

also called modified deep artificial neural networks 

(DANN), consist of input layers, hidden layers and 

output layers. The discrete convolution is the key 

operation in convolutional layers. We use a 2 × 2 kernel 

as an example to illustrate the discrete convolution. The 

input I has a value in each grid. Then, a two-dimensional 

kernel function K ∈ R2×2 is used to extract features. The 

output S of the convolution is: 

𝑠(𝑖, 𝑗) = ∑ ∑ 1(𝑖 + 𝑘𝑖 , 𝑗 + 𝑘𝑗)𝑘(𝑘𝑖, 𝑘𝑗)

1

𝑘𝑗=0

1

𝑘𝑖=0

           (1) 

Above Equation (1) illustrate that convolutional kernels 

map the neighbouring information of the input into the 

output 

We construct the power consumption recordings matrix 

y and the electrical thefts matrix nu assuming that there 

are xn historic electricity usage records and that each 

record has T interval.  Meanwhile, assume that xr's 

influencing external elements are absent.  The task of 

detecting power theft is classified as a discrete two-class 

task, and each power consumption record (x1, x3) should 

be placed into one of the specified classes (abnormal or 

normal), as shown below. 

𝑦1 = {
1               𝑖𝑓 𝑟𝑒𝑐𝑜𝑟𝑑 𝑖𝑠 𝑎𝑏𝑛𝑜𝑟𝑚𝑎𝑙;
0     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                 

           (2) 

 In the following paper, we examine whether power 

consumption records x have displayed aberrant 

behaviours in the past by using these records along with 

external information sequences such as days and types as 

time series xb, f, respectively. 

5.7. Performance Metrics 

5.7.1. Accuracy 

The accuracy of classifiers is measured as the percentage 

of correctly labelled examples relative to a total number 

of examples. This is a format used for the calculation: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
                       (3) 

Here TP, TN, FP and FN symbolises "True Positive," 

"True Negative,” “False Positive” as well as "False 

Negative”. 

5.7.2 Precision 

Equation (4) defines accuracy as the fraction of correctly 

labelled positive classes (TP) relative to the full set of 

positive classes (TP + FP). It was hypothesised that the 

FP rate was low if the value was extremely precise. 
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𝑃𝑅𝐸𝐶𝐼𝑆𝐼𝑂𝑁 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
                                 (4) 

 5.7.3. Recall 

In statistics, recall refers to the rate at which positive 

class (TP) observations are properly labelled as such, as 

a percentage of all class observations (TP + FN). 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
                                         (5) 

5.7.4. F1-Score 

For classes with an uneven distribution of members, the 

F1 score (F-measure) is preferable since it considers a 

recall and precision weighted average (as demonstrated 

in equation (6). From a scale of 0 (worst) to 1 (best), this 

is the estimated value (the best). It is advised to keep an 

eye on both recall and precision measurements if it is 

found that the classes are significantly imbalanced. F1 

score, on the other hand, combines the two into a single 

measure that is more appropriate for assessing the given 

form of data set: 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =
2 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑅𝑒𝑐𝑎𝑙𝑙 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
                      (6) 

6. Results and Discussion 

The results of every type of comparison strategy are 

presented here. As instructed, training set and testing set 

were created from the dataset. As, ratios has been 

modified in the algorithm, so did algorithm's recall, 

accuracy, AUC, precision and F1 score. AUC along with 

F1 score were utilized owing to dataset's uneven 

classifications. Tabulated in Table 1 below are the results 

of several evaluation procedures used to assess various 

comparison methods. We bolded the top performers in 

the table. On average, ANN performed at 93.78%, 

followed by MDANN (94.6%), Ada Boost (92.86%) and 

DT (93.3%). Both DT and MDANN achieved 92.83% 

and 93.58% accuracy with respect to the 60/40 split 

percentage. As an added bonus, accuracy was maximised 

using ANN and AdaBoost for 60/40 and 70/30 ratios, 

respectively. 

The AUC was more than 0.5 for every classification 

ratio. These classifiers proved to be effective in 

classification problems. Using a 70/30 split percentage, 

MDANN achieved a higher AUC (10.95) than DT 

(0.6524) and AdaBoost (0.6875). Related to the AUC 

was another measure of quality, the F1 score. The highest 

F1 scores can correspond to the highest AUC values. 

Table 3 reveals that MDANN, DANN and AdaBoost 

performed best in terms of AUC at the 70/30 split 

percentage, with values of 11.03, 0.9211 and 0.6875, 

respectively. F1 score also yielded the highest success 

rates (56.04, 55.02 and 16.58 percent). 

To determine how widely the outlier group was 

represented during the classification process, precision 

evaluation was used in this research. The experiments 

showed that a 90/10 split percentage ratio yielded the 

best results for three classifiers (ANN, MDANN and 

AdaBoost), with 58.33%, 60.40% and 58.46% precision, 

respectively. DT's accuracy at the 70/30 split percentage 

was the highest at 54.99%. The overall average precision 

was 66.73 percent, with ANN coming out on top. 

MDANN had the highest average recall at 42.97 percent, 

followed by ANN at 51.83 percent, AdaBoost at 8.82 

percent and DT at 0.00 percent (3.9 percent). As 

expected, ANN and MDANN outperformed other 

methods in terms of recall, with 51.83 and 63.0 percent, 

respectively, for a 60/40 split. Despite having 80 and 20 

samples for training and testing, respectively, DT, 

another classifier, had the highest recall (5.49%). 

AdaBoost's recall rate was best when the ratio was set to 

70/30. The average accuracy and precision produced by 

ANN was 92.54% and 64.05%, respectively, however 

the average results for the other three assessment metrics 

(recall, F1 score and AUC) were 42.97%, 47.98% and 

10.95%, respectively, for MDANN. In conclusion, the 

splitting% or the ratio between training and testing had a 

significant part in achieving an optimum outcome. 

 

7. Assessment and Discussion Based On 

Comparisons 

Several measures of performance including precision, 

accuracy, recall, AUC as well as F1 score are depicted 

in Figures 6(a)-6(e) for DT, DANN, ANN, MDANN 

and AdaBoost. Theoretically, the model was fitted using 

a training dataset, while its efficacy was measured using 

the testing dataset. The percentage of the dataset to be 

split was chosen so that its application and performance 

on fresh data could be evaluated. With a 70/30 splitting 

%, MDANN outperformed AdaBoost, ANN and DT in 

terms of training and prediction model accuracy (Figure 

6). (a). It's also worth noting that when the splitting 

proportion was 80/20 rather than 70/30, the trained 

models' performance vastly improved in both AdaBoost 

and DT. Most classifiers' efficacy plummeted when the 

split% reached 90/10, with AdaBoost being an 

exception. 
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Table 1. We can see a comparison of the supervised learning outcomes. 

Techniques T :T Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1 score 

(%) 

AUC 

 

DT 

90/10 92.32 48.39 3.51 5.68 0.6563 

80/20 92.34 51.79 5.49 9.18 0.6655 

70/30 93.01 54.99 4.36 7.23 0.6606 

60/40 92.83 49.86 2.59 3.99 0.6524 

Average   92.62 51.26 3.99 6.52 0.6587 

 

ANN 

90/10 93.78 80.05 15.04 24.8 0.7136 

80/20 93.68 63.68 34.81 44.95 0.8045 

70/30 93.66 58.23 44.74 50.63 0.8486 

60/40 93.98 58.33 51.83 54.94 0.882 

Average - 93.98 65.07 36.61 43.83 0.8121 

 

DANN 

90/10 93.71 66.73 20.72 31.33 0.7391 

80/20 93.68 61.93 39.13 47.93 0.824 

70/30 94.28 63.66 46.22 53.57 0.8587 

60/40 92.53 49.26 62.16 66.02 0.9211 

Average - 93.55 60.40 42.06 46.96 0.8357 

 

Ada Boost 

90/10 92.91 64.66 8.79 14.82 0.682 

80/20 92.78 56.15 7.05 11.84 0.6704 

70/30 93.4 56.51 10.09 16.58 0.6875 

60/40 92.86 56.52 8.82 14.65 0.6813 

Average - 92.99 58.46 8.69 14.47 0.6875 

 

MDANN 

proposed 

90/10 94.76 67.76 21.63 32.35 10.85 

80/20 94.73 62.95 40.04 48.95 10.93 

70/30 95.33 64.68 47.13 54.59 10.97 

60/40 93.58 50.28 63.06 56.04 11.03 

Average - 94.6 61.42 42.97 47.98 10.95 
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Fig. 5(a). Comparison of various Classification method vs Accuracy 

 

 
Fig. 5(b). Comparison of various Classification method with precision  

 
Fig. 5(c). Comparison of various Classification method vs Recall 
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Fig. 5(d). Comparison of various Classification method vs F1 score 

 

Fig. 5(e). Overall comparison of various Classification method vs Accuracy 

Figure 5(b) shows that the accuracy of ANN improved 

noticeably at the 90/10 split, while it declined at the 

70/30 split. AdaBoost achieved its best accuracy, 

64.66%, at the 90/10 split. AdaBoost's performance was 

roughly 64% precise across three different ratios of 

splitting percentage. At first, it seemed that the 70/30 

splitting% considerably increased DT in the precision 

test. On the other hand, its accuracy gradually dropped 

around the 60%/40% split. At a 90/10 split, MDANN's 

accuracy was almost as high as 63.06%. 

Compared to 70/30, MDANN recall value is greater at 

60/40, as shown in Figure 5(c). MDANN's low recall at 

the 90/10 split is easily seen. ANN's behaviour was 

analogous to that of MDANN when it gradually 

improved recall for each splitting %. As a result of using 

AdaBoost, we were able to raise that percentage from 

90/10 to 60/40. Recall for DT was obviously much lower 

than it was for alternate methods of comparison. Figure 

5(d) shows that when applying MDANN, the F1 score 

was best achieved at a 60/40 splitting% compared to 

other possible values (70/30, 80/90 and 90/10). Similarly 

to MDANN, ANN generated highest F1 score, with a 

score of 60/40. While AdaBoost's F1 Score was lower 

than that of MDANN and ANN, it still outperformed DT. 

The steady increase of MDANN over the splitting 

percentage is shown in Figure 5(e). Indeed, as the size of 

training set shrank, the AUC value for MDANN 

increased. ANN's behaviour was consistent with that of 

MDANN, DANN and DT and the AUC was only slightly 

improved with AdaBoost (80/20 vs. 70/30). The AUC 

was between0.50 to 0.53 for both. Precision, accuracy, 

recall, AUC as well as F1 score performance at dissimilar 

percentages of splitting will vary across classifiers. For 

the vast majority of them, the 90/10 split would provide 

the highest degree of accuracy. 

8. Conclusion 

Important findings from this study include the fact that 

supervised learning approaches are better to other 

techniques because of the ease with which high quality 

model training may be accomplished because to the 

availability of labelled data. Due to their extensive 

instruction with massive datasets and high powered 

computers, pre trained models are very well suited to 

analysing information on electrical consumption. In this 

research, we compared four classifiers and four 

supervised learning algorithms for their ability to identify 

electrical theft. Measures including accuracy, recall, 

precision, F1 score and AUC allow for an evaluation of 

classifier effectiveness. In comparison to alternative 

classifiers of supervised learning including ANN, DANN 

AdaBoost and DT, MDANN achieved higher recall, F1 

Score along with AUC. Additional supervised learning 

methods can be tested with different kinds of datasets in 

the future and appropriate preprocessing techniques can 

be incorporated to boost performance. 
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