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Abstract: Massive disaster events that have an impact on infrastructure damage, especially buildings, require the latest tools and 

technology so that an assessment of the damage that occurs can be carried out quickly and efficiently. Artificial Intelligence (AI), 

especially with machine learning (ML) and deep learning (DL), is one approach that can be a solution. The study uses satellite imagery 

data from the xBD dataset repository with a proposed two-stage deep learning model to assess the level of damage to buildings consisting 

of a building segmentation approach using the PSPNet and UNet models with the ResNet-18 backbone and the ResNet50 model for 

classification. The flood fill algorithm is inserted between the segmentation and classification stages with the aim of producing better 

extraction of segmentation results. The deep learning model with PSPNet and ResNet-18 produces an evaluation value and an accuracy 

value of building damage classification which is slightly better than the previous building segmentation research, with F1 values of 

0.8494 and 0.8338 for precision, respectively. Referring to the resulting evaluation value, future research is still very open to developing 

models to achieve better results. 
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1. Introduction

The age of the earth that is getting older is marked by the 

earth system that is getting more and more unstable. One 

indicator is the increasing number of natural disasters 

around the world. Based on the disaster typology, droughts, 

floods, and earthquakes are disasters with the largest death 

impact in this century. The drought hazard proved to be the 

deadliest hazard over the past 10 years causing 650,000 

deaths, followed by storms which caused 577,232 deaths; 

the flood, which claimed 58,700 lives; and extreme 

temperature events, in which 55,736 died [1] 

Each year, numerous natural disasters happen all around 

the world. Natural disasters happen due to the natural 

process of the earth or the results of human acts. In both 

cases, a large-scale natural disaster may threaten the lives 

of many people and disturb the economics of a country. 

The overall number of casualties in 2019 was 6,133,500 

persons, including the dead, missing, injured, suffering, 

and displaced. The number of catastrophe victims climbed 

to 6,324,534 persons in 2020, as the number of disasters 

increased. The number of catastrophe victims climbed to 

6,324,534 persons in 2020, as the number of disasters 

increased [2], Although pre-disaster system may provide 

warnings about the incoming disaster, the damage done 

may not always be completely avoidable. This is especially 

true for immovable assets such as buildings or houses. 

With this problem stated, damage assessment is needed to 

provide support and reduce the loss caused by the natural 

disasters. 

Currently, the collection and evaluation of disaster data 

after the event especially for damage assessment was 

conducted manually so that it takes time and resources. In 

many disaster scenarios, data collection is obtained in the 

field by surveying the population, which is time-

consuming and may not provide reliable results due to 

factors such as the time and location of the incident, or the 

use of outdated demographic data [3][4][5], The reason for 

the large amount of time and resources is the reason many 

disaster researchers tried to find alternative methods for 

solving these problems. On the other hand, developments 

in remote sensing (RS) technology and computer science, 

especially ML and DL, make it possible to become tools 

and method solutions for faster and more accurate disaster 

impact assessments. 

According with [6], the use of DL with RS data only started 

in 2015 and increased significantly in the 2018s with the 

most applications in the field of land use and landcover 

(LULC) analysis. In particular, the use of DL in damage 

assessment is still very rare even though it has been 

acknowledged by the joint regarding the prospect of using 

those method. As for the implementation of DL 
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specifically in the case of disaster response, it is known that 

it only started in 2018 – 2020 [7][8]. Research conducted 

[9], proposes the use of two encoders to extract features 

from both pre-disaster and post-disaster image with a 

common decoder to do a semantic segmentation process 

for classifying burned buildings from unburned ones. 

Those research gives a model with 0.859 F1-score for 

burned buildings and 0.818 for unburned buildings. In 

addition to previous research, there has also been research 

by [10] about using various convolutional neural networks 

(CNN) to classify flooded and unflooded buildings. The 

result shows that data augmentation and drop out layer 

combined with adam optimizer can aid in the training 

process to give a better accuracy. The actual research by 

Bouchard [11] with their DamageNet architecture 

specifically for building damage assessment using the xBD 

dataset, the new F1-score reached 0.846 for building 

segmentation and 0.709 for damage classification. All 

researchers suggest that DL should be used for the 

assessment of buildings after natural disasters. 

Based on the previous research achievement, this research 

attempts to take on the problem one step forward by trying 

to quantify the damage more by using three damage levels 

scale from the xBD dataset. It consists of very-high-

resolution (VHR) pre- and post-disaster remote sensing 

images from 18 disaster events worldwide, containing a 

diversity of climate, building, and disaster types. The 

dataset is annotated with building polygons classified 

according to a joint damage scale with four ordinal classes: 

no damage, minor damage, major damage, and destroyed 

[12]. Furthermore, this research will focus only on the post-

disaster images because pre-disaster images are not always 

available. The model that will be used for this research are 

PSPNet and UNet for the segmentation process, and 

ResNet for the classification.  

The following is the structure of this paper include: (1) 

introducing about natural damage impact and related 

problems; (2) identifying state of the art DL algorithm that 

has been in development for damage assessment using RS 

data; (3) Dataset and development of DL models; (4) 

results; and the (5) conclusion. 

2. Deep Learning for Damage Assessment  

2.1. Development of DL Algorithm 

DL is a subset of what is known as ML, an AI algorithm 

was introduced in 2015 as a method of data learning with 

the aim to create representative data with layers using data 

preprocessing where the representative data is not 

explicitly made by humans but created by a learning 

algorithm [13]. The development of the DL algorithm is 

mentioned as the impact of a significant achievement from 

the use of the CNN algorithm with the AlexNet 

architecture in the ImageNet contest, one of which is 

supported by the efficiency in the use of GPU graphics 

processing units [14]. LeNet5 model is the first CNN 

model that utilizes structural information in the data 

through a few convolution and pooling operations inside 

the NN layer. This proves to be successful in handling data 

classification problems thus encouraging the development 

of more complex DL models for image analysis using RS 

data [15] . Deep attention regarding the use of DL in RS 

data analysis has started since 2014. Although it was small 

in numbers, it reached a significant number in 2017-2018 

in various applications such as LULC classification and 

geographic object detection [6]. DL is specifically 

implemented for damage assessment using RS data with 

DL in 2017 at the Proceedings of the 11th international 

workshop on structural health monitoring -IWSHM [16]. 

The following discussion specifically introduces some of 

the popular DL models including the CNN model which 

was implemented in this research and the fully 

convolutional networks (FCN). 

CNN is the most extensive and massive DL model for its 

use in various fields including remote sensing application. 

According to [6], the characteristics of the CNN model are 

very suitable for processing multiband RS data composed 

of a regular number of pixels. CNN has a fully connected 

network, which is a network structure of interconnected 

nodes. LeNet5 is the first CNN model that utilizes structure 

information in image data for character recognition 

through a few convolution and pooling operations [15] for 

example: adjacent pixels in an image or adjacent words in 

a text. Additionally, the CNN model has lower complexity, 

faster model training time, and requires fewer training data 

samples compared to traditional neural networks (NN) 

[16]. In general, a CNN model consists of several layer, 

namely (1) Input layer: functions to generate input data, (2) 

Convolutional layer: function for convolution operations 

on a number of nodes using several filters, (3) ReLU layer: 

is an activation function from output layer previously, (4) 

Pooling layer: this layer serves to sample the output of the 

previous layer to produce a structure with smaller 

dimensions, and (5) Fully connected layer: functions to 

calculate the output of the last layer [15]. Furthermore, 

some of the architectures of popular CNN models such as 

VGGNet [17] , UNet  [18], ResNet [19] as well as DeepLab 

[20] will be discussed. The development of CNN models 

such as DeepCNN [21], RCNN [22]  and FastRCNN [23] 

cannot be excluded from the discussion as these methods 

have been used for this research review. 

FCN is the most used deep learning architecture, especially 

in semantic segmentation. It uses locally connected layers, 

such as convolution, concatenation, and up sampling. 

Avoiding the use of dense layers means fewer parameters, 

thus making the network faster in the training process. It 

also means that FCN can work for variable size images as 

all connections are local [24]. Taking advantage of this 
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FCN’s rich class of models and special case of modern 

classification convnets, it is possible to extend the 

classification network for segmentation and improve the 

architecture with multi-resolution layers. This combination 

dramatically improves the state-of-the-art while 

simultaneously simplifying and speeding up the learning 

and inference [25]. One of FCN developments for damage 

assessment is by using skip connection to develop 3D point 

cloud instances. Traditionally, the development of this 

method requires many training iterations to achieve 

acceptable accuracy. However, the modification of skip 

connections allows the network to recover the most useful 

features during the training process at a faster rate. It also 

helps the recovery of finer details in precisions and reduce 

gradient vanishing issues [26]. In general, FCN model 

consists of several layers namely: (1) Input layer: functions 

to generate input data; (2) Convolution layers: this includes 

encoding and decoding layer, which is very common to 

find in semantic segmentation algorithm such as FCN; (3) 

Pooling: this functions to reduce the resolution of the 

convoluted features; (4) Un-pooling: sending the learned 

filters back to capture class-specific information; (5) Fully 

connected layer: this functions to fuse the output and 

giving the classification results. The development of FCN 

models such as 3D FCN [26] and FCN [27]. 

2.2. Deep Learning Algorithm for Damage Assessment  

In damage assessment, there are variations and roles for 

scene and object. Even though this review only uses a few 

scene datasets, it is critical to understand the differences 

between the two because they are frequently misconstrued. 

Scene categorization is based on visual categories from 

many photographs as well as training samples from labeled 

photographs [6]. Coastal areas [28], forest [29], and other 

types of scenes are some instances of scene classification. 

Object detection, on the other hand, seeks to detect specific 

items in a single visual scene, such as buildings [30], 

bridges [31], roofs [32], and so on. Depending on the 

dataset utilized, object and scene detection for damage 

assessment has advantages and downsides.  

For object detection using satellite imagery, [28] compared 

the use of the K-Means algorithm as change subtraction 

and as encoded concatenate images using deep embedding 

clustering algorithms (DEC) to the convolutional 

autoencoder (AE) DEC algorithm with initial clusters of 4 

then reduced by the algorithms to 3. [33] uses data fusion 

to detect object degradation using intensity-hue-saturation 

(IHS) and wavelet transform. Because data fusion can 

generate higher-quality information, integrating Synthetic-

aperture radar (SAR) and optical pictures necessitates the 

use of IHS fusion, which can produce substantial spectrum 

distortion to integrate the two. The image is then 

decomposed into groups of multi-resolution images with 

wavelet coefficients using wavelet transformation. A deep 

convolutional neural network (DCNN) is also used in 

satellite imagery object detection along with BDD-Net and 

using the backbone of EfficientNet-B0 as the feature-

extractor and encoder [34]. BDD-Net is a variant of the U-

Net architecture that was created to categorize every pixel 

of a post-disaster image into numerous categories of 

damaged buildings, non-damaged buildings, or 

background classes automatically. Other approaches for 

object detection and classification include a raid 

assessment framework based on geographical information 

system (GIS) technology [35], CNN with an adapted U-Net 

architecture [35], and CNN for image classification paired 

with fully convolutional network (FCN) architecture [36] 

to provide dense predictions. 

Object detection and classification utilizing aerial imagery 

typically yields a large amount of data and requires picture 

segmentation for small object detection. Traditional 

machine vision systems can detect objects, but they are still 

strongly reliant on the effect of feature extraction from 

post-event data, which is a difficult task [37]. To address 

this issue, [5] suggests using Inception V3 prediction to 

extract damage information from group buildings using a 

hybrid model of CNN and GIS data. Considering this, [38] 

proposed a model of single shot detector (SSD) algorithms 

for identifying and assessing post-disaster buildings. VGG-

16 is used as a basic network to extract image feature 

information and to use the training weights to initialize the 

SSD weights. Another option is to employ the You Only 

Look Once (YOLO) algorithm [39], which has stronger 

generalization and detection capabilities. [39] proposed 

employing YOLOv3, a CNN-based object detection 

method, to locate collapsed buildings efficiently and 

accurately in post-earthquake occurrences. To minimize 

the number of parameters and enhance detection speed, the 

feature extractor was changed from Darknet53 to 

ShuffleNet v2. There are many other methods that improve 

on the CNN model, such as [40] who compared 2D CNN 

architecture with 3D FCN with 3D point clouds dataset and 

skip connection, [41] with a CNN model with dense 

connections and dilated convolutions that will allow it to 

capture the spatial context of the images patches using 

gapped kernel instead of contiguous one, and [42] with 

three multi-resolution CNN feature fusion approaches. 

3. Dataset and Development of DL Models 

The development of DL model begins by finding 

appropriate dataset that can be used for training the model. 

At this stage, the xBD dataset, which can be found in 

https://xview2.org/, is chosen. During the time that this 

dataset was used, it consists of 10 sub-datasets, each 

containing images from different natural disasters that 

occurred in the past few years. The dataset contains 5598 

pairs of images, each pair having a raw satellite image, 

which will be referred to from now on as the frame, and its 

corresponding segmentation, which will be referred to as 
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the mask, and having a total of 7.7GB in size. Each pair of 

images further contains another pair which are the image 

before the event (pre-disaster) and the corresponding 

image after the event (post-disaster). As described on the 

previous part of this paper, pre-disaster images are 

discarded, reducing the effective number to only 2799 pairs 

of images. The images in this dataset are 24-bit in depth 

and have dimension of 1024 x 1024 pixels. The damage 

classes in this dataset are classified into 4 categories based 

on the Joint Damage Scale (JDS) convention, starting from 

the no damage class, which are buildings that do not get 

affected by the event, to the destroyed class, which are 

buildings that get completely wrecked. The rest of the class 

are minor damage and major damage which define the 

damage level between the no damage and destroyed class. 

Next, the dataset is inspected to find any possible images 

that may affect the quality of the training process. These 

images are the ones which are mostly covered with clouds 

as can be seen in Fig.1a. Although there are some images 

that are partially blacked out (Fig.1b), these images will not 

hinder the model training since its corresponding 

segmentation is still accurate. 

 

Fig. 1.  Example of Special Datasets-cloud cover problem 

(a) and partially blacked out (b) 

Before the images are ready to be used as a training set, the 

image is split up into four different quadrants, each having 

a dimension of 512 x 512. This is done to reduce the input 

size of the model without resizing the original image, hence 

reducing the number of times taken to finish a single 

iteration. During this phase, it was also noticed that 

buildings that are classified as destroyed can be barely seen 

on the image. Without the corresponding pre-disaster 

image, the authors figured that it would be really 

challenging for the model to be able to detect any building. 

As a result, the category destroyed is removed from the 

training set. Finally, some images which does not have any 

buildings are removed from the training set so that the 

number of pixels labeled as background will be lessened to 

reduce imbalances. 

The DL model used in this research is divided into two 

stages. The first of the model is used for binary 

segmentation to identification the position of buildings on 

the image (localization) whereas the second part of the 

model is used to predict the damage level on each building 

by the first model (classification). 

 

Fig. 2.  Flow Process of Damage Assessment Model 

using Segmentation and Classification 

From Fig. 2, there are two more intermediate stages have 

been conducted before the classification process. The first 

intermediate stage is the thresholding process which 

converts each pixel value from being a probability to a 

crisp value. This is conducted by choosing a value, β, so 

that every pixel, pi, such that pi ≤ β, will be set to 0, and 

the rest will be set to 1. By default, the value of β is 

arbitrarily chosen as 0.5. Now that the image contains only 

zeros and ones, it is easier to extract the buildings from the 

image. The algorithm below describes a series of flood fill 

algorithm is used to extract the buildings. 

 

 

INPUT: Image I 

OUTPUT: Array of coordinates defining the location of 

each building 

    let R be an empty array to store the result 

    let C be the set of all pixel coordinates in I 

    while C is not empty do 

        let s be any arbitrary coordinate from C 

        let ci be an array of coordinates by flooding I from s 

        if I[s] == 1 then 

            append ci to R 

        end if 

        C = C / ci 

    end while 

 

The model that is used for binary segmentation in this 

research is the PSPNet model with a ResNet18 backbone. 

PSPNet is a fully convolutional neural network that is 

excellent at capturing both local and global context 

information from the image than to the pyramid pooling 

module that uses different sizes of pooling kernel to extract 

different information from the image. The pooling kernel 

used in this research have sizes of 1, 2, 4, and 8. 

Architecture for the model as can be seen in the Fig. 3. 
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Fig. 3.  Binary Segmentation for Building Using PSPNet 

and ResNet-18 

As a comparison, the UNet model with Vanilla backbone 

and 4 down-sampling layers is trained in the same manner 

as the PSPNet model. UNet has an encoder-decoder 

architecture which provides its ability to predict whether is 

pixel is part of a building (encoder) and locate where a 

building is on the image (decoder). The feature output sizes 

of each down-sampling layers are 64, 128, 256, and 512. 

Architecture for the UNet model as can be seen in the Fig. 

4.  

 

Fig. 4.  Binary Segmentation for Building Using UNet 

and ResNet-18 

For the classification stage, the ResNet50 is chosen (Fig. 

5). The ResNet model consists of several layers of residual 

block that is used for feature extraction. The skip 

connection is a way of preventing the vanishing gradient 

problem. The original 7 x 7 convolution layer is replaced 

with 2 layers of 3 x 3 convolution kernel to provide more 

feature for the model. 

 

Fig. 5.  ResNet50 Architecture used in the classification 

stage 

Then implementation of the DL model is done using the 

Keras framework built on top of Tensorflow. The cyclical 

learning rates (CLR) was used to avoid the need to perform 

a lot of experiments for finding the best learning rate (LR) 

values. LR range test was first run to find the lower bound 

and upper bound of the LR. The triangular policy was 

chosen to update the LR values after each iteration. Along 

with it, the Adam optimizer was used to update the 

learnable parameters of the model. Finally, the dice 

coefficient is used as a metric to measure the performance 

of the segmentation model, and accuracy was used to 

measure the performance of the classification model. Once 

the model has been trained, it is tested on unused data to 

check its feasibility. 

4. Result 

 In accordance with the model development methodology, 

the discussion of the results in this paper will be divided 

into two, the first development and implementation of the 

model for building and non-building segmentation and the 

second is the development and implementation of a 

classification model for the level of building damage due 

to natural disasters.   The development of the segmentation 

model has been conduct using PSPNet with Resnet-18 

backbone and using UNet with vanilla backbone. Because 

the models are trained on a machine without using any 

GPU. It takes roughly about 40 minutes to finish a single 

epoch for the binary segmentation model and 10 minutes 

for the classification model. Details of each training 

process can be found on Table 1. 

Table 1. Training parameters for data in the segmentation 

process 

  PSPNet UNet 

Im
a

g
e
 

Image Count 1003 

Dimension 
(Frame) 512 x 512 x 3 

(Mask) 512 x 512 x 1 

Batch Size 4 

Augmentation 
Horizontal Flip, Vertical Flip 

and Rotation 

Validation 

Split 
0.15 

P
a

ra
m

et
er

 

Output 

Activation 
Sigmoid Sigmoid 

Loss Function Dice + CE Dice + CE 

Optimizer Adam Adam 

Epochs 60 100 
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The results of the evaluation of the segmentation proposed 

in this paper are then compared with the results of 

evaluations that have been carried out by previous 

researchers using the same dataset as the conducted by  

[27], [43], [44], [45], [46]. The results of the evaluated F1 

scores are based on publications that have been compiled 

by [47] . In Table 2. The F1 score of the PSPNet method 

and algorithm used in research is slightly better than the 

results of previous studies, except for the results of the 

study [46] with a value of 0.869. The results are different 

with a smaller value when compared to the results of 

previous studies with experiments conducted using UNet 

with vanilla backbone. 

Table 2. Segmentation results of various models from 

several previous researchers 

 Localization F1 

Weber [43] 0.835 

RescueNet [27] 0.840 

BDANet [44] 0.864 

DCFNet [45] 0.864 

DamFormer [46] 0.869 

BuildingNet [47] 0.846 

Weber [43] 0.835 

Our Model 
PSPNet  UNet 

0.8494  0.8371 

 

 During the process of data segmentation, the research 

conducted was faced with obstacles where in certain areas, 

the building size was relatively small and quite dense. This 

condition causes difficulties in segmenting buildings 

individually. Referring to research [48], it is tried to 

implement a flood fill algorithm so that several different 

buildings can be extracted as buildings with a single 

identity, which then affects the classification process. The 

solution to the problem of building separation in a 

congested location is as an example that can be seen in Fig. 

6. 

 

Fig. 6.  Segmentation on building density area using flood 

fill algorithm. Example of imagery data with building 

density relatively high (a) and the result of segmentation 

for individual building (b) 

In this study, three models of multiclass segmentation have 

also been conducted and the results of which are discussed 

as follows:  The 1st model classifies all buildings into the 

no damage category. This is because the distribution of 

background and no damage pixels has up to 96.4% of the 

total dataset, so the model is able to get an accuracy value 

of 0.9407 only by classifying all buildings in the no 

damage category. Although the model has a high accuracy 

value, this model cannot be used because it does not 

provide any information about the level of damage to the 

building (see Fig.7). 

 

Fig. 7.  The results of the multiclass segmentation for 1st 

model. Data (a), ground truth (b) and result of multiclass 

segmentation (c) 

In the 2nd model, building with minor damage and major 

damage categories were extracted and pasted on the 

existing dataset to create a synthetic building dataset. In the 

2nd dataset, the distribution of pixels is more even than the 

previous dataset. The model is given 20 epochs for the 

training process. From the accuracy graphic, the best model 

is found in the 11th epoch with a dice coefficient value of 

0.8643 and an accuracy of 0.8225. A test is then carried out 

to ensure that the model is working properly. The results of 

the test concluded that the model would classify all 

buildings in the no damage category except for synthetic 

buildings. This happens because there is a high gradient 

value at the edge of the building that is made so that the 

model incorrectly learns the features that it should. An 

example of the results of the 2nd model can be seen in Fig. 

8. 

 

Fig. 8.  The results of the multiclass segmentation for 2nd 

model. Data (a), ground truth (b) and result of 

classification (c) 

The 3rd model combines both under sampling and 

oversampling techniques to balance the dataset. The 

distribution of pixels in percent for each background class, 

no damage, minor damage, and major damage is as follows 

98.26; 0.59; 0.58; and 0.58. The 3rd model gets high dice 

coefficient and accuracy values, but this model also cannot 
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be used because the number of pixels in the background 

category makes the model predict many background 

categories. The results of the 3rd model can be seen in Fig. 

9. 

 

Fig. 9.  The results of the multiclass segmentation for 3rd 

model. Data (a), ground truth (b) and result of 

classification (c) 

After the segmentation process can produce individual 

buildings well, the next step is to classify the damage level 

of the building. In the research experiment, it has been tried 

to classify the level of damage to buildings with several 

different classes such as 2 classes (damage and no damage) 

and 3 classes (no damage, minor damage, and major 

damage). Parameters for classification stage, as well as 

segmentation, it uses dimensions of 50 x 50 x 3 with a batch 

size of 32. As for the augmentation and optimizer using the 

same method as the data segmentation stage, using 

horizontal, vertical and rotation with Adam optimizer and 

the number of epochs is 100. For further analysis of the 

classification model, a test set of consisting of 4309 images 

is created. In Fig.10, it can see a graph of the accuracy and 

loss of the ResNet50 model used in the classification stage. 

Accuracy results for training reached 0.6494 while data 

validation reached 0.6482. 

 (a)

(b) 

Fig. 10.  Accuracy (a) and Loss graphic (b) ResNet50 

model for classification 

 

Fig. 11.  Classification result using ResNet50 model for 

three class of buildings Damage (No damage, minor and 

major damage 

To assess the accuracy of the model, a confusion matrix is 

then used with the actual distribution and predictions of 

each level of building damage as can be seen in Table 3. 

Table 3. Confusion Matrix of three level of building 

damage 

Actual/ 

Prediction 

No 

Damage 

Minor 

Damag

e 

Major 

Damage 

No Damage 929 135 431 

Minor Damage 175 753 441 

Major Damage 130 201 1114 

 

From Table 4, it can be seen that the model is still quite 

difficult to determine the dividing line between buildings 

in the major damage category and buildings that are not. 

This conclusion is drawn based on the fact that the number 

of false positives in the major damage category is almost 

the same as the true positive numbers. This means, from 

77.09% of the buildings that are predicted to be major 

damage, only about 56.09% of the buildings are actually 

relevant. 

Table 4. Precision, Recall, and Accuracy of building 

damage 

Actual/ 

Prediction 
Precision Recall Accuracy 

No Damage 0.7528 0.6214 0.7979 

Minor Damage 0.6915 0.5500 0.7791 

Major Damage 0.5609 0.7709 0.7208 

 

From these results, it is deduced that the classification 

model is not able to properly differentiate minor damage 

and major damage class. If both damaged class is combined 

as a single class, then the result would give an average 

accuracy of 0.8338 (Table 5). 
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Table 5. Precision and recall on 2 Classes 

Actual/ Prediction Precision Recall 

No Damage 0.8594 0.7665 

Damaged 0.8159 0.8919 

 

5. Conclusion 

The results achieved from previous experiments show that 

deep learning can be used as a new, efficient, and fast way 

to assess damage to buildings. Based on the research 

problems, the research proposed using a combined model 

of building segmentation followed by a classification 

model to detect building objects and classify the level of 

damage caused by various natural disasters using aerial 

image data. 

The proposed model, using PSPNet with a Resnet-18 

backbone, can improve the accuracy of building 

segmentation from several models in previous studies 

which achieved an F1 score of 0.8494 although this value 

is slightly lower than the F1 score of the DamFormer model 

proposed previously 

The factor of the number of classes of building damage is 

very influential on the accuracy of the assessment where 

the more classes, the lower the accuracy obtained. 

Evaluation with a confusion matrix using two classes of 

building damage levels (No damage and Damage) can 

produce a precision model that reaches 0.8338. The results 

achieved are slightly better than previous studies. 

Furthermore, there is an opportunity to improve relevant 

research with further development on making a better 

binary segmentation model for extracting buildings in 

dense areas from aerial images and classifying the level of 

damage to buildings for a greater number of damage 

classes. 

5.1. Abbreviations 

AI – Artificial Intelligence 

ML – Machine Learning 

DL – Deep Learning 

RS – Remote Sensing 

LULC - Land Use and Land Cover 

CNN - Cconvolutional Neural Networks 

VHR - very-high-resolution 

FCN - Fully Convolutional Networks 

NN - Neural Networks 

DEC - Deep Embedding Clustering  

IHS - Intensity-Hue-Saturation 

SAR - Synthetic-aperture radar 

DCNN - Deep Convolutional Neural Network 

GIS - Geographical Information System 

SSD - Single Shot Detector 

YOLO - You Only Look Once 

JDS - Joint Damage Scale 

LR - Learning Rate 

CLR - Cyclical Learning Rates 

5.2. Availability of Data and Material 

Data and material supporting the findings of this study are 

available from xBD dataset, which can be found in 

https://xview2.org/. 
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