
International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-67992147-6799 www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(1), 169–178 | 169

Software Quality Assurance Models and Application to Defect

Prediction Techniques

Jammel Mona1, Radhwan Hussein Abdulzhraa Al-Sagheer2 ,Salah.M.M. Alghazali3

Submitted: 27/10/2022 Revised: 29/11/2022

Abstract: The needs for hardware and software applications have emerged because of recent technological breakthroughs. Along with

this advancement in technology, the need for software across a wide range of applications has dramatically increased. Any software

sector, creating high-quality software and preserving its renown for users the most crucial undertaking for the expansion of the

software industry. This must be accomplished, for software industries, software engineering is crucial. However, applying such

standards to instill trust in the minds of consumers is not always straightforward. In general, the software development team perceives

quality assurance in software development as an additional lengthy and extremely documentation-intensive operation that is of little

value to the client. Consequently, this paper will demonstrate that the quality of the notion can be addressed from various perspectives

depending on the individual's take and interest might be challenging to determine. In addition, we discussed some standards, models

and applications of quality and assurance in software engineering by utilizing soft computing-based machine learning approaches that

help to forecast, optimize, and efficiently learn the features, we intend to develop an effective method for predicting software defects.

Keywords: Defect prediction techniques, Quality Assurance, Quality Models, Quality Standards, Quality Applications

1. Introduction

The variety and complexity of software are increasing

with each passing day; therefore, software quality

assurance must be employed to balance quality and

productivity. A unique set of software quality challenges

arises in each application or business sector, and software

quality must be defined following these differences.

During the planning phase of a software development

project, it is critical to determine the unique definition of

software quality for the project at hand. Applying

software parameters to a software process and a software

product is a combination task that necessitates study and

discipline while also providing knowledge of the status of

the process and/or development of software about the

goals that the software process and product must achieve.

Software quality assurance (SQA) is a method of

monitoring the software engineering tools and procedures

used to ensure that the software is of high quality. Many

other approaches can be used to do this, including

establishing adherence to one or more standards, such as

ISO 9000, or a model, such as the (CMMI). When

developing software, software metrics should be used to

measure and anticipate the quality of software products

across the whole software development cycle. This will

assure high-quality software while also achieving cost-

effective software development and maintenance.

Software is becoming increasingly crucial in today's

culture. Fifty years ago, software was only utilized in

specialized calculation machines; today, the software is

found in virtually all consumer devices and safety-critical

equipment. As a result of this change, the emphasis has

shifted to achieving and maintaining software quality.

Software processes play a significant role in attaining and

evaluating software quality [2]. Software differs from

other sorts of products in several ways. In his well-known

piece "No Silver Bullet," Brooks discusses four different

factors.

Fig. 1. Common challenges with software quality

assurance

Software products may be more complex than human

creations. While the computers that operate software are

involved, the software itself has orders of magnitude more

states than the computers. It is impossible to confirm

Difficulty in understanding

Conformity

Modifiability

Unseen presence

1 Faculty Medicine, University of Kufa, Najaf, Iraq

ORCID ID : https://orcid.org/0000-0001-8189-0583
2 Faculty of Education for Women, University of Kufa, Najaf, Iraq

ORCID ID : https://orcid.org/0000-0003-2999-8743
3 Faculty of Education for Women, University of Kufa, Najaf, Iraq

ORCID ID :https://orcid.org/0000-0002-6205-734X

* Corresponding Author Email: radhwan.hu@uokufa.edu.iq

Accepted: 26/12/2022

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(1), 169–178 | 170

software to "physical laws" since programming has no

such laws. Instead, the program must unify a variety of

interfaces and structures. Even while it is simple to make

changes to software, the ramifications of those changes

are sometimes disregarded. Geometric abstractions are a

great way to think about things, but they can't be used

because software is not seen. As an alternative, the

software is made up of many different abstractions, each

with its own set of dimensions, like control flow, data

flow, and dependencies. Even though the software is

distinct from other disciplines, many generic strategies

can be used in software development. Quality assurance is

one of these processes. As defined by “A planned and

systematic pattern of all actions necessary to provide

adequate confidence that the item or product conforms to

established technical requirements.”

Since the 1980s, software processes have been

emphasized to produce high-quality software

development results. According to Brooks and others, the

methods are required to overcome the issues associated

with the unique nature of software, which they have

identified. The distributional characteristics of datasets

influence the selection of training samples. Few

experimental studies evaluated the practical benefits of

cross-project defect predictors with various programming

metrics, such as process measurements, static code

metrics, system metrics, etc., and how to use such metrics

in a complimentary manner [18]. [19] Even though there

have been multiple attempts to implement CPDP, it is still

not sufficiently developed and performs poorly in actual

use [20]. Furthermore, since there isn't any accurate

historical data on the project, it's impossible to say with

certainty how the defect predictors among WPDP and

CPDP are rationally chosen. A variety of software

metrics, such as the history of code change, static code

metrics, network metrics, process metrics, etc., are used to

create defect predictors for different forms of fault

detection [21].

2. Related Works

Defect prediction models in software programming have

developed into one of the important study fields since

1990, as stated by Catal and Diri (2009). Just two decades

later, there were more research articles in this field

overall. both ways a variety of techniques and processes

were used, for example, in defect prediction models. tree

decisions (Selby and Porter, 1988) brain network Naive

Bayes system (Hu et al., 2007) (Menzies et al., 2004),

fuzzy reasoning (Khoshgoftaar et al., 1997), case-based

reasoning (Yadav and Yadav, 2015) and synthetic

immunity Catal and Diri recognition framework technique

(2007). Menzies et al. (2004) conducted a study drawn

from using a small number of open-source NASA datasets

using data mining methods. The outcomes were

afterwards assessed. Using the balancing parameter, the

likelihood of a false positive alarm and likelihood of

being discovered. Before the During the algorithm's

implementation, the authors have made The benefit of

processing logs with Info-Gain filters. They continued.

ensured that J48 algorithm was outperformed by Nave

Bayes in terms of defect anticipated outcomes. Since the

authors went on to claim that some models with low

accuracy functioned brilliantly, using such models as a

trustworthy There was no recommendation for a

performance evaluation parameter. Yldz and Okutan

(2014) used Bayesian networks to assess the defect risk

and calculated the probabilistic strong linkages between

software metrics. One example is the metrics used in the

Promise data repository. In this study endeavor, additional

metrics were defined, including LOCQ for source code

quality and NOD for developer density. These measures

can be collected by looking at the source code of the

targeted website, Archive data with promise There was a

slight possibility that the system may malfunction once

the model was complete. a collection of pertinent

measurements, together with a correlation between

knowledge of the metrics and faults. There were

additional learning algorithms based on dictionaries. more

typical in the field of anticipating software flaws. Models

were utilized by Jing et al. (2014) to predict software

problems. focuses on the foundations of machine learning

techniques. With the help of a few more components, the

Comparability between several software modules can be

utilized to represent a small portion of a small number of

modules. Additionally, the pre-defined dictionary's

coefficients incorporate the pathetically insufficient

historical software data. The researchers find many

dictionaries utilizing open-source programming

components, including but not limited to the full

dictionary, defective modules, defective modules-free

modules, additional dictionaries, etc. with the help of the

features of the metrics produced by the researchers. The

expense of misclassification and the fact that it frequently

carries greater risk than other ones that are defect-free

have also been taken into account by the researchers. We

offer a cost-sensitive, discriminative lexicon in this way.

method for software defect learning (CDDL)

classification and prediction.

3. Proposed Methodology

The training model phase and the prediction phase make

up the two primary sections of the overall architecture of

the model presented in this study. In the training phase,

the feature data is first normalized and compressed to a

particular interval, as illustrated in Fig. 2.

By enlarging the data and sampling it using the SOMTE

sampling method, a new training data set is produced.

Subsequently, by proportionally changing the index,

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(1), 169–178 | 171

labelled and unlabeled training sets are randomly selected.

The labelled and unlabeled training sets are then supplied

to the Tri-training algorithm for learning. During the

prediction step, the trained classifier is given the test

module as input to see whether it has any problems.

3.1. Data Pre-processing

The data preprocessing it is from the most important steps

in SQA and it comes as follows:

1- Profiling of data is one. Data profiling is the process of

looking at, assessing, and examining data to gather

statistics on its quality. An examination of the

characteristics of the existing data comes first. Data

scientists identify the relevant data sets for the

problem at hand, make a list of their main features,

and then guess which of those qualities would be

useful for the suggested analytics or machine learning

activity. They also consider the potential

preprocessing libraries to use and link the data

sources to the relevant business principles.

2- Data cleansing. Finding the most straightforward

solution to quality problems, such as erasing

erroneous data, filling in data gaps, or generally

ensuring that the raw data is suitable for feature

engineering, is the objective here.

3- Data compression. In Raw data sets frequently include

duplicate information that comes from classifying

events in many ways, as well as information

unrelated to a particular ML, AI, or analytics

application. The raw data is streamlined using

principal component analysis and other data

reduction techniques to make it more suitable for

particular use cases.

4- Data modification. In this situation, data scientists think

about how different aspects of the data should be

structured to make the objective as distinct as

feasible. This may require structuring unstructured

data, incorporating pertinent factors when it makes

sense, or deciding which critical ranges to focus on.

5- Data enhancement. In this step, data scientists use the

various feature engineering libraries to apply the

desired changes to the data. The outcome should be a

data collection that is designed to optimize the trade-

off between computation and training time for new

models.

6- Verifying the information Two sets of the data have

now been created. Using the first set, a deep learning

or machine learning model is trained. The precision

and robustness of the final model are assessed using

the testing data in the second set. This second step

assists in identifying any problems with the

hypothesis that was used during the feature

engineering and data cleaning stages. If the data

scientists are satisfied with the results, the

preprocessing assignment can be given to a data

engineer who will figure out how to scale it for

production. If not, data scientists can go back and

change how the feature engineering and data

purification processes were carried out.

Fig. 2. Steps of preprocessing the data

Fig.2 shows the research methodology which includes

two specific phases. The first phase is collecting data and

the second phase is the sentiment analysis based on data

mining for covid-19 health records. The research

proposed methodology is shown in Fig. 3 which presents

the flow chart of data collection, classifications, and

applying unsupervised learning algorithm on health

record text. It starts with data collection of covid-19

health records. Following the utilization of covid-19

health records in text and views. This stage is important

for analyzing the results effectively. Then, the data

mining algorithm is applied in the classification level with

neutral entity denotes as (0), positive entity denotes as (1),

and negative entity denotes as (-1). Finally, the

unsupervised learning algorithm based on Word2Vec is

applied for data analysis and modeling in such way it

performed as opinion data mining.

3.2. Verification and validation are two critical aspects

of any project.

verification and validation (V&V) are a way to make sure

that software products are safe and work well at every

stage of their development [6]. It is essential to make sure

that the program is good at what it does, and that the

product meets the needs of the people who use it

(IEEE1059-93).

It is imperative to V&V that the quality of software

products be looked at directly, so they use testing methods

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(1), 169–178 | 172

that can find and fix problems as soon as they happen.

However, it also looks at intermediate products, and in

this way, it looks at the intermediate steps of the software

development life cycle.

V&V is a process that checks to see if the results of a

specific development or maintenance activity meet the

needs of the people who use the software. It also contains

to see if the final software product serves its intended

purpose and meets the needs of its users. This means that

a verification attempt is trying to ensure that a product is

built correctly. For example, it is trying to make sure that

the output products of an activity meet the specifications

set by previous actions. When a product is made,

validation is a way to ensure that the product is built

correctly, which means that the product does what it was

meant to do. Both verification and validation processes

start early in making or maintaining something. They

work together. It is possible to use them to get a better

sense of what is important about a product with its

immediate predecessor and the criteria it must meet.

Planning V&V is meant to ensure that each resource, job,

and duty is clearly defined and given to the right person.

The V&V plan documents that come out of this process

list all of the resources that will be used and the methods

and technologies that will be used. In addition, the project

talks about the management, communication, policies,

and procedures of the V&V activities and how they work

together, as well as the rules for reporting problems and

documenting the work. Understanding the different goals

of each V&V movement will help plan the best ways and

resources to reach them. It's important to follow standards

(IEEE1012-98:s7 and IEEE1059-93) when making a

V&V plan.

4. Model / Standard

4.1. McCall’s Quality Model (1977)

The quality model that Jim McCall and his colleagues

came up with is one of the most well-known predecessors

of the quality models that we use today (also known as

the General Electric’s Model of 1977). In the same way as

other modern models, this model came from the United

States military. It was made for the US Air Force and then

spread through DoD. It is mainly for systems developers

and others who work on systems. McCall wants to close

the gap between users and developers in his quality model

by focusing on essential factors both to users and

developers [7]. Product revision, product transition, and

product operations are the three main ways to think about

and measure the quality of a software product in the

McCall quality model, shown in Figure 1. In other words,

how it works. Product revision includes features like

maintainability (how long it takes to find and fix a

problem with the program in its operating environment),

flexibility (how easy it is to make changes to the working

environment), and testability (the ability to run the

program in a way that can be used to test it) (the ease of

testing the program, to ensure that it is error-free and

meets its specification). Consider portability (the amount

of work it takes to move software from one place to

another), reusability (the ease with which software can be

used again), and interoperability when moving products

(the effort required to couple the system to another

system). It is crucial to think about how a program meets

its specifications, how reliable it is, how efficient it is,

how safe it is, and how easy it is to use (the ease of the

software).

4.2. International Organization for Standardization

(ISO 9000)

ISO is short for the International Organization for

Standardization4. This is a well-known group. Many

standards are made by the International Organization for

Standardization (ISO). The ISO 9000 series is one of the

most prominent, widely used, and well-known. ISO 9001

is an international standard for quality management

systems. It can be used by businesses of all sizes and

types to improve their quality management systems. ISO

9001 is concerned with the procedures and methods.

The International Organization for Standardization (ISO)

9001 is a process-based way to manage quality. In

contrast, ISO 9001 is concerned with the management

(monitoring, ensuring, etc.) of the quality of the products

and services that an organization sells or gives away [9].

There should be a lot of planning and documentation done

for each of the processes below. They should also be

executed, supported, monitored, and improved to some

degree or another.

4.3. CMMI (Capability Maturity Model Integration)

Software Engineering Institute (SEI) at Carnegie Mellon

University in Pittsburgh, Pennsylvania, came up with the

Capability Maturity Model Integration (CMMI)

Framework for process improvement in the United States,

which the SEI made. This is an abbreviation for

Capability Maturity Model Integration, and it stands for

Capability Maturity Model Integration. It is a collection

of best practices for improving how things work [12]. It is

very organized and systematic. If you want to use the

CMMI process model framework, there are three different

ways to use it: CMMI for Development, CMMI for

Services, and CMMi for Acquisition.Software

engineering, manufacturing, financial services, aerospace,

computer hardware, defense, and telecommunications are

just a few of the businesses covered by these three groups

of companies. People who work for businesses have

found using the CMMI Model Framework

implementation. This includes but isn't limited to:

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(1), 169–178 | 173

Fig. 3. CMMI Model Framework implementation

5. Application

There is no room for mistakes when it comes to today's

fast-paced business world. People and businesses want

things to be perfect. On the other hand, corporations must

take risks with production quality because of short

periods, limited budgets, and the need to adopt new

technologies quickly. Businesses don't have to put

themselves in harm's way to do well to make money now.

It's easier and faster to get your product to market faster

with Hexaware's quick and flexible Quality Assurance

and Testing Services (QATS). This means you can get

your product to market quicker and meet or even exceed

your customers' expectations.

Quality Assurance and Testing Services helps businesses

all over the world achieve business transformation by

providing the following services:

• Excellence in software quality

• Test Consulting and Strategic Planned

• Engineering for Performance and Automation

• Testing Centers of Excellence (TCoEs) that have proven

test processes, techniques, and governancemodels that

work well for them.

5.1 AQtime:

A profiler automatically keeps track of how well it runs

and how much memory it uses during the program's

execution. It is an all-in-one profiling tool with a set of

profilers that collect actual performance and memory

allocation information at runtime and show it to the user

in both summary and detailed formats. The results are

displayed, most likely in a comparable way, and can be

examined in more detail. To show how much time each

function has spent, it might record when each function

call starts and ends, then show that percentage as a

percentage of the time each part has spent. It also

provides customized filters for the show results,

graphical views of function call hierarchies, source code

views, disassemble views, etcetera., which makes it much

easier to analyze the profiled application [14][27].

5.2 Code Coverage

The internet applications growth is increasing and

boosting, the software testing is challenged for this

application. Many code-based techniques introduced for

testing web applications such as java-based testing

techniques; source code based automatic test generation.

In these approaches, you learn how to test transactions

over a network, how to look for mistakes in complex

systems, and how to make sure your job is efficient. Some

people use automatic test generation from source code to

ensure that the tests cover every statement in a program.

PathGen and TestGen are two parts of the eXVantage

method for code coverage. PathGen and TestGen are two

parts of the eXVantage implementation of test generation.

PathGen is a program that looks at the source code of a

program and comes up with a list of the most critical

paths. TestGen reads in the ways and creates test data for

each of them based on its information about each of them.

TestGen establishes a set of test cases that can be run.

They are written in the same way as the source code of

the original program [15][28].

5.3 Test

In this section we are going to show some results related

to the affect of testing a proposed system in government

or private sector that the organization used inside of Iraq,

the survey was indicated to check the validity of the

software and the ease of use of it the survey questions we

made some section to make sure of the outcome from this

paper

As follows first how we can make of the quality assurance

of an app, and we had some questions related to that

Table 1: Sample of Questions used in different sections.

1 Ease of

installation

Ease of use Hardware

compatiblity

Operationg

system

compatibility

2 Security Ability to

integrate

with otther

apps

Look and feel Application

software

compatibility

3 Documentation Collaborate

with team

Clarity of

documentation

Accessibility

of product

support

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(1), 169–178 | 174

The scale of the answers tothese questions were defined

as 5 as strongly agree then 1 as strongly disagree.

In the following figure showing the results of mean

analysis for the power analysis and the value was shown

as 0.5 and the data we used for our analysis shows

significant impact.

Table 2: Mean Analysis

In the linear regression table as a result the data were

showing the effect as 0.05 percent in the data processing

for the correlation value of the survey as shown in the

following table.

Table 3: Data Correlation

And the following figure will show main relationship

between the age group and the ease of using systems as

will be shown in the following figure

Fig. 4: Relationship between Age and Case of use.

Table 6: Variable Processing Summary

In the above figure we shown the relationship between the

age group and the ease of use in each application that

conducted in their firm.

Table 4: Dependent Variable

In the above table we show all the factors that could affect

the use of applications and check the quality assurance of

it so in the first mode we have five dependent variables

and one independent variable and that would be

compatibility of the application with different operating

systems and the use of them for each single or multitasks

per time.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(1), 169–178 | 175

Table 5: Case Processing Summary.

 N

Total Cases 99

Excluded Cases 0

Forecasted Cases 0

Newly Created Cases 0

In the above tables the test shows 99 valid data were

collected and included in the analysis stage and all of

them were complete and positive values that could be

used and get high accuracy of the results as we will show

in the following table.

Table 7: ANOVA Analysis

ANOVA

Sum of

Squares df

Mean

Square F Sig.

Regression 191.636 1 191.636 . .

Residual .000 97 .000

Total 191.636 98

The independent variable is Application software

compatibility.

The Anova analysis results show 191.646 mean square

were that show the affect of the experience of users and

the knowledge they have will measure the quality

assurance and which technique could be used to check the

system outcome, since all the data we show linear

increment in the user decency.

Testing software that automatically checks the classes

made in Microsoft's. NET Framework without having to

write a single test case or stub. Parasoft® dotTEST™ is

an integrated Development Testing tool that automates a

wide range of best practices that have been shown to

improve the efficiency of software development teams

while also improving the quality of their work. This tool

is called dotTEST. Make it possible to:

• Static analysis, which includes static code analysis, data

flow analysis, and measurements analysis

• Unit testing is when you write, run, optimize, and

manage unit tests.

• Plugin testing: It sets up the environment for the plugins

to run in and run them.

Team members will benefit from this because it gives

them a realistic way to find, expose, and fix problems in

their.NET code (such as C#, VB.NET, ASP.NET, and

Managed C++) to work as it should. The severity of each

issue can be set, and each one is automatically assigned to

the developer who wrote the code that linked to it [26]. It

also gives the developer a direct link to the incorrect code

and explains how to fix it to their IDE.

5.4 GS Data Generators

Automated testing and data creation software can be used

to make test data for software quality assurance (QA),

performance and usability tests, and database load tests.

The GS Data Generator tool can be used to make test data

for QA, usability, performance, and database load tests. If

you want to run random tests, meaningful tests, and

business-intelligent tests for system integration testing,

system development, and marketing, you can use this

computerized testing application. It's also suitable for

testing ERP, CRM, and data warehouse systems.

5.5 jenny

Jenny is a tool for logically making regression tests.

Consider using jenny if exhaustive testing seems like a lot

of work because of the significant number of features and

interactions that need to be tested in each situation. It will

cover most of the interactions with a lot fewer tests. If you

use this method, you'll be able to test all the features that

work together and avoid combinations of features that

don't work well together.

5.6 WebART

The Online Computer Library Center (OCLC) created and

uses WebART, a test automation tool, to test intranet,

internet, and World Wide Web applications and content.

It makes it possible for you to quickly create, run, and

analyze automated tests that validate a website's or an

application's functioning.

5.7 Web Performance

Web-based application quality assurance testing is a

planned and systematic sequence of procedures for

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(1), 169–178 | 176

internet client and server products that guarantees they

conform to a predefined set of metrics. The tools'

effectiveness was measured by their response times and

latency, their structural quality, content, accuracy and

consistency, and overall performance [16][25]. Web-

based testing will become a critical component of

continuous quality assurance, with web-testing tools

ensuring that the testing process is repeatable and

uniform.

6. Prediction Techniques

All modern defect prediction models are founded on a

sophisticated combination of programming metrics, which

allows a defect predictor to normally attain a high level of

precision. One of the few feature selection algorithms,

principal component analysis (PCA), has the potential to

considerably reduce the number of data dimensions [11].

The number of defects that would be found in a project or

product module can be predicted using programming

defect prediction (PDP) methods, which are also used to

classify which modules are most likely to include errors.

Many novel methods have been developed to characterize

and forecast disappearances; they can be broadly divided

into methods to determine whether a particular

programming antique rarity is likely to have a deformity

(Classification) and methods to determine how many

flaws would be present in each programming antique

(Prediction).

Expert viewpoints were employed in a study by Staron

and Meding [10], and their performance was contrasted

with that of other information-based models. The author's

earlier studies illustrate the long-term analytical

capabilities of SRGMs (Software Reliability Growth

Models), demonstrating its value in determining or

foreseeing failure and consistency in the context of the

automotive sector. To categorize the software modules

that are most likely to be defective or to assess the

compactness of software defect, several software modules

connected to code attributes like complexity, size, etc.,

have been successfully employed.

Additionally, Iker Gondra [12] and Xie et al. have

examined techniques that leverage code and altered

measurements as information sources and make use of

machine learning strategies for categorization and

forecasting (2011).

5.1 Evaluation Measures for Prediction of Software Bugs

several methods for predicting software defects, such as

The terms true positive (TP), true negative (TN), false

positive (FP), and false negative will be covered in this

section (FN). TN stands for the number of instances of

clean software that was improperly identified as

problematic, while TP stands for the number of clean

software that was incorrectly classed as clean. The

numbers FP and FN represent, respectively, the number of

clean software instances that are mislabeled as faulty and

the number of clean software instances that are mislabeled

as defective.

Classification accuracy, commonly referred to as the right

classification rate, is one of the most important and

straightforward criteria to evaluate the effectiveness of

predictive models. It is employed to determine the

contribution of each correctly classified case to the total

number of occurrences. A alternative statistic called as

accuracy is produced by dividing the total number of

occurrences identified as faulty (TP + FP) by the total

number of instances accurately diagnosed as faulty (TP)

[16]. Recall [22] additionally computes the ratio of

instances that were correctly identified as defective (TP)

to all instances that were defective (TP + FN). Because

they represent a harmonic mean of precision and recall, F-

score measures have been employed in numerous

investigations [24] [23]. By balancing trade-offs between

TPR and FPR, ROC-AUC determines the area under the

receiver operating characteristic (ROC) curve.

The G-measure is an additional metric for forecasting

software faults. It is defined as a harmonic mean of recall

and specificity. The likelihood of false alarm is defined as

the ratio of clean instances that were wrongly classified as

defective (FP) to all clean instances (FP + TN) (PF).

using several datasets and a variety of machine learning

methods The dataset was chosen for further comparisons

because the majority of pertinent papers used it to

evaluate the efficacy of its SDP techniques. Table 1

includes the statistics and a list of the datasets used in the

investigations. We choose the base classifiers RF, DS,

Linear SVC SVM, and LR. Boosting and bagging

classifiers were also considered for each base classifier.

The investigation was carried out in a Python

environment. In this study, the performance of the

classifiers was assessed using the classification accuracy,

precision, recall, F-score, and ROC-AUC score. It is

important to stress that these metrics were calculated

using the weighted average approach. The weighted

average was chosen with the intention of computing

metrics for each class label and correcting for label

imbalance.

The prediction of software defects is a critical task in the

realm of software engineering. In the chapter before, the

methods for defect prediction using machine learning

software are explained. These methods also dealt with the

problem of software bug mismatch, although

classification accuracy and general efficacy are still a

problem for researchers. We propose a hybrid feature

reduction approach and an artificially dependent neural

network approach for the prediction of software issues.

The first subparagraph of this article presents the

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(1), 169–178 | 177

improved PCA methodology for dimensional reduction

and numerical modeling, while the second subparagraph

gathers information on the combined usage of the neural

network and the traditional PCA method.

7. Discussion

Given the degree of predictability present in the process

and its multiple subprocesses, as well as the diversity of

developers, users, and uses, it is unlikely that a

deterministic control system will help to improve the

software development process. Similar to statistical

physics, only a method based on statistical modeling, such

as statistical control, can work. The panel believes that the

current situation and the stage Deming was at when he

began to promote statistical process control in the 1950s

are not all that dissimilar. The process of software

engineering needs to be thoroughly understood by

statisticians, and software engineers need to be aware of

what statisticians can and cannot perform. If cooperative

contacts and the growth of this mutual understanding can

be encouraged, a significant influence likely will take

place on a par with Deming's introduction of statistical

process control techniques in hardware manufacturing.

Of course, this does not imply that all software issues will

be resolved using statistical methods, just as not all issues

with vehicle manufacture will be resolved through

statistical methods. On the other hand, the software

business has historically been heavily reliant on

technology, and most future increases in productivity will

come from innovative new ideas. For instance, most of

the productivity increase

1996. National Academies of Sciences, Engineering, and

Medicine Engineering Statistical Software.

8. Conclusions and further considerations

The main goal of this research is to forecast software

problems using information-mining techniques.

Additionally, this area has become an important area of

research where a variety of techniques have been

investigated to improve the effectiveness of identifying

software flaws or foreseeing vulnerabilities. The purpose

of this study has been to present a high-level overview of

various types of quality structures without diving too

deeply into any one model or philosophy. The objective

was to paint a nuanced and thorough picture of the terrain

of what is occasionally (and largely unthinkingly) referred

to as "quality." The study established that quality is a

challenging concept to grasp and can be approached from

various angles depending on one's perspective and level

of interest. In addition, we discussed some standards,

models, applications of quality and assurance in software

engineering.

9. References

[1]S. S. Yau, et al., "An integrated expert system framework for

software quality assurance," in Computer Software and

Applications Conference, 1990. COMPSAC 90. Proceedings.,

Fourteenth Annual International, 1990, pp. 161-166.

[2]P. Runeson and P. Isacsson, "Software quality assurance-

concepts and misconceptions," in Euromicro Conference, 1998.

Proceedings. 24th, 1998, pp. 853-859 vol.2. DOI:

10.1109/EURMIC.1998.708112

[3]L. Schrettner, et al., "Software Quality Model and

Framework with Applications in Industrial Context," in

Software Maintenance and Reengineering (CSMR), 2012 16th

European Conference on, 2012, pp. 453-456. DOI:

10.1109/CSMR.2012.57

[4] C. G. Manak, "Software Quality Assurance

Management," in Military Communications Conference -

Communications-Computers: Teamed for the 90's, 1986.

MILCOM 1986. IEEE, 1986, pp. 21.2.1-21.2.2.

[5]F. B. Brown, et al., "MCNP version 5," Trans. Am. Nucl.

Soc, vol. 87, p. 4, 2002.

[6]O. Balci, "Validation, verification, and testing techniques

throughout the life cycle of a simulation study," in Simulation

Conference Proceedings, 1994. Winter, 1994, pp. 215-220.

[7]D. Samadhiya, et al., "Quality models: Role and value in

software engineering," in Software Technology and Engineering

(ICSTE), 2010 2nd International Conference on, 2010, pp. V1-

320-V1-324.

[8]R. Saini, et al., "Analytical study of maintainability models

for quality evaluation," Indian Journal of Computer Science and

Engineering, vol. 2, pp. 449-454, 2011.

[9]L. P. Dreyfus, et al., "The impact of just-in-time

implementation and ISO 9000 certification on total quality

management," Engineering Management, IEEE Transactions on,

vol. 51, pp. 125-141, 2004.

[10]Rajbahadur, G.K., Wang, S., Kamei, Y., Hassan, A.E. 2017,

May. The impact of using regression models to build defect

classifiers. In 2017 IEEE/ACM 14th International Conference

on Mining Software Repositories (MSR) 135–145. IEEE..

[11]He, P., Li, B., Liu, X., Chen, J., Ma, Y. 2015. An empirical

study on software defect prediction with a simplified metric set.

Information and Software Technology, 59, 170–190.

[12]Kim, S., Zhang, H., Wu, R., Gong, L. 2011, May. Dealing

with noise in defect prediction. In 2011 33rd International

Conference on Software Engineering (ICSE). 481–490. IEEE.

[13]L. Davila-Nicanor and P. Mejia-Alvarez, "Reliability

improvement of Web-based software applications," in Quality

Software, 2004. QSIC 2004. Proceedings. Fourth International

Conference on, 2004, pp. 180-188.

[14]N. Chen, An analysis of a NIDS for hardware/software

implementation: University of New Brunswick (Canada). 2006.

[15]J. J. Li and H. Yee, "Code-coverage guided prioritized test

generation," in Computer Software and Applications

Conference, 2004. COMPSAC 2004. Proceedings of the 28th

Annual International, 2004, pp. 178-181 vol.2.

[16]W. Emmerich, "Unit Testing Tools."

[17]D. Barbosa, et al., "ToXgene: a template-based data

generator for XML," in Proceedings of the 2002 ACM

SIGMOD international conference on Management of data,

2002, pp. 616-616.

[18] Li, Z., Jing, X.Y., Zhu, X., Zhang, H., Xu, B., Ying, S.

2017. On the multiple sources and privacy preservation issues

for heterogeneous defect prediction. IEEE Transactions on

Software Engineering.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(1), 169–178 | 178

[19] Zimmermann, T., Nagappan, N., Gall, H., Giger, E.,

Murphy, B. 2009, August. Cross-project defect prediction: a

large-scale experiment on data vs. domain vs. process. In

Proceedings of the the 7th joint meeting of the European

software engineering conference and the ACM SIGSOFT

symposium on The foundations of software engineering, 91–

100. ACM.

[20] Rahman, F., Posnett, D., Devanbu, P. 2012, November.

Recalling the imprecision of cross-project defect prediction. In

Proceedings of the ACM SIGSOFT 20th International

Symposium on the Foundations of Software Engineering, 61.

ACM.

[21] Radjenović, D., Heričko, M., Torkar, R., Živkovič, A.

2013. Software fault prediction metrics: A systematic literature

review. Information and software technology, 55, 1397–1418.

[22] Elish, K.O. and Elish, M.O. (2008) Predicting Defect-Prone

Software Modules Using Support Vector Machines. Journal of

Systems and Software, 81, 649-660.

[23] Kim, S., Zhang, H., Wu, R. and Gong, L. (2011) Dealing

with Noise in Defect Prediction. 2011 33rd International

Conference on Software Engineering, 21-28 May 2011,

Waikiki, 481-490.

[24] Lee, T., Nam, J., Han, D., Kim, S. and In, H. (2011) Micro

Interaction Metrics for Defect Prediction. Proceedings of the

19th ACM SIGSOFT Symposium and the 13th European

Conference on Foundations of Software Engineering, 5-9

September 2011, Szeged, 311-321.

[25]Nahi, A., Flaih, L., & Jasim, K. (2022). . In Communication

Engineering and Computer Science. Retrieved from

https://conferences.cihanuniversity.edu.iq/index.php/COCOS/22

/paper/view/754

[26]Al-Rabeeah, A., & Hashim, M. (2019). Social Network

Privacy Models. Cihan University-Erbil Scientific Journal, 3(2),

92-101. https://doi.org/10.24086/cuesj.v3n2y2019.pp92-101

[27]A. A. N. Al-Rabeeah and F. Saeed, "Data privacy model for

social media platforms," 2017 6th ICT International Student

Project Conference (ICT-ISPC), 2017, pp. 1-5, doi:

10.1109/ICT-ISPC.2017.8075361.

[28]Al-Majdi, K., Salman, A., Abbas, N., Hashim, M., Taha,

M., Nahi, A., Saleh, S. (2022). MLCM: An efficient image

encryption technique for IoT application based on multi-layer

chaotic maps. International Journal of Nonlinear Analysis and

Applications, 13(2), 1591-1615. doi: 10.22075/ijnaa.2022.6571

