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Abstract: Intervertebral Disc (ID) is the mattress like structure that holds the bones of the spine together thus these discs increase the 

stability of the spinal column and ID images are used in the prediction of Scoliosis disease. However, while processing these images 

existing techniques use edge operators to locate four points on vertebral body for prediction of disc bulge but it is very difficult to obtain 

such image because the severity in the selected plane image is still uncertain. Hence a novel Quadruple Up Sampling Operation up 

sample the images double times with the Omnidirectional sagittal block matching algorithm that select, match and label the image hence, 

the intervertebral disc's severity and the plane image as a slice of the present frame remain predictable.   Moreover, during segmentation 

it is impossible for 3D structure to reconstruct automatically due to over segmentation and it provide only less detail about disease 

growing rate. Hence the technique 3 phase Atrous Net automatically segment and predict the sub image pair by segmentation and elastic 

atlas mapping with the cascade and parallel atrous convolution thus provide separation between vertebral disc near together and overcome 

over segmentation with the Duck colony optimization algorithm for feature selection. However, in classification stage sematic and 

discreet reconstruction limit the detail in image feature extraction so it results in perplexing outcome. Hence 3DSpMRINet technique 

uses sparse learning that provide feature weight vector that enhances the quality of the image and provide a high accuracy of disease 

classification. The proposed model for scoliosis prediction has been implemented in python platform and the result shows improved 

accuracy, recall rate, precision and F1 score. 

Keywords: Intervertebral disc, scoliotic, quadruple up sampling operation, 3 phase atrous net, 3DSpMRINet, accuracy, omnidirectional 

sagittal block matching algorithm.  

1. Introduction

The biomechanical system of human body is made up of 

vertebral bodies (vbs) and intervertebral discs (ivds) [1]. 

Back pain, caused by conditions such as spondylolisthesis 

and spinal stenosis, is the most prevalent reason for adult 

clinical visits in modern cultures, resulting in substantial 

costs and impairing life quality and work performance [2]. 

Pathological lesions, fractures, tumors, degeneration, 

protrusion, or herniation of the vbs or ivds can all cause 

spinal problems. As a result, robust segmentation methods 

must be used to analyze their form, position, orientation, 

and tissue etiology for diagnosis and preoperative/therapy 

planning [3]. Noninvasive noncontrast enhanced magnetic 

resonance (mr) imaging gives improved contrasts for tissue 

segmentation. Manual segmentation is time-consuming, 

expensive, and prone to errors, but well-designed 

automation algorithms may provide dependable, robust 

segmentations for research with a big cohort or over a 

lengthy period of time Recently proposed methods for 

automatically segmenting vbs/ivds [4,5] on mr images used 

a local or global/local model of the vbs/ivds' shapes, 

geometries, pairwise geometric constraints, and intensities 

to initialize and steer their registrations/deformations 

towards object boundaries [6], avoiding convergence to 

local extrema and reducing computations [7]. If numerous 

vbs/ivds were to be segmented, this meant sequential 

localization/segmentation [8]. 

Besides computational complexity, one by-one localization 

of VBs/IVDs [9] could be confused by the repetitive 

pattern of the spine and similarities in intensities or shapes 

of neighboring VBs/IVDs. So far, these ambiguities were 

addressed by a spatial probabilistic map [10] obtained from 

a trained CNN model, a parzen window applied to the 

training images, or a hidden Markov model of relative 

shapes, poses, and distances of neighboring VBs/IVDs. In 

these methods, having significant shape, geometry, and 

intensity variations [11-13] in the training images could 

enhance the generalizability of the learnt segmentation 

model. However, they reduced the specificity of the 

resolved localizations [14]. Furthermore, most of the 

previous methods for segmenting VBs/IVDs relied on T1- 

or T2-weighted MR images. Chemical-shift encoded 

(Dixon) MR imaging provides high contrasts for a 

simultaneous assessment of morphological properties and 

fat content of spinal structures. Observed associations 
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between these measures and demographic state, bone 

mineral density, osteoporosis/osteopenia, degenerations, 

visceral obesity, and diabetes motivate further analysis via 

automated assessments on large cohort data sets [16]. So 

far, only a few methods have been developed based on fat-

water MR images. These methods either performed a one-

by-one localization/segmentation or used deep learning 

with high computational complexity [17]. 

Segmentation of intervertebral discs has similar 

difficulties, i.e., partial volume effects and gray-level 

overlapping, with one of the most researched segmentation 

tasks, the segmentation of brain tissue from MR images [18 

-19]. Soft segmentation techniques such as the fuzzy c-

means algorithm (FCM) have been widely used for dealing 

with partial volume effects in brain segmentation [20]. The 

accurate segmentation of intervertebral discs would be 

useful in quantification of disc degeneration and computer-

aided diagnosis of the disease as well as computer-assisted 

spine surgery [21 -24]. So far, most studies dealing with the 

quantification of disc features for diagnostic or surgical 

purposes have been based on manually segmented data. 

However, manual segmentation is a tedious and time-

consuming process where there is a lack of reproducibility 

between observers. However, none of these studies 

reported on the quantitative evaluation of segmentation 

accuracy. Moreover, the segmentation of degenerated 

intervertebral discs appears to remain an open issue 

therefore to overcome the discussed issue a novel model 

for analyzing the disc images with high segmentation 

accuracy is required. The main contribution of this paper 

are as follows, 

• In scoliosis disease prediction from ID images, issue 

in predicting pre-defined plain image in 

preprocessing stage has been removed by using 

quadruple up sampling operation by performing the 

up sampling double times. 

•  In segmentation the automatic reconstruction of the 

3D structure denied the detail about disease rate 

which is solved by 3 phase atrous net that 

automatically segment image with the duck colony 

optimization algorithm for the feature selection.  

• In the prediction of severity of scoliosis disease there 

is the limit of detail in image for feature extraction 

which is solved by 3DSpMRINet which uses sparse 

learning for estimation of feature weight vector.  

The content of the paper is structured as follows: section 2 

denotes the literature survey, section 3 provides technique 

and the novel solution, results obtained are provided in 

section 4; finally, section 5 concludes the paper. 

2. Literature Survey 

Rehman et al [25] uses the probability map of a pre-trained 

deep network to initialize the level set and refines the 

output repeatedly under the operation of multiple factors. 

As a result, the network's learning ability is increased, and 

the network can accept large topological form changes in 

the vertebrae. On two separate datasets, the proposed 

technique was tested. The first is a collection of 20 publicly 

accessible 3D spine MRI datasets for disc segmentation, 

while the second is a set of 173 computed tomography 

scans for segmenting thoracolumbar (thoracic and lumbar) 

vertebrae. U-Net architecture, on the other hand, fails to 

perform and obtain suitable segmentation performance 

when dealing with segmentation situations with substantial 

topological shape variability. 

Hwang et al [26] proposed a radiomics model to distinguish 

hematopoietic marrow disorders and compared the results 

to radiologists' readings and a quantitative measurement. 

The images acquired from multiple manufacturers, models, 

magnetic fields, and scanning parameters were normalized 

with the annulus fibrosus of a non-degenerated 

intervertebral disk in order to minimize the effect of image 

heterogeneity on radiomics features. This may have added 

consistency among the images acquired from multiple 

manufacturers, models, magnetic fields, and scanning 

parameters. It was difficult to identify key characteristics 

to distinguish diseased marrows since LASSO, PCA, and 

RF chose various feature groups; nevertheless, the six 

radiomics models distinguished diseased marrows with 

high CA, SE, and AUC with little variation. 

Fallah et al. [27] created an automated measurement of the 

morphological and fat-related characteristics of VBs and 

IVDs. This enables huge cohort data sets to be used in 

investigations on subclinical spinal diseases. It might also 

be used for other segmentation aims by changing its feature 

set to appropriate multimodal or multichannel images, such 

as T1-, T2-, and PD-weighted images, or Dixon data sets 

of other quantitative maps. Their thinness, on the one hand, 

made them vulnerable to noise or partial volume effects, 

and on the other, hinted that they had little impact on the 

segmented volumes. 

Lin et al [28] described an object-specific bi-path network 

(OSBP-Net) for axial spine image quantification. The 

OSBP-Net has a shallow feature extraction layer (SFE) and 

a deep feature extraction sub-network for each route 

(DFE). Because the two target organs have distinct 

anatomical diameters, the SFEs employ various 

convolution strides. Based on the finding that the target 

organs have lower intensity than the background, the DFEs 

employ average pooling for down sampling. The DE-Net, 

on the other hand, is built for generic organ quantification, 

which means it doesn't take use of the inherent qualities of 

axial spine estimation, resulting in inferior predictions. 

Pang et al [29] introduced SpineParseNet, a two-stage 

accurate and robust multi-class segmentation system, to do 

spine parsing. The suggested area pooling module, which 
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was constrained by the deep supervision loss, created a 

trustworthy graph representation, which was developed by 

consecutive graph convolutions. The region unpooling 

module projected the evolving semantic network 

representation to a semantic image representation. The 

IVDs, on the other hand, are difficult to see clearly on the 

CT picture. 

Li et al [30] addresses the problem of fully-automatic 

localization and segmentation of 3D intervertebral discs 

(IVDs) from MR images. Our method contains two steps, 

where we first localize the center of each IVD, and then 

segment IVDs by classifying image pixels around each disc 

center as foreground (disc) or background. The disc 

localization is done by estimating the image displacements 

from a set of randomly sampled 3D image patches to the 

disc center. However, if the image does not contain all the 

7 discs (T11- \S1), then our algorithm may fail, because the 

location of the missing discs returned by our algorithm may 

be completely wrong. 

Wang et al [31] identified patient presenting AIS thus the 

major curve apex on PA X-rays was chosen as the region 

of interest (ROI) for machine learning from 52 patients 

who had routine PA spinal X-rays. For the pre-training and 

fine-tuning of the model, a two-stage transfer learning 

technique was introduced. The major curve's apical 

rotation and torsion were shown to be considerably 

different between the P and NP curve trajectories using 3D 

reconstruction.  Cross-platform performance on standard 

standing PA X-rays produced accuracy, sensitivity, and 

specificity values of 77.1%, 73.5%, and 81.0%, 

respectively. When the degree of apical rotation or torsion 

differed from that of the succeeding curve trajectory, errors 

in prediction occurred, but they could be fixed by taking 

serial X-rays into account. Performance was better than 

that of clinical parameter-based regression models and 

conventional CNNs. The need for pricey biplanar X-ray 

devices, then the labor-intensive and error-prone software 

reconstruction of each individual vertebra, continue to be 

impediments to deployment. 

Nault et al [32] explain a prospective cohort of AIS 

patients had 3D reconstructions at their initial orthopedic 

visit was enrolled. Five different types of descriptor 

measurements were made: the angle of the maximum 

curved plane, Cobb angles, 3D wedging, rotation, and 

torsion. Final Cobb angle (either shortly prior to surgery or 

at skeletal maturity) was used as the outcome, while 3D 

spine characteristics and clinical data were used as 

predictors in a general linear model analysis with backward 

selection. The final model has a determination coefficient 

(R2) of 0.643 and incorporates significant predictors such 

as beginning skeletal maturation, curve type, frontal Cobb 

angle, angle of plane of maximal curvature, and 3D disc 

wedging (T3-T4, T8-T9). The corresponding positive and 

negative predictive values for a 35-degree curve are 79% 

and 94%, respectively. The model will assist the treating 

doctor in starting the right course of treatment on the initial 

visit. However, this investigation did not identify that 

apical vertebral body wedging as a predictor. 

Zhang et al [33] proposed a two-phase study with an 

exploration group of 120 AIS and a validation cohort of 51 

AIS with mean Cobb angles of 23° and 5.0° at the first visit 

each. In order to create a composite model for prediction, 

patients with AIS were tracked for a minimum of six years. 

Clinical parameters were gathered on the initial visit from 

standard clinical practice, and blood was tested for 

circulating markers. The composite model has a larger area 

under the curve than do the individual factors currently 

employed in clinical practice. The model had a sensitivity 

of 72.7% and a specificity of 90% after being validated by 

a separate cohort the initial study to propose and validate a 

prognostic composite model based on clinical and 

circulation characteristics that could objectively assess the 

likelihood that an AIS curve would proceed to a severe 

curvature. The study, however, did not provide information 

on the relationship between treatment outcome and disease 

severity. 

Yi et al [34] proposed the innovative landmark detecting 

technique for the vertebrae. The model initially locates the 

vertebral centres; from there, it uses the learnt corner offset 

to trace the vertebra's four corner landmarks. This allows 

us to maintain the landmarks' original order when using our 

strategy. The comparison findings show the advantages of 

our method in landmark detection and Cobb angle 

measurement on ambiguous and low-contrast X-ray 

images. However, this technique suffers from the class 

imbalance issue between the positive and negative points 

since each channel in the output feature map has only one 

positive point, which will harm the model's performance. 

For [25], it fails to perform and obtain suitable 

segmentation performance, for [26] it is difficult to identify 

key characteristics to distinguish diseased marrows. In [27] 

must improve thinness, on the one hand, made them 

vulnerable to noise or partial volume effects, for [28], need 

a right prediction thus it does not take use of the inherent 

qualities of axial spine estimation that resulting in inferior 

predictions, for [29], it is difficult to see disease clearly on 

the CT pictures, for [30], is completely wrong about the 

missing disc, for [31], it is impediments to deployment, for 

[32], it did not identify that apical vertebral body wedging 

as a predictor, for [33], it does not predict the disease 

severity, for [34], the performance of the model is class 

imbalance.  

3.  3 Phase Atrous Net with DCO-3DSPMRINET 

Model for Scoliosis Prediction 

In recent years, the scoliosis is found to be a tragic because 

of its wideness over the people it is a three-dimensional 
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deformity of the spine with a prevalence these is the disease 

more prominently found in the female category than the 

male which should be predicted in the initial stage to 

overcome the severe problems in the spinal intervertebral 

column. However, for processing ID images and their 

illnesses, existing models manually locate the spinal cords 

centre at each vertebral level using edge operators which in 

turn yields open contours for scoliotic patients as it is very 

difficult to obtain such image since the degree of severity 

in predefined plane image.  Hence a novel model is 

proposed in the preprocessing stage named Quadruple Up 

Sampling Operation thus the images are up sampled double 

times and images are selected using a novel method known 

as Omnidirectional sagittal block matching algorithm thus 

the matching images are labelled that finds the best 

matches of current block in the current frame. Therefore, 

the degree of severity resulted as motion vectors and the 

plane image as a slice of given current frame inter vertebral 

disc remains predictable.   

Moreover, Automatic reconstruction of 3-D structures is 

not possible when employing the watershed technique on 

gradient images during segmentation because this leads to 

over segmentation issues. Thus the distortion, 

inconsistencies, and lack of information on disease 

segmentation occur in the existing model. Thus a novel 

technique 3 phase Atrous Net that combines both 

segmentation and elastic atlas mapping provide the sub 

image pairs are mapped in registry as spatial information 

that incorporates locations, edges and shapes of ROI image 

structures that are delineated to obtain binary disc 

templates thereby overcoming Distortion and 

inconsistencies that occurs during reconstruction of the 

image thus the segmentation is done using atrous 

convolution in cascade and parallel way that provide 

minimal separation between vertebral disc near together 

thus overcome over segmentation. After performing 

feature extraction, the feature selection is done using Duck 

Colony optimization algorithm with respect to scoliosis 

disease the cobb angles its intensity, height and density 

with respect to mathematical richness are selected as best 

features by considering these parameters.  

Furthermore, due to the application of semantic 

reconstruction and discrete reconstruction, both of which 

limit the details in the image for feature extraction, this 

failed to produce a high-quality image at the retrieval stage. 

This led to the same patient being diagnosed with multiple 

conditions by using multiple weighted images, which also 

led to confusing results. Hence the Selected features by the 

various parameters of best features are then trained to 

3DSpMRINet that uses sparse learning estimate a feature 

weight vector, which is compelled by a sparsity 

regularization term to contain many zeros and only have a 

few non-zero weights corresponding to the chosen features. 

Thus it improves the accuracy of the disease classification 

and quality of image during retrieval process thus the 

severity of the scoliosis disease is predicted from the low, 

medium and high with the angle representation.   

 

Fig. 1:  Architecture of proposed Scoliosis disease 

prediction model 

The proposed model for the scoliosis disease prediction is 

given in figure 1, in which the 3D image is converted into 

2D image and then the set of linear level filter is used thus 

the preprocessing step get continued the input is sampled 

up double times by the up sampling operation the block 

matching algorithm matches the sample thus atrous net is 

combined with the segmentation and atlas mapping in 

which the resultant segmentation image is obtained 

therefore an duck colony optimization is used  and 

3DSpMRINet predict the scoliosis disease effectively. 

3.1 Quadruple Up Sampling Operation 

The segmentation in 3d spine dataset provided the 

unsupervised pictures thus 2d image of these images are 

then created and a set of low level linear image filters are 

used in preprocessing as it involves the proper selection of 

images for labelling and processing. In quadruple up 

sampling operation the image is up sampled double times 

up sampling manipulate a signal in order to increase the 

sampling rate which is the post processing tool that 

increases the resolution of the images. Quadruple up 

sampling consist of the up sampling of the 2D image that 

is more beneficiary due to its efficiency in increasing the 

spatial resolution of the image in greater extent with up 

sampling which also increase the size of the image. The 

goal of up sampling is to eliminate low level pixilation. The 

classification of the quadruple up sampling process is given 

in figure 2. 
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Fig. 2: Process in quadruple up sampling operation 

In quadruple up sampling operation it works in the 

preprocessing stage in which the low level linear filter is 

used which filter the image for its processing then the 

interpolation of the image is carried out in the 

preprocessing step that provide the image resizing thus the 

remapping of the image is carried out by the interpolation 

process of image then the image is up sampled double 

times to enhance the resolution of the image thereby 

eliminating the low level pixelation of the image. The 

image is up sampled double times in which it repeats the 

rows and columns of the input and thus the sample get 

improved for its quality and performance. The 

interpolation of the image is explained in the equation (1),  

𝑓(𝑝, 𝑞) = (1 − 𝑐)(1 − 𝑑)𝐹(𝑖, 𝑗) + (1 − 𝑐)𝑑𝐹(𝑖, 𝑗 + 1) +

𝑐(1 − 𝑑)𝐹(𝑖 + 1, 𝑗)       (1) 

Where, the image interpolates in p direction at first and 

then interpolate in q direction. To generalize cubic 

interpolation to two dimensions, a 44 sub grid with 16 

samples is required here 𝑖 and 𝑗 are the row and column of 

sub grid thus 𝑐 and 𝑑 is represented as dimension of sub 

grid. The interpolation of the image is given by the 

matching images that labelled the current match. The up 

sampling of double times is caused to have the image with 

its specific characteristics. Thus the image is selected by 

the omnidirectional sagittal block matching algorithm. The 

disease is predicted by starting the search location on the 

affected area positive or negative 𝑆 pixel is searched for its 

location thus the new search origin picks the location 

search procedure is carried out for obtaining the pixel to be 

1. The symmetric measure for matching diseased region is 

estimated by the 𝛾  which is given in equation (2) , 

                                   𝛾 =
⃓𝐺𝐹𝐷𝐿−𝐺𝐹𝐷𝑅⎸

𝐺𝐹𝐷𝑊
              (2)       

The symmetric measure  for disease region matching is 

found as the difference between Growth Finding Distance 

in left (𝐺𝐹𝐷𝐿) and the growth finding distance in right 

(𝐺𝐹𝐷𝑅) and the total degree of growth finding distance is 

𝐺𝐹𝐷𝑊 .   The multifractal spectra values of the image is 

given by the ROI centered image of sagittal plane with the 

prediction of ROI features 𝑝𝑖  of the input intervertebral 

image is given in equation (3),                         

                      𝜇𝐼(𝑝, 𝑞) =
𝑝𝑖

∑ 𝑝
𝑖
𝑝𝑛

𝑖=1

                                           (3) 

The difference in symmetric measure is determined by the 

maximum value of the symmetric measure of the 

intervertebral image and the minimum measure of 

intervertebral image is given in equation (4), 

                                       ∆γ = γmax − γmin                              (4)                                                    

 

 Thus the output sub image pair 𝑆0 is obtained with high 

multifractal spectra values and the symmetric measures in 

the omnidirectional sagittal block matching algorithm 

select the images and label the matching images 

accordingly. The omnidirectional sagittal block matching 

is explained in the algorithm as follows,  

Algorithm 1: Omnidirectional sagittal block matching 

algorithm 

Input: intervertebral image 

Output: sub image pair 

Initialize scoliosis prediction model 

{  

Start with search location centre 

Search location +/- S pixels around location (0,0)  

Set the new search origin to the above picked location 

Repeat the search procedure until step size S=1 

Exact the initial sagittal region from the image  

Estimate the symmetric measure by equation (2) 

Consider ROI centered on C* and select sagittal plane S 

within the ROI centered image 

Compute the  𝜇𝐼(𝑝, 𝑞) as for i: 1→n using equation (3) 

Determine the difference of symmetric measure of ∆𝛾 

using (4) 

Find the 𝑆0 based on ∆𝛾 value from ROI of MRI plane 

 

Obtained  𝑆𝑜 , 𝑀𝑆𝑃 

end 

} 

The omnidirectional sagittal block matching algorithm 

predict the input intervertebral image to analyze with the 

location centre which is searched for the disease location 

thus the process picked the location with the stepping size 

of 1 by removing the extreme region the of initial sagittal 

region thus the symmetric measure is estimated thus the 
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region of interest (ROI) is centered by the C*of  the sagittal 

plane thus the MRI plane is computed and exhibit the sub 

image pair 𝑆𝑜 and the Multi spectra prediction (MSP) 

denoted as from ROI by the multifractal spectra values in 

the magnetic resonance imaging plane of the image.  The 

multi spectra value of the image is given by the value of 

  𝜇𝐼(𝑝, 𝑞) in the block matching algorithm. 

3.2 3 Phase Atrous net 

The 3 phase Atrous net combine segmentation and elastic 

atlas mapping thus in segmentation it is often based on the 

properties of the picture's pixels, image segmentation 

divide an image into various parts or areas. The sub image 

pairs are mapped in registry as spatial information using 

this three-phase Atrous Net, which incorporates the 

locations, edges, and shapes of ROI image structures that 

are delineated to obtain binary disc templates, thereby 

overcoming distortion and inconsistencies that occur 

during image reconstruction. Additionally, to capture 

multi-scale context and provide rich, complex features that 

accurately capture each patient's information, the 

segmentation is carried out using atrous convolution in 

cascade and parallel fashion. A large feature pool is created 

after completing feature extraction for each patient; it is 

composed of RGB color channel picture characteristics 

such as histographical representation, grey scale features, 

area features, sob features, and root sum mean square 

features. The segmentation in 3d spine dataset provided the 

unsupervised pictures thus 2d image of these images are 

then created and a set of low level linear image filters are 

used in preprocessing as it involves the proper selection of 

images for labelling and processing. In order to overcome 

the segmentation issues in the Intervertebral disc images. 

The image segmentation by the 3D phase atrous net is 

given in figure 3. 

 

Fig. 3: Image segmentation by the 3 phase atrous network 

Figure 3 explains the image segmentation by 3 phase atrous 

network. The 3 phase atrous network with the RGB color 

channel segment the image with the color for the prediction 

and the mapping of the diseased part which is labelled by 

the coloring partition in the image using the elastic atlas 

mapping in segmentation the disease is mapped correctly. 

This elastic deformation method is based on a multiscale 

framework that captures both large- and small-scale 

transformations while taking into account regional 

variations in image brightness and contrast. It assumes a 

locally affine and globally smooth transformation in the 

segmentation of the image. The elastic atlas was initially 

aligned with the picture using a strict landmark-based 

registration procedure. The amount of the fuzziness of 

resulting classification is given by  

            F  =  ∑ ∑ μik
ms

k=1
w
j=1 . ǁyi − vkǁ2                         (5) 

           v𝑘 =
∑ μIK

m .yi
W
j=1

∑ μik
mn

j=1

                                    (6)    

where 𝑦𝑖  𝑖s a pixel's intensity, 𝑠 is the number of clusters or 

classes, 𝑤 is the total number of pixels in the picture, 𝑖𝑘 𝑖s 

a pixel's membership in each class, and 𝑣𝑘 is the value of 

the cluster centres for each class. Three membership 

matrices were created using the class membership values 

of each pixel. The registered atlas DPbest matrix were then 

multiplied pixel-by-pixel to create a combined probability 

matrix representing the disc image. By automatically 

thresholding this combined probability, the segmented disc 

was produced. Thus the feature selection is done by duck 

colony optimization algorithm in which the with respect to 

the scoliosis disease the cobb angles its intensity, height 

and density with respect to mathematical richness need to 

be selected thus the fitness function of the optimization 

algorithm is given in equation (7), 

                     𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝐹 =  𝑚𝑎𝑥 (𝑓𝑐1  +  𝐶)                      (7) 

Where 𝑓𝑐1 is the cobb angle of the intervertebral  image and 

C is the segmented input image thus the fitness value is the 

maximum of the segmented and the intervertebral image 

thus 𝑟1 is the random variable selected before selecting best 

value of the feature the intervertebral disc with the number 

of cluster equal to 1 is given in equation (8), 

     𝐷𝑉(𝑠 =  1)  =  𝐶1𝐷𝑉(𝑠)  +  𝐶2𝑟1(𝐷𝑃𝑏𝑒𝑠𝑡(𝑠)  −

 𝐷𝑃𝑛𝑑(𝑠))                        (8) 

The intervertebral disc image velocity is represented as DV 

thus 𝐶1𝐷𝑉(𝑠) represents the 1st segmented intervertebral 

disc image DPbest(s)  indicate the best value of the feature 

thus the intervertebral disc image as the segmented image 

input made the output with the feature selection. The end 

feature of the position vector of the image is  obtained by 

the DPnd with the additional cluster or group is given in 

equation (9), 

          𝐷𝑃𝑛𝑑(𝑠 +  1)  =  𝐷𝑃𝐵𝑒𝑠𝑡(𝑠)  −

 𝐶1. |𝐶2. 𝐷𝑃𝑏𝑒𝑠𝑡(𝑠)  −  𝐷𝑃𝑛𝑑(𝑠)|         (9) 

 

     𝐷𝑃𝑛𝑑 (𝑠 +  1)  =  𝐷𝑃𝑛𝑑(𝑠)  +  𝐷𝑉(𝑠 +  1)   (10)          
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   The position vector of the input segmented image is 

found out so that the feature selection is carried out by the 

optimization algorithm thus the speed of the feature 

selection process is further revised by using equation (11).  

𝛥𝐷𝑠 + 1 = ℎ𝛥𝐷𝑠 + 𝐶1𝑟1 (𝐷𝑃𝑒𝑏𝑒𝑠𝑡𝑠 − 𝐷𝑠)  +

 𝐶2𝑟2 (𝐷𝑃𝐺𝑏𝑒𝑠𝑡𝑠 − 𝐷𝑠)                 (11)                         

𝐷𝑠 + 1 = 𝐷𝑠 +  𝛥𝐷𝑠 + 1                  (12) 

The speed of the feature selection process is given by the 

equation (11) thus this depicts the 

𝑖𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛 𝑓𝑜𝑟 𝑖𝑡𝑠 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑠𝑝𝑒𝑒𝑑. 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (12) 𝑠ℎ𝑜𝑤𝑠 𝑡ℎ𝑒 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑐ℎ𝑎𝑛𝑔𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑏𝑦 𝑡ℎ𝑒 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛 𝑝𝑟𝑜𝑐𝑒𝑠𝑠. 𝑇ℎ𝑢𝑠 𝑖𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (12) 𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑒 𝑡ℎ𝑒 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 

image. This algorithm specifically used for feature 

selection with respect to the cobb angle intensity, height 

and density. Thus the duck colony optimization algorithm 

is explained as follows.  

Algorithm 2: Duck colony optimization algorithm  

Input: Segmented image 

Output: Feature selection 

do 

{ 

Initialize 𝐷𝑖  features of intervertebral data 

while the stop condition is not pleased 

for each duck 

Call segmented image to find the classification accuracy 

if classification accuracy<DP-𝑝𝑏𝑒𝑠𝑡 

  

Travel with the present assessment to DP-𝑝𝑏𝑒𝑠𝑡𝑚𝑎𝑡𝑟𝑖𝑥  

end if  

For each duck  

Revise the groceries and predator Revise 𝑓𝑐1,  C1, C2, , 

r1, r2  

Compute objective function 𝑓𝑛 for each duck 𝐷𝑃𝑖  

Revise neighboring radius R  

if a duck has at least one adjacent duck  

Revise velocity vector using equation (8) 

Revise position vector using equation (9) 

 

else  

Revise position vector using equation (10) 

 

end if  

According to the changeable restrictions ensure and 

approved the original locations  

end while  

For each duck in a duck flock Initialize ducks with DP-

𝑝𝑏𝑒𝑠𝑡𝑚𝑎𝑡𝑟𝑖𝑥 allocate DP-𝑃𝑏𝑒𝑠𝑡  

end  

While 𝑁𝑥𝑖𝑠 is not attained  

For each duck  

Call segmented image to find the classification accuracy  

if classification accuracy<DP-𝑝𝑏𝑒𝑠𝑡 in the past Allocate 

present assessment as the original 𝐷𝑃𝑏𝑒𝑠𝑡(𝑠)  

end if  

end for  

Pick the duck with the best fitness value of duck flock in 

DT-𝐺𝑏𝑒𝑠𝑡  

For each duck  

Speed calculated using equation (11) 

 

Location changed using equation (12) 

end for  

end while  

best-fitness=AC- 𝐷𝑃𝑏𝑒𝑠𝑡(𝑠)                                                 /*AC 

is atrous convolution */ 

end while 

} 

The Duck colony optimization algorithm initialize the 

intervertebral data in which the duck population 𝐷𝑖, 𝑖 =

1,2, … . 𝑛, maximum iteration 𝑁𝑥𝑖𝑠, 𝑠 = 0, number of 

search ducks thus the velocity and position vector in the 

duck colony optimization algorithm provide a output for 

feature selection from the input intervertebral image based 

on cobb angle thus the prediction of the scoliosis is carried 

out by the feature selection in the image.  

3.3 3DSpMRINet 

The 3DSpMRINet uses the sparse learning to improve the 

disease classification accuracy. The scoliosis disease is 

predictable which is given by the 3 dimensional magnetic 

resonance imaging. The severity of the scoliosis condition 

was then divided into three categories such as low severity 

(Cobb 12–24), moderate severity (Cobb 28–35), and high 

severity (Cobb 43–60) thus the classification with greater 

accuracy is given by the cobb angle that is predicted with 

the accurate value. The Cobb angle is the primary 

determinant that determines the treatment approach that is 

ultimately adopted since the severe problem occurs due to 

the higher value of cobb angle. The sparse learning in the 

sense of the prediction of disease in the network. Thus the 
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sparsity reduces the representation complexity in every 

prediction range. The concept of sparse matrices is 

extended to include sparse networks in processing 3D MRI 

images. A 𝐷𝑃𝑏𝑒𝑠𝑡 matrix makes sense if there are few non-

zero items in each row and column the non-zero elements 

and their positions in a unique data structure, significantly 

reduce memory needs and speed up operations. The spatial 

location to be active by the vector of a spatial position in 

the input layer graph is not zero, the place is deemed active. 

If any of the spatial locations in the layer below from which 

it receives input are active, then declare that any spatial 

location in a hidden layer is active. On those sparse vectors, 

data between layers is transformed using techniques like 

convolutions, pooling, and nonlinear activation functions. 

Data in regions with inactive voxels, which make up the 

majority of them, do not depend on a voxel's relative 

position, so smaller vectors without specified spatial 

dimensions is used in their place. The sparse learning is 

used here to estimate the feature weight vector of the 

segmented image the sparse net is less complicated 

structure than the other neural network which may provide 

the cobb angle of the disease area that exhibit the severity 

of the disease and the problems in the disease prediction 

process. The 3DSpMRINet for the disease prediction is 

given in the figure 4 below. 

 

Fig. 4: Disease prediction by 3DSpMRINet 

Figure 4 shows the scoliosis disease prediction by 

3DSpMRINet in which the segmented image is given as 

the input to the sparse learning connection where the sparse 

connection is linear to produce non complicated structure 

of the sparse net thus the connection predicts the cobb 

angle of the disease and thus the scoliosis disease is 

predicted in a distinct manner. The predicted angles and the 

landmark are given by the equation (13) given below.  

                                                           𝑦ˆ (𝑡)  =  𝑠𝐷𝑉𝐾(𝑡)    

(13) 

The equation (13) indicates the angle prediction of the 

model in which 𝑠 is given by the multiple of the cluster or 

group of the image, 𝐷𝑉 indicate the disc image velocity 

thus the K(t) is the activation function used to divide it in 

three angles based on severity condition as low severity 

(Cobb 12–24), moderate severity (Cobb 28–35), and high 

severity (Cobb 43–60) for the prediction of the scoliosis 

disease. 

Overall, the proposed model exhibits the prediction of the 

scoliosis disease by preprocessing the 3D image into 2D 

image and then up sampled for double times using the 

quadruple up sampling operation which predict the 

predefined data for the degree of severity prediction then 

the segmentation is done by the 3 phase atrous net that uses 

the elastic atrous mapping and duck colony optimization 

algorithm for feature selection and the 3DSpMRINet 

provide the cobb angle of the prediction of the severity of 

the disease and sparse learning is used for the feature 

weight estimation thus the high quality and accurate 

disease prediction model is obtained. Thus the accuracy of 

the disease prediction is increased by this method and the 

quality of the image also get increased by applying these 

technique thus the experimental output in the next section 

depict the output of the proposed method. 

4 Results and Discussion 

4.1 Experimental output 

This work has been implemented in the working platform 

of python with the following system specification and the 

simulation results are discussed below. 

Platform: Python 

  OS : Windows 10 

  Processor: 64-bit Intel processor 

  RAM : 8 GB RAM 

4.2 Dataset description 

Spine sag T2W dataset is used in this research to 

effectively predict the scoliosis disease and the 3D 

reconstruction of spinal structures, 3D automated 

segmentation (MR) pictures of multiclass spinal structures 

are required. It offers quantitative analysis tools for 

creating biomechanical models of the spine, modelling 

stresses in spinal structures, and evaluating the likelihood 

of success for various spinal degenerative disease 

treatments. With the help of artificial intelligence 

technology, this competition intends to bring together 

international developers to investigate effective and precise 

3D automatic segmentation of spinal structure in MR 

images. There are ten vertebrae and nine intervertebral 

discs in the spinal system that has to be segmented. 

 

4.3 Simulated output from proposed model 

The scoliosis is predicted from the 3 phase Atrous net with 

the DCO-3DSPMRINET and number of objects using the 

novel techniques and the result obtained are discussed in 

this section. 
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Fig. 5: Conversion of 3D image to 2D image 

Figure 5 depicts the input image taken from the 3D image 

from the 3D spine image dataset and the conversion of 3D 

image to 2D image and the process involve in the 

conversion of the image is the important term in which they 

help in the prediction of the disease with the greater 

accuracy than the 3D image. 

 

Fig. 6: Preprocessing of the image 

Figure 6 shows the preprocessing step involved in the 

image in which a set of low level linear filter is used to 

denoised the 2D image. The preprocessing of the 2D image 

is carried out using Quadruplicate Up Sampling Operation. 

Thus the Denoised 2d images are up sampled two times 

therefore the proper image is selected for the labelling 

using the sagittal block matching thus the image get 

labelled down. 

 

Fig. 7: Mapping the location edges and shape 

Figure 7 depicts the elastic atlas mapping combined in a 

three-phase Atrous Net. The sub picture pairings are 

mapped in the registry as spatial information using this 3 

phase Atrous Net, which includes the positions, edges, and 

shapes of the ROI image structures that are defined to 

produce binary disc templates. 

 

 

Fig. 8: Segmentation of the diseased area 

Figure 8 shows the segmentation in the diseased area in the 

image the segmentation done by using atrous convolution 

that also extracts multiscale features in both cascade and 

parallel manner. Then the extracted feature pools are in 

large number, hence to select the optimal feature pool, the 

optimization is used that select best feature based on cobb 

angle, intensity, height and density.  

 

4.4 Performance metrics of the proposed system 

The performance of the proposed approach and the 

achieved outcome were explained in detail in this section 

which will depicts its efficiency in the accuracy, precision, 

recall and F1 score of the proposed system. 

 

Fig. 9: Accuracy of the proposed model 

 The accuracy of the proposed model by the feature 

extraction and for prediction of the disease accuracy is 

given by figure 9 in which the scoliosis disease predicted 

with greater accuracy of about 97.25 percentage which is 

the high rate of accuracy for the prediction of disease. The 

accuracy of the proposed model is increased by using the 

3DSpMRINet method uses the sparse learning for the 

prediction with high accuracy. 

 

Fig. 10:  F1 score of the proposed model 

Figure 10 depicts the F1 score of the proposed model in 

which by calculating the harmonic mean of a classifier's 

output, the F1-score combines its precision and recall into 

a single metric the proposed model has the high F1 score 

value of about 99% with the 1000 number of samples as 

the rate of number the sample increases the F1 score of the 

proposed also get increases these shows the greater 
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efficiency of the proposed mode which is due to the feature 

selection by the 3 phase atrous net model.   

 

Fig. 11: Precision of the disease prediction 

The exact and accurate being of the model is given by the 

precision thus the precision of the proposed model is 

depicted in figure 11 which shows the high precision of the 

proposed model as the number of the sample increases by 

1000, the rate of precision is found to be 99% which is the 

high precision rate that give the accurate and exact being 

of the proposed model. The high precision rate is achieved 

by the 3DSpMRINet model which enhances the high rate 

of precision by using the elastic atlas mapping and 

segmentation.  

 

Fig. 12: Recall of the proposed model 

Figure 12 shows the proposed models recall rate the higher 

the recall rate means the sensitive output prediction the 

proposed has the high recall rate with the increasing value 

of number of samples thus the recall rate of the proposed is 

about 99% thus the high recall rate is obtained for the 

proposed model. The higher recall rate of the proposed is 

achieved by the quadruple up sampling operation due to the 

double up sampling and the recall rate of the proposed 

increases with certain of higher extent. 

4.5 Comparison results of the proposed method 

This section highlights the proposed model performance by 

comparing it to the outcomes of existing approaches 

[35,36] and showing their results based on various metrics. 

 

Fig. 13: Comparison of specificity with various model 

Figure 13 depicts the specificity comparison of various 

model such as LR, DT, GBM, RF, ANN and Bagging. It is 

observed that the proposed scoliosis disease prediction 

model has the higher specificity of about 0.97 % which is 

the higher rate of specificity compared to the other existing 

models in which the LR has the specificity rate of about 

0.67%, DT has the specificity rate of about 0.65% which is 

very low compared to the other models, GBM has the 

specificity rate of about 0.78%, RF has of specificity about 

0.90%, ANN has the specificity of about 0.66% and 

bagging has the specificity of about 0.86%. 

 

Fig. 14: Comparison of accuracy with various model 

Figure 14 shows the accuracy comparison of the proposed 

model with the various existing model such as LR, DT, 

GBM, RF, ANN and Bagging. The accuracy of the 

scoliosis prediction model is greater than the other existing 

models which is about 0.97% for the proposed model thus 

the accuracy of the proposed is higher than the other 

existing model depicts the efficiency of the proposed 

model for prediction. Thus the accuracy of the existing 

models is given by the LR model has the accuracy in the 

rate of about 0.67%, DT has the accuracy rate of about 

0.66% which is very low compared to the other existing 

model, GBM has the accuracy rate of about 0.79%, RF has 

the accuracy rate of 0.92%, ANN has the accuracy rate of 

0.68%, and bagging has the accuracy rate of about 0.90%.   

 

Fig. 15: Comparison of F1 Score of the proposed model 

with various existing model 

Figure 15 exhibit the F1 score comparison with various 

existing model thus the proposed model has the larger F1 

score ratio compared to the other existing models the ANN 

has the lowest F1 score of about 0.65% and RF has the 

score rate of about 0.93% compared to this the proposed 

model has the higher score rate of about 0.98%. The 

existing models such as LR has the F1 score of 0.68%, 

GBM has the F1 score rate of about 0.79% and bagging 

model has the F1 score rate of about 0.90%. 
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Fig. 16: Comparison of precision with various model 

The precision of the proposed model is compared with 

various existing model is illustrated in figure 16 shows the 

precision rate of the disease prediction model is higher in 

the range of about 0.99% which is the highest range of 

precision compared to other existing model. The existing 

model such as LR, DT, GBM, RF, ANN and bagging has 

the precision in the rate of about 0.67%, 0.63%, 0.78%, 

0.89%, 0.66% and 0.86% respectively. 

 

 

Fig. 17:  Comparison of recall with various model 

Figure 17 shows the recall rate of the scoliosis disease 

prediction model compared to the other existing models the 

recall rate of the proposed is found to be 0.99% which is 

higher rate of recall compared to other existing models. 

The existing models such as LR, DF, GBM, RF, ANN and 

bagging has the recall rate of 0.68%, 0.67%, 0.81%, 0.95%, 

0.69% and 0.94% respectively. 

Overall, the scoliosis disease prediction with the 

specificity, accuracy, F1 Score, precision and recall rate 

shows the efficiency of the proposed model for its disease 

prediction that incorporate with the Segmentation accuracy 

and classification accuracy have increased by using three 

phases of segmentation, sub sampling, feature selection, 

and sparse learning. Thus the result achieved is given by 

0.97% of specificity, 0.97% of accuracy, 0.98% of F1 

score, 0.99% of precision and 0.99% of recall rate 

respectively.  

5. Conclusion 

Effective Scoliosis disease prediction using Quadruple up 

sampling, 3 phase atrous net and 3DSpMRINet based on 

preprocessing, labelling and segmentation has been 

proposed in this research to solve the issue in predicting 

degree of severity in image, unpredictable predefined plane 

image, over segmentation problem, distortion, 

inconsistency, less detail on disease, low quality image and 

low accuracy disease prediction. The segmentation and the 

elastic atlas mapping together form the 3 phase atrous net 

which increases the quality and provide the sub image pair 

mapped in the ROI image. The 3DSpMRINet provide the 

sparse learning for the disease prediction in the feature 

weight vector thus they provide the high accuracy of 98% 

in the prediction of the scoliosis disease. The degree of 

severity is predictable using the quadruple up sampling 

operation, distortion and inconsistency is solved by 3 phase 

atrous net and quality of the prediction is increased by 

3DSpMRINet model thus segmentation and mapping of 

the diseased area is easier so that it is easy to predict the 

disease area with high accuracy of about 0.98%, precision 

of about 0.99% and recall rate of about 0.99%. By utilizing 

the proposed methodology in the scoliosis disease 

prediction the proposed model achieves high accuracy and 

quality of the disease prediction with better F1 score and 

precision. 
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