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Abstract: Because slope breakdown can result in severe disasters, slope stability analysis and prediction are crucial. The effectiveness 

of four machine learning techniques for the prediction of slope stability was compared in this paper. Conventional analysis of slope 

instability methods (e.g., originally developed in the early part of the 20th century) were widely employed as design aids. Many 

academics are drawn to them because they provide more advanced design tools, such as machine learning-based learning analytics. The 

current study's major goal is to analyze and optimize several ML-based models for predicting the safety factor. We used multiple ML-

based techniques in this study to predict the factor of safety against slope instabilities. For slope stability prediction, four regression 

approaches were used: Support Vector Regression (SVR), Multi-Layer Perceptron (MLP), Multiple Linear Regression (MLR), and 

Simple Linear Regression (SLR), and. To train and test the four classification techniques, a data set consisting of more than 20 local and 

international slopes of projects was collected, with essential parameters of the four models tuned using the 5-fold cross validation 

approach. The four regression algorithms' prediction results were compared and examined. The correctness, Kappa, and receiver 

operating parametric curve findings show that both of the MLP and MLR models can produce reasonably satisfactory outcomes, with 

the MLP model outperforming the other three learning approaches. 

Keywords: machine learning; slope failure; 5-fold cross validation, ROC curves. 

1. Introduction

Due to the possible harm that a changing slope might 

provide to the workforce or the business, observing slope 

stability (SS) is a crucial necessity in the arena of 

geosciences. For miners and civil engineering 

professionals who work with man-made slopes like open-

pit walls, dams, embankments of roads and railroads, and 

hills, slope stability is a critical problem. Creep theory is 

employed in the construction of rock slopes since the 

causes of instability are frequently complicated. The 

forecast of the time of slope failure is difficult due to the 

complexity of the reasons of slope movement. Engineers 

have recently been able to better anticipate the effects of 

slope failures in open-pit mines because to the use of 

contemporary monitoring systems [1]. 

There have been several attempts to create a technique that 

can foretell when something will fail. It is difficult to 

correctly anticipate the period of slope collapse because 

factors impacting that is impossible to continually assess 

slope instabilities due to factors including the environment, 

physical and geomorphological processes, and human 

activity [2]. Therefore, practitioners have relied on a 

thorough examination of slope deformation rather than 

creating a phenomenological model of slope failure [3]. 

Geotechnical and Mining applications, such as mechanical 

property [4]–[6], landslide displacement [7]–[10], rock 

ruptures [11]–[14], open cast hanging wall [15], [16], and 

the strength of infill [17], have incorporated different 

methods for mining data and sophisticated assessment 

models in recent years. With the increased accessibility of 

slope characteristics, several learning algorithms have been 

applied effectively for SS prediction and have shown 

impressive results. As illustrated in [18], the author’s 

proposal is to evaluate the wide-ranging stability of 

complex rocky slopes using a cloud method in hilly regions 

was successful in demonstrating that the cloud method is a 

workable and trustworthy method for evaluating the wide-

ranging stability of rocky slopes. In order to create a 

regression paradigm for estimating the slope occurrences' 

safety factor, in [19], author used an approach of genetic 

algorithm. They discovered that it is an effective and user-

friendly method for determining the factor of safety (FoS) 

for slopes. Sung employed the first and second-order 

reliability techniques, as well as the Monte Carlo 

methodology, to determine the chance of slope failure 

using an ANN model (which has been trained) [20]. In 
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order to choose the suitable parameters for an SVM model, 

in [21], author developed and incorporated the particle 

swarm optimization (PSO) technique for their research 

work. The outcomes demonstrated that the combined SVM 

and PSO model is an effective computational method for 

predicting SS. Both in [22] and  [23] successfully forecast 

the SS using SVR. For the SS prediction in RF model's 

training data set, Zhang and Wen  

gathered data from 30 examples for the analysis of 

different models for the effective prediction of dataset. The 

effectiveness of the trained prediction models was then 

evaluated using the additional 12 sets of data. They 

discovered that the model's training is beneficial [24]. A 

gravitational search algorithm (GSA) was effectively used 

by the authors in [25] and also the work done by authors in 

[26] describes to tackle global optimization issues and 

minimise the safety factor in SS analysis. The forecast 

outcomes were the same as the actual circumstances after 

training the Bayes model for prediction with gathered the 

slope examples and then using it to actual engineering. 

With strong classification presentation, high forecast 

accuracy, and a low mis discrimination ratio, this model 

might be utilized to investigate slope stability is discovered 

in [27]. Although the aforementioned sophisticated models 

can all aid in our understanding of slope failures, they are 

not adequate to provide a comprehensive solution. There 

hasn't been an evaluation of smart models in their 

assessment of SS, thus a particular strategy may be 

advantageous in certain situations but insufficiently 

successful in others [28], [29]. In the meanwhile, the 

validation of the dataset by using the cross-validation (CV) 

technique is an efficient and trustworthy approach to 

authenticate the generalizability of the model [30], [31], 

[32], [33], therefore this is required to offer CV for 

evaluation with routine validation of improved methods. 

This research looks at the use of machine learning (ML) to 

provide reliable predictions. In 1997, Mitchell gave a 

definition of machine learning as the research into how to 

create computer algorithms that become better at a task 

over time [34]. Using algorithms, machine learning enables 

the computer to examine the data, find patterns, and 

generate predictions based on the input data. Today, a wide 

variety of algorithms are available to filter through data, 

discover apparent and unseen patterns, and apply the 

discovered pattern to improve judgments. There are 3 

primary forms of machine learning, namely, supervised, 

unsupervised, and semi-supervised learning. Below is a 

quick explanation of each of the three forms of machine 

learning: 

(i) When learning under supervision has the input consists 

of a set of data with a known solution; this set of data is 

referred to as training data. The computer is trained to 

understand trends and create a model to make accurate 

predictions using the training data. The model is adjusted 

for the training phase until the desired results are obtained. 

Examples of supervised learning are classification and 

regression [35]. 

(ii) Unsupervised learning uses a collection of data 

with an unidentified answer as its input. In unsupervised 

learning, a model is created by looking for redundancy or 

similarity in the data, supposing that the incoming data has 

structures [35]. 

(iii) Semi-supervised learning uses a blend of known 

and undiscovered answers in the dataset. The model is 

created for this learning with the purpose of understanding 

structure and making predictions [35]. 

Six relative slope stability characteristics are employed in 

this work to create intelligent models. In order to assess the 

slope stability with the parameters, we constructed five 

traditional soft computing algorithms based on 80% of the 

330 examples, incorporating the SVR, MLR, SLR, and 

MLP. The prediction accuracy of the models is then 

evaluated using the remaining 20 percent of the instances 

taken as test samples. The statistical analysis of three 

metrics is used to describe and for the comparison of the 

evaluation accuracy parameters of MLP, SLR, MLR and 

SVR. The sensitivity of attributes are then examined.  

 The outline of the paper is organised with an introduction 

followed by methodology and materials in section 2. The 

section 3 describes the results and discussion. The section 

4 ends with concluding remarks with a feature aspect of 

this research work. 

2. Methodology and materials 

2.1. Analysis of Parameters 

Three parameter-choosing guidelines must be followed in 

order to prevent overtraining the model. The first rule is 

that the discriminant indicators should indicate slope 

stability features through sensitive and stable parameters. 

The parameters should then be separated from one another 

physically. The parameter data should also be accessible or 

simple to collect. Six related parameters are chosen based 

on the aforementioned analysis. These 6 variables are the 

weight unit (ω), cohesiveness (ϲ), angle of internal friction 

(ϕ), slope inclinations (ɨ), the height of slope (ԩ), and pore 

water ratio (δ). The 3 indices of parameters such as the ω, 

ϲ, and ϕ can be used for reflecting the mechanical and 

physical aspects of materials for the analysis of geological 

slope characteristics. The parameters ɨ and the ԩ represent 

the organizational features of slopes. The δ represents what 

causes slope failures to occur outside. 

 

2.2. Slope Data Set 

330 various examined phases of intended soil slope were 

done in the Geo5 program and the FoS achieved for each 
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matching input condition was taken as output, in order to 

generate the necessary dataset with regard to the given 

variables. Following, the MLP, SLR, SVR, and MLR 

models were trained using 80% of the whole dataset. The 

remaining 20% was utilised to evaluate the effectiveness of 

the models. It should be noted that many statistical 

indicators were used to determine the correlation and 

inaccuracy between the real and anticipated safety factor. 

Table 1 displays the statistical characteristics (Max, Min, 

Mean, and Standard Deviation) of the condensed data set. 

TABLE 1. The Slope Samples' Statistical Features. 

Parameter

s 

unit 

weight 

(ω) in 

(kN/m3

) 

cohesivenes

s (ϲ) in 

(kPa) 

interna

l 

frictio

n 

angle 

(ϕ) in 

degree 

slope 

inclinatio

n (ɨ) in 

degree 

slope 

heigh

t (ԩ) 

in 

(m) 

pore 

wate

r 

ratio 

(δ) 

Max 31.5 33.5 46 54 395 0.8 

Min 15 0 0 18 3.8 0 

Mean 20.3 12.65 26.95 34.15 55.19 0.5 

Standard 

Deviation 

4.05 14.25 11.35 10.11 72.65 0.57 

 

2.3. Discrimination Methods 

The primary goal of this work is to compare and evaluate 

the effectiveness of many supervised learning methods for 

the prediction and analysis of SS. According to this, the 

MLP, SLR, SVR, and MLR machine learning algorithms 

were taken into account in this study. The four models are 

intriguing for the current investigation since they have 

certain traits in common:  

• They are becoming more popular due to the their 

increasing use;  

• Some of them having been successfully applied to slope 

stability prediction tasks; 

• Their efficient implementations;  

• Their strict mathematical theory foundation;  

• Their use of various classifiers to lessen the uncertainty 

of the results that might be related to the algorithm that 

each classifier uses; and  

• Their reputation for enabling the analysis of the more 

complex form of nonlinear associations. 

•  

2.3.1. Multi-Linear Regression 

Establishing a linear formula for the sample data in order 

to show the links between two or more explanatory and 

response variables is the main objective of the MLR model. 

It describes the evaluation properties of different 

responsive variables that are used in the formula. Equation 

illustrates the general structure of the MLR formula (1) 

[36]:  

 

𝑦 = ⍺0 +  ⍺1𝑥1 + ⍺2𝑥2 + ⋯ + ⍺𝑠𝑥𝑠 +  ε (1) 

In the equations above, the parameters x and the parameter 

y represent the value of independent and dependent 

variables, respectively. MLR unknown parameters are 

indicated by the words α0, α1, .  . αs, etc. In the general MLR 

formula, the normally distributed random variable is also 

represented by the symbol. 

The primary goal of the MLR approach is to approximate 

the applied unknown components of Equation (i.e., α0, α1, 

... . αs) (1). The practical version of the statistical regression 

approach is provided by [36] after using the least-squares 

method:  

 

𝑦 = 𝑎0 + 𝑎1𝑥1 +  𝑎2𝑥2 + ⋯ + 𝑎𝑠𝑥𝑠 +  e   (2) 

where the approximate regression coefficients for 0 and 1, 

respectively, are represented by a0, a1, . . . as. Term 𝑒 also 

denotes the sample's estimated error. The estimate of 𝑦 is 

as follows, assuming that term 𝑒 represents the difference 

between actual and expected 𝑦:  

 

𝑦 = 𝑎0 + 𝑎1𝑥1 +  𝑎2𝑥2 + ⋯ + 𝑎𝑠𝑥𝑠  

 (3) 

2.3.2. Multi-Layer Perceptron 

Since its introduction by [37], artificial neural networks 

(ANNs) have been able to provide forecasting tools that 

resemble biological neural networks. A popular variant of 

ANN, the multi-layer perceptron (MLP), has demonstrated 

satisfactory performance in a variety of engineering 

simulations [38–42]. They are capable of producing the 

non-linear equations reside between the set of input 

samples and output values, which is why [43, 44].  

The general construction of MLP is shown in Figure 1. 

Three layers with computational nodes make up a basic 

MLP neural network (mostly known as neurons).  
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Fig. 1. Multi-layer perceptron (MLP) neural network typical architecture. 

The nodes in the input layer receive the first data. In the 

subsequent steps, the hidden and unseen neurons (i.e., the 

available neurons in the hidden layer of the model) assign 

and modify the MLP weights and biases in an effort to 

determine the link between the inputs and the related 

targets. Afterward, the neurons operating in the last layer 

provide the output (i.e., output layer). Consider the 𝑆 and 

𝑊 to be the input and weight vectors, respectively. The 

function of each neuron is then expressed as follows: 

𝑈 = ∑ (𝑆𝑖𝑊1,𝑖 + 𝑏 )
𝑗
𝑖=1   (4) 

𝑂𝑢𝑡𝑝𝑢𝑡 = 𝐹(𝑈)   (5) 

where 𝑏 is the bias and 𝑗 represents the number of neurons. 

Additionally, 𝐹(𝑥) denotes the activation function (AF). 

Keep in mind that this study takes into consideration the 

feed-forward back-propagation (FFBP) approach, which 

seeks to reduce the error rate of performance by modifying 

the MLP model parameters (i.e., biases and weights as 

parameters). The FFBP approach is extensively covered in 

previous publications [45]. 

2.3.3. The Simple Linear Regression (SLR)  

SLR primary goal is to determine how a predictor variable 

affects a certain result. The link between the input sample 

and target samples is defined by a linear dependence in the 

suggested method, as the name suggests. Equation (6) may 

be used to illustrate a simple linear regression formulation 

in general. 

𝑦 =  α +  βx +  κ (6) 

The words and denote the structural parameters, where 𝑥 

and 𝑦, respectively, are the independent and dependent 

variables (intercepts on the y-axis and the slope parameter 

of the regression line equation, respectively). Additionally, 

which is expected to be no correlated with a mean of zero 

and constant variance, defines the random error. 

Furthermore, studies are frequently related with the 

assumption of the normal distribution of errors in order to 

get a greater competency in prediction [46]. Be aware that 

a transformation procedure can be used to normalise data 

to the required level [47]. Considering a population of 

sample sets like  𝑆 = { (𝑥𝑖  , 𝑦𝑖)|𝑖 = 1,2, … N },  the SLR 

technique approximates the structural characteristics by 

using the ordinary least square (OSL) approach (i.e., α and 

β). Although a normal distribution is not required, it does 

increase the accuracy of the regression model [48]. In light 

of this, the created regression model seeks to determine its 

parameters in a way that yields the lowest possible sum of 

squared error, or the difference between real value and 

estimated data sets[49]. Finally, the fitted output (𝑦𝑖) at 

each given value of 𝑥 may be determined after finding the 

correct values of (intercept) and (slope regression 

parameter) (𝑥𝑖). 

2.3.4. Support Vector Regression (SVR)  

One of the popular machine learning techniques, SVM, 

seeks to identify the decision boundary that divides several 

classes. SVR is a popular form of SVM. SVRs are mostly 

used to tackle difficult regression issues, as their name 

suggests. Each set of input-target pairings is thought to 

have a distinct association during SVR learning. The 

system outputs, such as the slope safety factor in our study, 
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will be produced by grouping and categorising the 

relationships between these predictors [50]. Instead of 

minimising computed error, which is the difference 

between the goal and system outputs, as is the case with 

many predictive models, SVR tries to enhance its 

performance by modifying and improving the 

generalisation boundaries for a regression. A ε-insensitive 

loss function (LF) can disregard a specified error value in 

this case [51]. The SVR model incorporating the specified 

LF (i.e., ε-SVR) seeks for the optimal hyperplane that has 

the smallest distance from all sample points if we suppose 

that the training dataset is made up of N pairs of samples, 

represented by 𝑆 = { (𝑥𝑖  , 𝑦𝑖)|𝑖 = 1,2, … N },. In further 

detail, ε -SVR looks for a function 𝑔(𝑥)  with the biggest 

𝑦𝑖  [52] divergence from the target values. As previously 

stated, ε-LF is used to execute linear regression in high 

dimensional feature space. Additionally, the less 

sophisticated the model, the lower the value for ‖𝑤‖2 [53]. 

For the non-linear issues, a kernel mapping function, 

denoted by γ (𝑥𝑖), is used to convert the input data into 

high-dimensional space (𝑥𝑖). Then, a convex optimization 

problem is used to apply a linear technique to data in the 

future space [54, 55]. 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 
1

2
‖𝑤‖2 + 𝐶 ∑ Φ𝑖 + 𝑧

𝑖=1 Φ𝑖
∗  

 (7) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 {

𝑦𝑖 − 𝑤. γ (𝑥𝑖) − 𝑏 ≤  ε +  Φ𝑖

𝑤. γ (𝑥𝑖) + 𝑏 − 𝑦𝑖 ≤  ε +  Φ𝑖
∗ 

Φ𝑖 , Φ𝑖
∗ ≥ 0

 

 (8) 

where, respectively, the words 𝑤 and 𝐶 stand for the weight 

vector and penalty parameter. Additionally, the parameters 

Φ𝑖  and Φ𝑖
∗
 represent the slack variables measuring the 

abnormality of trained data beyond the ε-LF zone, and 𝑏 

determines the bias. In the formula above [56], the 

accuracy factor is also indicated by the symbol. In other 

words, the error function ε [57] will only take into account 

samples having a deviation value greater than. After 

inserting the Lagrange multipliers of 𝜌𝑖  𝑎𝑛𝑑 𝜌𝑖
∗
, a linear 

combination is built to calculate the SVR results: 

 

𝑓(𝑥𝑖) = 𝑤. γ(𝑥𝑖) + 𝑏 = ∑ (𝜌𝑖 − 𝑧
𝑖=1 𝜌𝑖

∗)γ(𝑥𝑖). γ (𝑥) + 𝑏) 

 (9) 

2.3.5. Validation Method of the proposed models 

To improve the generalization power of the suggested 

models, all four models feature hyper-parameters (referred 

to as essential factors in this study). There are other 

techniques, such as the simple conventional method, the 

holdout method, the bootstrap method, and the bolstered 

method [39]. K-fold cross validation is one of these 

techniques, and it is perhaps the most popular (CV). The k-

fold CV approach is often thought to produce a model with 

superior generalization capabilities. Thus, during the 

hyper-parameter tuning, the 5-fold CV approach (5 being 

the number of folding options advocated by Kohavi [59]) 

was utilized to elevate the generalization capacity of this 

model in this research. The training dataset is randomly 

divided into five folds in this approach [21], [38], [60]. 

Four of them are utilized as a training subset to construct 

models, while the remaining one is used as a validation 

data to validate the performance of the models.  The 

method will be repeated five times with a new fold serving 

as the confirming fold each time. Averaging the results of 

five iterations yields the overall effectiveness of the 

prediction models on the training dataset. This approach 

was utilized for parameter assortment and for the 

avoidance of model overfitting. The test set of model was 

never used throughout the process to construct models, but 

it was applied for the testing of the forecasting ability of 

the concluding method. 

2.4. Flow chart 

Based on the above parametric descriptions the overall    

flowchart of the study consist of the following few lines. 

Initially the dataset collected from the software and divided 

into train and test data sets and also few set of  validation  

datasets.   Then by the application of 5 fold cross validation 

techniques, different machine learning applications were  

conducted and a comparison study  is conducted  with the 

models.  
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Fig. 2. Flow Chart of the Proposed Methodology 

2.5. Discrimination Performance 

There isn't a standard way to evaluate categorization model 

performance. Three measures (Kappa, accuracy, and AUC 

which is the used area under the ROC curve) are used to 

assess the prediction act of ML systems, according to prior 

study findings [21], [37]-[39], [51]-[55]. The three metrics 

must be calculated using a confusion matrix. One of the 

fundamental instruments for assessing the confidence in 

various algorithms is the confusion matrix. Given that the 

slope stability analysis is a two-class problem in the 

revision process, the confusion matrix is a 2X2 matrix. The 

confusion matrix appears as follows: 

 

𝑀 = [
𝑥11 𝑥12

𝑥21 𝑥22
]   (10) 

where x11 and x22 are the number of properly predicted 

samples, x11 is the number of class 1 samples, x22 is the 

number of class 2 samples, x12 is the number of class 1 

samples correctly anticipated to go into class 2, and x21 is 

the number of class 2 samples correctly projected to go into 

class 1. Class 1 in this study indicates a steady slope, 

whereas class 2 indicates failure.  

The accuracy may be determined using Eq. 11, and the 

accuracy can be used to evaluate the discriminant abilities 

of the four models. When coding categorical variables, 

Cohen's Kappa is the index used to assess inter-rater 

reliability. In comparison to using percentages to assess 

dependability, this statistic is thought to be more reliable 

[54, 56]. Eq. 12 can be used to administer the Kappa. 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = (
1

𝑛
 ∑ 𝑥𝑖𝑖

𝑚
𝑖=1 )  × 100%  

 (11) 

𝐾𝑎𝑝𝑝𝑎 =
𝑛 ∑ 𝑥𝑖𝑖− ∑ (𝑥𝑖+ . 𝑥+𝑖)𝑚

𝑖=1
𝑚
𝑖=1

𝑛2− ∑ (𝑥𝑖+ .  𝑥+𝑖)𝑚
𝑖=1

   (12) 

𝑥𝑖+ are the no. of data samples that belong to class I and 

 𝑥+𝑖are the no. of samples that are projected to class j. 

Where 𝑛 the total number of instances in the data set is, 𝑚 

is the number of types of slope stability factor, and 𝑚 is 2 

in this research. Kappa values fall between −1 and 1, and 

they may be categorised into six groups of parameter level 

to indicate various degrees of constancy (as shown in Table 

2). According to general rules, the strength of agreement is 

bad if the Kappa value is less than 0.4 and high if it is 

greater than or equal to 0.4 [57]. 
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Table 2. Description Kappa Scale Value 

Agreement Strength Kappa 

Total factor of Disagreement [-1.0, 0.0] 

Slightly [0.0, 0.2] 

Poorly [0.2, 0.4] 

Moderately [0.4, 0.6] 

Substaintially [0.6, 0.8] 

Perfectly [0.8, 1.0] 

 

The truly predicted positives and falsely predicted 

positives cases are represented graphically by the ROC 

curve [58-61]. Based on the ROC curve's shape and area 

under it, one may evaluate the effectiveness of various 

methods (AUC). The ROC curvatures for each of the 

method may be strained into a single graph to compare the 

performance of the discriminant algorithms graphically. 

The method would be useful to use the ROC curve in the 

upper-left corner. The most accurate findings and has a 

higher discriminant performance. The AUC of each ROC 

curve may also be used to compare the performance of 

various methods, and Table 3 displays the classification 

results for the AUC value [55]. The ROC curvature method 

with the highest AUC exhibits the greatest level of 

discriminant. The performance of radar was initially 

assessed using the ROC curve. The approach is used in this 

work to assess and contrast the discriminant level of 

performance of MLP, SLR, SVM, and MLR models for 

forecasting SS. 

Table 3. Scale of AUC Value 

Level AUC value 

Excellent (0.91,1.0] 

Good (0.81, 0.9] 

Moderate (0.7,0.8] 

Poor (0.61,0.7] 

Bad (0.61, 0.5] 

3. Results and Discussion 

Table 4 describes the testing and training results of SS 

found in the four methods. Sample numbers that are 

accurately anticipated are represented by the values in true 

columns, whilst inaccurately predicted sample numbers are 

represented by the values in false columns. According to 

the outcomes in Table 4, the MLP approach is capable of 

producing good results for the testing set. The MLR model 

can also produce good results, with 30 instances being 

genuinely predicted, even if the available numbers of 

samples sets  in true columns of testing samples are fewer 

than those of the MLP method (32 cases being truly 

predicted). As a result, when compared to other 

approaches, both the MLP and MLR models have more 

discriminant power for slope stability, and the MLP model 

performs more completely than the other three models. 

Table 4. Prediction results of different models for testing 

dataset 

Types MLR SVR SLR MLP 

True False True False True False True False 

Stability 

(18) 

16 2 8 10 6 12 16 2 

Failures 

(18) 

14 4 16 2 14 4 16 2 

3.1. Comparison of the four models 

Table 5 displays the Kappa and accuracy values for each 

model for the testing set. As can be observed, the four 

models' accuracy ranges from 0.5756 to 0.9089, with the 

MLP model having the greatest accuracy rate (90.89%), 

followed by the SVR, MLR, and Bayes models, which 

have accuracy rates of 85.33%, 68.67%, and 57.56%, 

respectively. The Kappa values of the MLR, SVR, SLR, 

and MLP models, on the other hand, fell between [0.122-

0.799]. Only the Kappa values of MLR and MLP are higher 

than 0.39, and the agreement strength of Kappa ranges 

from minor to large. The Kappa of the MLP is clearly the 

highest with a value of 0.78, followed by the SLR, MLR, 

and SVR models, as shown in Table 5. Over testing 

samples, MLP has a better capacity to generalise. In other 

words, the MLP model is practical and useful for 

forecasting SS. 

Table 5. Metrics values of different models 

Data Set Metrics MLR SVR SLR MLP 

Testing 

Dataset 

Accuracy 85.33% 68.67% 57.56% 90.89% 

Kappa 0.678 0.339 0.122 0.799 

 

The 4 methods' ROC curves for the test set are shown in 

Fig. 5. The algorithms that correlate to the four ROC curves 

are Bayes, SVM, RF, and GSA models sequentially in the 

set, according to comparisons of the ROC curve shapes.  



 

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(1), 111–121 |  118 

 

Fig. 5. Comparative ROC Curve 

The SS prediction AUCs of the four discriminators vary 

from [0.575-0.908], with the MLP model obtaining the 

greatest AUC with an AUC of 0.908, followed by the MLR 

technique (AUC = 0.853), SVR, and SLR models. Thus, 

for each type of slope stability, the MLP and MLR models 

may produce results that are adequate, and the MLP 

technique performs better than the MLR, SVR, and SLR 

methods. This study examines the performance and 

application of the MLR, SVR, SLR, and MLP models for 

slope stability. Both MLP and MLR may provide 

respectably excellent discriminating outcomes, as seen by 

the accuracy parameter, Kappa values, and ROC 

curvatures of each of the model, but here the MLP model 

out performs and it gives an overall better result. 

4. Conclusions  

Approaches for determining slope stability could be useful 

in real-world applications. MLR, SVR, SLR, and MLP 

approaches are used to distinguish slope stability in this 

study. Six parameters (ω, c, ϕ, ɨ, ԩ, and δ) are evaluated, 

and 330 slope instances collected through the simulation 

software are used to build the four models. The following 

are the conclusions.  

(1) Among the four algorithms, the MLP and MLR 

outperform the SVR and SLR in slope stability prediction. 

The MLP has an accuracy parameter, Kappa value, and 

AUC of 90.89%, 0.799, and 0.908, which are considered to 

be excellent predictions result.  

(2) All of the study's parameters are vulnerable to slope 

failure, therefore determining slope stability using a single 

metric is useless. The variable δ is perhaps the most 

profound aspect to MLR model and MLP models, while 

slope geometry attributes are also critical. It should also be 

highlighted that neither of the supervised learning 

techniques are suitable for all kinds of slope scenarios, and 

none were sufficiently to address the existing problem. 
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