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Abstract: An innovative method of testing the artificial neural network's effectiveness for ITK inhibitor data prediction was used. As a 

comparison, a multiple linear regression model was also developed. Using back propagation training, a multilayer perceptron MLP 

neural network was given the bioactivity estimate task. It was determined that there were enough buried neurons and that the learning 

rate was enough based on changes in RMSE. Thus, the final neural network consists of one output variable as the output layer, six 

input variables, eight hidden neurons, three nodes for bias accounting, and a 0.55 learning rate. To assess the robustness of the neural 

network model, test set data were forecasted, and forecast accuracy was measured. 
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1. Introduction

This Due to their high processing speed and capability to 

handle complex non-linear functions, artificial neural 

networks (ANNs) have emerged as one of the most 

successful technologies in recent years. ANNs are used 

extensively in a variety of fields, including engineering 

[3], measurement and control [2], and sensors [1]. In 

order for connected information processing units to 

convert input into output, they need a model called a 

"neural network," which is characterized by an activation 

function [4]. It has always been done to compare the 

genetic makeup of neural networks with the human 

nervous system. Information is transmitted by 

interconnected units, much like how it does in human 

neurons. The neural network's first layer receives the raw 

input, processes it, and then sends the result to the hidden 

layers. The last layer, which creates the output, receives 

the processed information from the hidden layer [5]. The 

most fundamental type of neural network is the 

perceptron. A weighted summation and an activation 

function are used by a perceptron to process 

multidimensional information. The perceptron model's 

inability to handle non-linearity is a significant drawback. 

This restriction is removed by a multilayered neural 

network, which also aids in the resolution of non-linear 

issues. The output layer is connected to the hidden layer 

through the input layer. The connections are weighted, 

and the weights are optimized via a learning rule [6]. 

The primary goal of the research is to create a neural 

network model that estimates the biological activity of 

ITK inhibitors in order to evaluate the model's prediction 

power using particular, significant physco-chemical 

characteristics rather than experimental data. The two 

machine learning techniques that deal with function 

approximation issues are neural networks and support 

vector machines [7]. To predict activity data of 

physiologically relevant inhibitors against several protein 

targets, a variety of regression approaches have been used 

and proposed. The dimensionality of the dataset increases 

as the number of independent variables rises, making 

regression models built on a machine learning concept 

appear to be simpler, but controlling numerous aspects 

and understanding domain knowledge remain 

challenging. Creating a more straightforward prediction 

model, perhaps one that uses an empirical methodology, 

is therefore imperative [8]. In terms of empirical methods, 

multilayer perceptrons (MLP), a type of artificial neural 

network (ANN), have been used extensively in the 

domains of bioinformatics during the past few decades 

[9]. In this investigation, we assess the efficacy of neural 

networks in predicting ITK inhibitor activity data. 

2. Materials And Methods

Using the back propagation method, neural net software 

was employed to train neural networks. Resilient back 

propagation (RPROP) is a technique that can be used with 

or without weight backtracking [10, 11], as well as the 

modified globally convergent version (GRPROP) 

developed by Anastasiadis et al. [12]. By letting users 
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choose their own activation and error functions, the 

function offers versatile options. Additionally, 

generalized weights are implemented [13] through their 

calculation. The neural network can use the "backprop," 

"rprop+," "rprop-," "sag," or "slr" algorithms. Back 

propagation is referred to as "backprop," resilient back 

propagation is referred to as "rprop+" and "rprop-," and 

the modified globally convergent method is used in "sag" 

and "slr," respectively (grprop). A learning rate—either 

the learning rate associated with the smallest absolute 

gradient (sag) or the smallest learning rate (slr) itself—is 

modified as part of the globally convergent algorithm, 

which is based on robust back propagation without weight 

backtracking. 

2.1 Dataset 

The dataset for neural network analysis was a collection 

of 133 ITK inhibitor data from the results of multivariate 

regression analysis. The dataset was simply split into 

training and test sets, as shown in Table 1, with 

bioactivity acting as the dependent variable and six 

independent variables (Balaban index, logP, LUMO, 

HOMO, KC3 index, and shape index, respectively) 

chosen as the independent variables [14]. These variables 

describe the relationship between the response variable 

and the change in property values. 

 

Table 1: ITK inhibitor training and test set data. 

 Training Set 

activity BALABAN LOGP LUMO HOMO KC3 SHAPE 

-0.10607 1.26758 1.7469 -0.83198 -8.46474 3.39466 6.1269 

-0.60264 1.09088 3.9511 -0.65749 -8.49199 3.50835 7.40238 

0.011762 1.07498 3.5897 -0.58275 -8.45258 3.31011 7.16509 

-0.00581 1.09088 3.8545 -0.49918 -8.33252 3.50835 7.96828 

0.307417 1.07498 3.4931 -0.51726 -8.36368 3.31011 7.73093 

-0.21542 1.27798 1.4997 -0.60697 -8.4041 3.10599 5.88807 

0.071021 1.2752 1.908 -0.6324 -8.47381 3.10599 6.39383 

-0.11919 1.27719 2.2694 -0.57413 -8.37499 3.51423 6.63225 

0.300448 1.0553 3.6846 -0.6371 -8.47916 3.31011 7.67591 

0.287611 1.07309 3.199 -0.50533 -8.37269 3.59878 8.15593 

0.029969 1.25813 3.1322 -0.62515 -8.46272 3.39466 7.68693 

-1.71238 1.08549 4.1983 -0.94919 -8.51629 3.79703 7.64039 

-0.74179 1.07012 3.8369 -0.97376 -8.50695 3.59878 7.40238 

-0.62054 1.08549 4.1017 -0.90497 -8.45064 3.79703 8.20638 

-1.69808 1.28997 1.8975 -0.52544 -8.81458 2.13435 7.42828 

-2.21908 1.28189 2.6058 -0.53495 -8.97438 2.13435 7.50228 

-2.72048 1.27434 2.3531 -0.5249 -8.95243 2.33847 8.25666 

-2.13636 1.2801 3.3976 -0.52906 -8.95976 2.42302 8.1119 

-2.06593 1.2801 2.7453 -0.82046 -9.04527 2.42302 7.68087 

-1.70939 1.28372 2.7453 -0.50005 -8.78236 2.42302 7.68087 

-3.09565 1.2967 3.073 -0.17675 -8.93134 2.33947 7.73496 

-1.4344 1.28997 0.874801 -0.95814 -9.09837 2.13435 7.38148 

-1.49069 1.28189 1.7588 -0.46428 -8.70377 2.13435 7.76101 

-3.65154 1.54713 1.7763 -0.53487 -8.9766 2.30102 6.94553 

-2.25535 1.29945 2.9483 -0.21375 -8.8672 2.07798 8.05816 
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-2.53876 1.31015 3.3464 -0.77193 -9.0172 2.07798 8.41538 

-1.64129 1.29716 3.7401 -0.88868 -9.03766 2.36666 8.67633 

-2.10408 1.30775 4.1382 -0.93898 -9.03583 2.36666 9.03661 

-2.16347 1.28189 2.7024 -0.56805 -8.73479 2.13435 6.91128 

-2.03164 1.29681 2.144 -0.95517 -8.94298 2.01478 7.98461 

-1.88687 1.30674 2.3905 -0.92366 -8.9407 2.29514 8.21582 

-1.81604 1.28751 2.1492 -0.88734 -8.99535 2.13435 7.98461 

-1.4609 1.28054 2.5455 -0.89697 -8.96169 2.13435 8.55479 

-2.5088 1.2652 3.8503 -0.90043 -8.86662 1.7261 6.93611 

-2.80119 1.12762 5.0675 -0.93322 -8.90224 1.93023 7.68592 

-1.90875 1.2652 2.5961 -0.66216 -8.77583 1.7261 6.90508 

-1.60784 1.27608 2.6482 -0.90693 -8.89762 1.7261 7.45743 

-2.62081 1.27608 2.3007 -0.8565 -8.88731 1.7261 7.45743 

-2.50794 1.28997 1.8975 -0.96046 -8.97064 2.13435 7.42828 

-2.67356 1.52085 0.9858 -0.90684 -8.76119 1.41612 4.58915 

-0.64103 1.28997 1.6134 -0.60404 -8.43434 2.13435 7.12725 

-1.04978 1.28189 1.818 -0.6762 -8.51866 2.13435 7.76101 

-0.855 1.28189 2.665 -0.49816 -8.42218 2.13435 7.50228 

-0.67562 1.28372 3.4568 -0.71358 -8.47871 2.42302 8.1119 

-0.1985 1.2801 3.4568 -0.7897 -8.48865 2.42302 8.1119 

-0.28513 1.2801 3.183 -0.43036 -8.35614 2.42302 7.96142 

-0.67908 1.28102 2.4123 -0.09543 -8.2552 2.33847 8.25666 

-0.75826 1.27434 2.4123 -0.4087 -8.41383 2.33847 8.25666 

-1.41247 1.28372 3.1322 -0.6359 -8.47246 2.42302 7.73496 

-1.25874 1.28997 1.9567 -0.86522 -8.41884 2.13435 7.42828 

-1.20835 1.2801 3.1322 -0.09647 -8.30285 2.42302 7.73496 

-0.27655 1.28102 2.53 -0.65463 -8.46496 2.33847 7.88787 

-0.27655 1.27434 2.53 -0.8457 -8.47154 2.33847 7.88787 

-1.52238 1.27287 1.9735 -0.77731 -8.43864 2.63435 8.26046 

-2.04998 1.18918 3.6717 -1.13856 -8.4535 1.98659 6.33283 

-0.86463 1.25719 4.8791 -1.11953 -8.43565 1.93023 7.94663 

-1.19106 1.25222 4.4273 -1.11724 -8.42493 2.23859 7.09057 

-0.48202 1.12181 5.7 -1.12411 -8.46655 2.13435 8.14399 

-1.67831 1.12308 5.4473 -1.13821 -8.45702 2.33847 8.88345 

-0.87956 1.26589 3.559 -1.03258 -8.50194 1.93023 8.4804 

-1.52473 1.26637 2.3487 -0.85795 -8.61768 2.33847 7.34606 

-0.64144 1.28505 2.7765 -0.82453 -8.43437 2.2189 8.44328 
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-0.84567 1.29802 3.023 -1.10143 -8.53537 2.49926 8.67395 

-1.50775 1.1242 3.4521 -1.02214 -8.46359 2.42302 8.90883 

-0.43279 1.11075 3.5042 -1.11652 -8.46122 2.42302 9.45957 

-0.43275 1.1326 2.4629 -1.10592 -8.54341 2.33259 9.2 

-1.00015 1.13325 2.8243 -1.10753 -8.5407 2.62127 9.43237 

-0.5323 1.29704 2.8725 -0.84435 -8.55392 2.28211 8.44328 

-1.87563 1.32171 3.2856 -0.7875 -8.82661 2.59047 8.67395 

-1.37774 1.52639 0.6545 -1.13808 -8.54863 2.31269 6.549 

-2.12685 1.52843 1.2827 -1.31081 -8.60159 2.21506 7.10276 

-1.97844 1.53574 1.8451 -0.77413 -8.44031 2.50514 7.33373 

-1.29674 1.29037 1.3411 -1.12847 -8.53095 2.33847 6.30554 

-0.551 1.28921 1.7374 -0.80488 -8.53199 2.33847 6.81842 

-0.96992 1.27434 2.5674 -1.12666 -8.5531 2.33847 7.29772 

-0.15162 1.27434 2.53 -0.77256 -8.43386 2.33847 7.88787 

-0.35081 1.28189 1.818 -0.82922 -8.47782 2.13435 7.76101 

-0.64201 1.28997 0.934001 -0.88141 -8.50452 2.13435 7.38148 

-1.19391 1.2268 3.9775 -1.10931 -8.75121 1.90892 8.52657 

-1.53333 1.47045 2.3295 -1.13417 -8.83484 1.70479 8.35404 

-1.71778 1.18237 2.5134 -1.12838 -8.82231 1.90892 9.08199 

-1.334 1.2392 4.7131 -0.69814 -8.67145 1.90304 8.61412 

-0.96346 1.24157 4.0601 -0.94311 -8.71582 1.81848 8.52657 

-1.30109 1.2455 2.4641 -0.95824 -8.76279 1.61436 8.02367 

-1.19542 1.23926 3.3481 -0.66473 -8.72431 1.61436 8.42545 

-1.32519 1.23509 4.0601 -1.11645 -8.72935 1.81848 8.52657 

-1.27424 1.24361 3.0311 -0.76663 -8.56313 2.22673 7.91494 

-1.17233 1.09096 4.511 -1.2464 -8.89489 2.02261 8.58563 

-1.08033 1.22583 3.7818 -1.12105 -8.73857 1.81848 7.9504 

-1.33639 1.09369 2.915 -1.10031 -8.91465 1.81849 8.0852 

-1.27719 1.2209 2.1027 -0.98399 -8.81722 1.41612 7.80056 

-0.08511 1.2209 2.1993 -0.89591 -8.33401 1.41612 7.15524 

-1.80735 1.48362 2.1136 -1.13289 -8.80379 1.41612 6.96325 

-1.30218 1.21296 3.6987 -1.12324 -8.81087 1.62024 8.30363 

-1.32426 1.21296 3.7953 -1.18437 -8.36369 1.62024 7.66475 

-1.90023 1.28189 3.1332 -0.38474 -8.44161 2.13435 6.91128 

-2.71402 1.09412 4.8176 -0.47078 -8.43816 2.46768 7.90825 

-3.08954 1.15343 4.1354 -0.51713 -8.44388 2.40652 7.07671 

-1.66933 1.12184 4.1354 -0.59074 -8.43217 2.46768 7.07671 
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-1.41427 1.28997 2.4249 -0.50908 -8.43755 2.13435 6.8336 

-1.40672 1.28997 2.6607 -0.39326 -8.3917 2.13435 6.8336 

-2.18328 1.28997 1.7589 -0.69007 -8.5025 2.13435 7.0816 

-1.76574 1.28997 1.5889 -0.76896 -8.53348 2.13435 7.0816 

-2.28918 1.28997 1.9927 -0.78192 -8.66806 2.13435 6.78908 

-1.86641 1.28997 1.4156 -0.60993 -8.54527 2.13435 6.78908 

-1.89124 1.28997 1.2456 -0.68865 -8.53768 2.13435 6.78908 

-1.63597 1.28997 1.4022 -0.9087 -8.69184 2.13435 6.78908 

-0.82917 1.28648 2.5577 -0.69444 -8.50205 2.42302 7.28563 

-0.89744 1.28648 2.8583 -0.74794 -8.51795 2.42302 7.43018 

-0.83596 1.27657 1.4976 -0.96971 -8.57262 2.63435 7.58818 

-1.48203 1.08094 3.4105 -0.94644 -8.56378 2.66013 8.34595 

-1.87824 1.06848 3.7966 -0.61675 -8.44727 2.5426 8.3252 

-1.28733 1.05073 3.8915 -0.4863 -8.43947 2.5426 8.86054 

-1.31011 1.08925 3.8735 -0.71483 -8.4432 2.46768 7.83112 

-0.99862 1.08925 3.4256 -0.84731 -8.47274 2.46768 8.07208 

-0.76621 1.09992 3.0763 -0.99062 -8.50343 2.46768 7.99825 

-0.73694 1.09436 2.2358 -0.91769 -8.43903 2.75636 8.20462 

-0.01167 1.09992 1.9651 -0.91097 -8.5135 2.46768 7.7125 

-1.6217 1.09992 2.4852 -0.38262 -8.23103 2.46768 7.85093 

-1.59569 1.08925 1.817 -0.49858 -8.37667 2.46768 8.34746 

-0.64318 1.09495 2.8915 -1.28495 -8.49203 2.60377 8.45603 

-0.21163 1.09373 3.166 -1.03364 -8.53224 2.6728 8.25585 

-0.93285 1.2801 3.6512 -0.58081 -8.49654 2.42302 7.36109 

-0.89934 1.27434 2.9982 -0.83904 -8.57572 2.33847 7.29772 

-1.90399 1.27434 2.8805 -0.40552 -8.41085 2.33847 7.65006 

-1.13133 1.2801 3.925 -0.57696 -8.52532 2.42302 7.50475 

Test Set 

activ

ity 

BALA

BAN 

LO

GP 

LU

MO 

HO

MO KC3 

SHA

PE 

-

1.573

3 1.27287 

2.55

94 

-

1.435

31 

-

8.893

71 

2.634

35 

8.174

91 

-

1.975

52 1.28102 

2.47

08 

-

1.060

36 

-

9.108

45 

2.338

47 

7.887

87 

-

2.115 1.29775 

3.13

65 

-

0.716

65 

-

8.913

11 

2.014

78 

8.554

79 

-

0.850

55 1.27904 

2.05

41 

-

1.012

95 

-

8.620

32 

2.338

47 

7.219

07 

-

1.015

07 1.2689 

2.68

82 

-

0.943

74 

-

8.555

25 

2.826

8 

8.362

5 

-

0.614

56 1.09992 

2.73

3 

-

0.953

5 

-

8.534

1 

2.467

68 

7.712

5 

-

0.501

3 1.09436 

2.44

81 

-

1.006

14 

-

8.496

99 

2.756

36 

7.948

54 
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3. Results and Discussion 

The processed data was normalized using the min-max 

method, which converts the data into a common range and 

eliminates the scaling influence from every variable. The 

min-max method preserves the variables' initial 

distribution, in contrast to Z-score normalization, median, 

and MAD methods. The 133 data points in the normalized 

data set, which includes six variables (BALABAN, 

LOGP, LUMO, HOMO, KC3 and SHAPE), have been 

randomly split into training (95%) and testing (5%) 

groups. For the bioactivity estimate challenge, a 

multilayer perceptron MLP neural network trained in 

back propagation was selected. A function that can 

adequately relate all the variables under consideration is 

required due to the nonlinear association between input 

and output data for a certain network. As a result, 

nonlinear transfer functions are needed to add 

nonlinearity into a network for the hidden neurons in the 

network. According to reports, an MLP network that has 

enough neurons satisfies the universal approximation 

property [15] [16]. 

For issues involving function approximation, several 

neural networks are accessible. In contrast to Radial Basis 

Function (RBF) networks and Generalized Regression 

neural networks (GRNN), a Multilayer Perceptron (MLP) 

neural network trained using back propagation was 

chosen because it can effectively learn big data sets [17]. 

It has been demonstrated that MLP works well for 

establishing nonlinear relationships between sets of 

variables and is useful for solving problems involving 

function approximation. Since the back propagation 

learning method is more widely used, significant research 

has been done to speed up its convergence because the 

fundamental algorithm is too slow for the majority of 

actual applications. Along with back propagation, other 

algorithms were proposed, including globally convergent 

algorithms with the shortest absolute gradient (sag) or the 

smallest learning rate, robust back propagation with and 

without weight backtracking, and (slr). All of these 

methods were put to the test on a training set to attain the 

lowest RMSE possible in order to evaluate how well each 

training algorithm performed. 

 

When a particular training algorithm failed to produce the 

desired results on an MLP in some circumstances, it may 

have been because the learning rule's attempt to reproduce 

the values of the network parameters failed to converge 

and the given network was unable to carry out the desired 

function, possibly as a result of not having enough hidden 

neurons [18]. The necessary hidden neurons, however, 

have not yet been identified theoretically. Due to 

underfitting and excessive statistical bias, if the hidden 

neurons are few, there will be a high training error and 

high generalization error. On the other hand, if the hidden 

neurons are significantly larger than the variables, there 

may be a low training error, but there will still be a high 

generalization error because of overfitting and high 

variation. Without training multiple networks and 

calculating their individual generalization errors, it is 

typically impossible to establish the optimal number of 

hidden neurons [19]. 

The neural network must meet certain conditions, 

including a maximum number of training epochs, a 

learning rate, and a minimum number of nodes in a single 

hidden layer [20]. In this study, the generalization 

(testing) RMSE error was varied sequentially from 5 to 23 

hidden neurons [21] [22] and the learning rate was varied 

from 0.01 to 1.0 in increments of 0.05 [23]. We calculated 

the mean square error (MSE) for each configuration 

between the model output and the measured data. The 

maximum MSE-measured model performance is shown in 

Figure 1 by the optimal hidden layer neuron count and 

learning rate. The optimal learning rate and the quantity 

of neurons in the hidden layer were determined by trial 

and error. 

 

A 

 

B 

Fig. 1: Mean square error calculation between data and 

output from variations with the number of neurons in the 

hidden layer (A) and variations with the learning rate (B). 

 

Finding the optimal number of hidden neurons—i.e., the 

number at which the testing RMSE falls—was the criteria 

used. The ideal learning parameters are determined by 

repeatedly training a neural network with the optimal 

number of hidden neurons after it has been reached. The 
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final neural network therefore includes six input variables, 

eight hidden neurons, three nodes a 0.55 learning rate, and 

one output variable as the output layer for bias accounting 

(Figure 2). 

 

Fig. 2: Presentation of neural network with back 

propagation algorithm. 

 

 

 

Fig. 3: Prediction of test set data by neural network. 

 

According to test set data, which was anticipated as a tool 

to assess the robustness of neural network models, the 

most crucial feature of a model should be its capacity to 

generalize. Overfitting, however, prevents the 

generalization of models [24]. The model's capacity to 

generalize shows that it has the potential to perform well 

when tested using test set data that were not used to train 

the model. Therefore, the data set was divided into two 

sets at random, with 5% of the data used to test the model 

and 95% of the data used to train the model, which 

calculates the gradient and modifies network parameters 

like weights and biases. The model training process was 

stopped when the network attempted to overfit the data or 

made a mistake on the dataset, and the weights were 

initialized randomly. Figure 3 shows that the model 

correctly predicted the test set 78% of the time, with a 

correlation value of 0.8787, supporting the neural network 

model's capacity for prediction. 

It should be mentioned that when building a strong neural 

network model, it's crucial to consider the appropriate 

amount of layers, neurons in the hidden layer, learning 

rates, and model training epochs. Since mean square error 

calculation was used in this instance, the number of 

hidden layers and learning rates were optimized. In 

addition, the model might not accurately represent 

nonlinearity if the hidden layer's neurons are not taken 

into account. The model may, however, become overfit if 

too many neurons are used, which prevents it from being 

generalized [25]. 

Additionally, a multivariate linear association analysis on 

the training data produced a low r2 value of 0.49, a 

superior F-statistic, and low p-values, suggesting that the 

proposed model predicts activity with lower accuracy 

than neural net model but with higher predictive capacity 

on test data. 0.24 was shown as an error on a cross-

validated mean square error plot in Figure 4. Given that 

Figure 5 shows that the RMSE values are below 0.3, a 

subset of the training set was plotted to examine how the 

RMSE varied with the duration of the training set. 

 

Fig. 4: Cross-validated mean square error of the dataset. 
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Fig. 5: Variation of RMSE with length of the training set. 

 

Fig. 6: Obtained RMSE values for k sample size. 

The histogram in figure 6 shows the distribution of the 

dataset's RMSE while also highlighting the average 

RMSE (vertical red line) over k distinct samples. The 

activity variable's obtained RMSE ranges from 0 to 0.6. 

These levels of RMSE are considered to be modest. 

4. Conclusion 

The neural network model and the linear regression model 

both provided a respectable level of accuracy for the 

training and test set data of the ITK inhibitors used in this 

experiment. Here, 8 neurons in the hidden layer were 

proposed by a network growth technique, and the mean 

square error calculation indicated that the learning rate 

was 0.55. Additionally, a correlation coefficient of 0.8787 

and a prediction accuracy of 78% for the test set provided 

by the neural network model supported its predictive 

capabilities. 
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