
International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-67992147-6799 www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(1), 208–214 | 208

WBFAS: Workflow based Failure-Aware Scheduling in Grid

Computing

Manjeet Singh*1, Dr. Javalkar Dinesh Kumar2

Submitted: 29/10/2022 Revised: 15/12/2022

Abstract: Scheduling is a difficult problem in general because it is an NP-complete problem; this is true whether it is being done in Grid

or in any other environment. When tasks are dependent on one another the problem becomes more complex. NP-complete problem does

not have a predetermined heuristic to describe them. It's possible that a particular heuristic will function well in some circumstances but

not in others, and this makes the scheduling more crucial and critical. With the goal that the application performance will be improved

and the resulting throughput will be optimized, a workflow based failure aware scheduling approach (WBFAS) is proposed in this

research to solve scheduling problem for dependent task in large scale system like grid computing. The workflow of dependent task is

represented by directed acyclic graph (DAG). The WBFAS method is based on incremental checkpoint fault tolerant mechanism and

failure information of resources. The result analysis shows that proposed method WBFAS reduces the makespan and number of failures

of the system while increasing the reliability and system performance.

Keywords: Directed Acyclic Graph (DAG), Fault Tolerance, Grid Computing, Reliability, Scheduling, Workflow.

1. Introduction

As the scientific problem becomes more complex in the

context of modern computing technologies, an organisation

needs more computational resources like more processing

power and storage space etc. Distributed computing takes

on a new form with grid computing, which creates a

seamless connection between all of the systems, databases,

and users. The development of new technologies has made

it possible to use resources in a decentralised setting to

address the growing number of issues that arise in the

fields of science, engineering, and research [1]. Grid

designs offer a middleware technology that may be utilised

for a variety of purposes; including resource allocation,

task scheduling, authorization, data management, and

security. Grid is an integration of many sorts of resources,

and it is considered to be an ideal infrastructure because it

has a variety of resources at once, including processing

units, storage units, and communication units. In general,

grids can be divided into the two categories: computational

grid and data grid [2]. Computational grid fulfils the

processing requirements posed by difficult scientific

issues, high-performance computing. A computational grid

is a network of interconnected nodes that enables the

processing of large-scale activities, improves resource

utilisation, and satisfies the necessity for quick access to

resources on demand by providing computational capacity.

Data grid is the storage component of a grid environment.

It performs the function of a massive data storage system

and is responsible for the storing, sharing, and

management of a large quantity of dispersed data [2].

There are various grids, such as departmental grids like

Folding@Home and Global Grids that can be accessed via

the internet. Some grids, like Folding@Home and Global

Grids, are used to solve problems for specific groups.

Compute Grids, such as smart grid, are used solely for the

purpose of providing access to computational resources. In

contrast to Compute Grids, which provide access to

computational resources, Utility Grids provide access to

resources. Extraprise Grids, such as Amazon.com, are

established between companies, customers, etc [1]-[3].

In broad terms, scheduling refers to the process of making

decisions regarding the distribution of jobs among

resources. The most important function of a grid is to

facilitate quick and easy access to resources that are

located in different parts of the world. It is tough to create

a schedule due to variability and dynamic nature of

resources. The jobs are distributed among all of the

available processors by the scheduler. Scheduling is an

NP-complete issue; researchers are attempting to solve it

by employing heuristics in the hopes of obtaining a

solution that is somewhat close to the optimal answer [1],

[2].

The high heterogeneity of the resources, the nature of the

applications and the high demand for them, the distance

covered by the network, and the large volumes of data that

need to be shipped around as required are all factors that

contribute to the complexity of the features that are

enforced by grid architecture. When the number of hosts in

a grid goes from ten to thousands, fault tolerance becomes

the most important concern [4]. Tasks are broken down

into a number of smaller subtasks and then scheduled

according to the resources that are readily available in an

environment.

1 Research Scholar, Department of Computer Science & Engineering

Lingaya’s Vidyapeeth, Faridabad, India

ORCID ID : 0000-0002-0421-0668
2Assistant Professor, Department of Electronics & Communication

Engineering Lingaya’s Vidyapeeth, Faridabad, India

ORCID ID : 0000-0002-8168-3426

* Corresponding Author Email: 19phcs05w@lingayasvidyapeeth.edu.in

 Accepted: 01/01/2023

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(1), 208–214 | 209

In the current scenario of grid computing, task scheduling

is a critical issue that needs to be addressed. It is necessary

to have an effective task scheduling algorithm in order to

make efficient use of the available resources and reduce

the amount of time needed to finish everything. The grid

scheduling problem requires optimization of a number of

different objectives, such as completion time, work

priority, resource utilization, QoS (Quality of Service)

metrics, prices, dependability variables, and the resource

requirements of the task, amongst other things. During the

scheduling process, many task scheduling algorithms do

not take into account the possibility that a task or resource

would fail. Although the makespan is improved by certain

work scheduling method, in spite of the occurrence of

failures at individual grid nodes, it is possible to devise an

effective scheduling method that is based on the failure

information and performance parameters of resources [3],

[5].

To solve scheduling problem in grid, a workflow based

failure-aware scheduling (WBFAS) approach is proposed

and this technique is extremely helpful in grid

environments since there is the potential for any node to

fail as a result of a number of different circumstances.

2. Literature Review

In this section, a review of already existing different

methods of job scheduling have been done. The description

is summarized in Table 1.

Table 1. Comparison of various existing scheduling

algorithm

Author Description

R. Garg et al.

[6]

It was suggested to use an approach

for dependent task scheduling that is

fault resilient. Weibull failure

distribution is the method employed,

and the checkpoint rollback

resolution of problems is used to

address failure.

R. Garg et al.

[7]

Developed an approach for the

dependent job scheduling of the

computing grid. Dependent task

were modeled using a DAG, and the

availability of resources was

dynamic in nature. The simulation

and analysis that uses dynamically

chosen task graphs as well as task

graphs directly relating to real world

problems shows that the proposed

method is able to deal failure and

optimize performance.

Y. Zhang et al.

[8]

It suggests some new approaches for

integrating fault tolerance

approaches with the dependent task

scheduling algorithms and provides

recommendation with HEFT and a

DAG for scheduling, along with an

over-provisioning mechanism and

checkpointing methods.

A. Iosup et al.

[9]

An examination of the resource

constraints characteristics of

Grid'5000 is performed, along with

an assessment of availability trace. It

provides the failure information and

value of various parameters for

Weibull distribution.

Z. Yu et al.

[10]

Proposed a method for using failure

prediction to schedule workflows

that are aware of failures.

L. Yu et al.

[11]

For grid computing systems, a new

communication inclusion

generational scheduling (CIGS)

method that is based on DAG has

been developed which is found to be

effective.

M.

Hemamalini et

al. [12]

Examined a number of different

scheduling algorithms. Using a

multi-constrained graph, it discussed

process scheduling in order to

reduce the amount of data

movement. In addition to that, it

employs the concepts of weight

vectors and ranks.

Additionally, priority scheduling for

dependent tasks based on sets of

parallel tasks with the highest

priority value was considered.

C.

Chandrasekar

et al. [13]

The study highlights the intricacy of

the scheduling challenge and

demonstrates the relevance of the

approach for the development of

effective grid schedulers.

The workflow based failure-aware scheduling (WBFAS)

approach proposed in the next section is different from the

above methods and found to be efficient as discussed in

details in result analysis section.

3. Methodology

Failures are unavoidable in a grid environment due to the

heterogeneity of the resources, and as a result, they

consume a significant portion of the execution time.

Therefore, the idea is to determine the anticipated amount

of time that will be lost during the execution due to failure

and recovery from failure. This information about wasted

time is used to recalculate the resource computing

capacity, and subsequent scheduling is carried out in such

a way that we can minimize the wasted time caused by

failures and improve the overall performance of the

system.

The total amount of time spent taking checkpoints,

recalculating portions of jobs that have failed, and

recovering from previously saved checkpoints is the

amount of time that is considered to be wasted. According

to the findings of a number of studies, the pattern of errors

that occur in a grid computing system is appropriate to

Weibull distribution [14]-[18]. The equation for the

anticipated amount of time lost for a Weibull distribution

failure and an incremental checkpointing mechanism is

given as Eq. 1 [19]:

𝑊𝑎𝑠𝑡𝑒𝑑 𝑇𝑖𝑚𝑒 =

∫ [

𝑂𝐹+𝑚𝑂𝐼

𝑚+1
∫ 𝑛(𝑡). 𝑑𝑡

𝑇

0
+

𝑘

𝑛(𝑇)

+ (𝑅𝐹 + 𝑚𝑅𝐼)
] 𝑓(𝑡). 𝑑𝑡

∞

0

(1)

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(1), 208–214 | 210

Where,

• OF and OI denotes the time required for saving

a full and incremental checkpoint respectively.

• RF and RI denote the time required for recovery

from full and incremental checkpoint

respectively.

• f(t) is a PDF (probability density function)

• k is a coefficient of recomputing time

• m is the number of incremental checkpoint

between two full checkpoints

• n(t) is checkpoint function, given by Eq. 2 [19]

𝑛(𝑡) = √
(𝑚+1)𝑘

𝑂𝐹+𝑚𝑂𝐼
 .

𝑓(𝑡)

1−𝐹(𝑡)
 (2)

𝑓(𝑡) = (
𝛽

𝛼
) . (

𝑡

𝛼
)

𝛽−1

. 𝑒−(𝑡/𝛼)𝛽

 (3)

𝐹(𝑡) = 1 − 𝑒−(𝑡/𝛼)𝛽
 (4)

Where F(t) is the cumulative distribution function and 𝛼, 𝛽

respectively, are the scale and shape parameters [19]. The

Eq. 2 can be rewritten as Eq. 5 when we use Eq. 3 and Eq.

4.

𝑛(𝑡) = √
(𝑚+1)𝑘

𝑂𝐹+𝑚𝑂𝐼
 . (

𝑡

𝛼
)

𝛽−1

2
 . √

𝛽

𝛼

 (5)

The Figure 1 below show the flowchart of the proposed

workflow based failure-aware scheduling (WBFAS)

approach.

Fig 1. Flowchart for Workflow based Failure-Aware Scheduling Approach (WBFAS)

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(1), 208–214 | 211

Fig 2. Simple Directed Acyclic Graph (DAG)

In workflow based failure-aware scheduling approach

(WBFAS) the workflow of the dependent task is

represented with the help of directed acyclic graph (DAG).

A sample DAG is given above in Figure 2. The subtasks

that make up the job are represented by the vertices of the

graph. The dependency of a task is represented by the

direction in which an edge extends through one node to

another node in a DAG. For instance, the presence of an

edge connecting nodes v1 and v2 indicates that node v2 is

reliant on node v1. This means that the task v2 cannot

begin its execution till the task v1 has completed its own

execution and made its result accessible to task v2. In a

DAG, the information sharing cost between pair of vertices

is represented by the weight of the edge that connects

them.

The process for the proposed methodology is stated as

follows:

Step 1: Start by finding successor of each task in DAG

based on workflow.

Step 2: Determine the predecessor subtask for each

subtask based on the successor.

Step 3: Determine the average execution time for each

subtask by measuring how long each subtask

takes to complete on each resource.

Step 4: Determine the execution start time of a subtask

based on its predecessor execution time and

communication costs.

Step 5: Based on the execution start time of each

subtask, assign a rank to it. Exit node will be

having the lowest rank and entry node will be

having maximum rank.

Step 6: Calculate the system's anticipated downtime

caused by failure, recovery, and fault-tolerant

mechanisms using Eq. 1.

Step 7: Determine the capacity reducing factor based

on the anticipated system wasted time.

Step 8: Based on the capacity reducing factor,

determine the reduced effective computing

capacity of the resources.

Step 9: Sort tasks and resources according to

decreasing of their rank and recomputed

capacity respectively.

Step 10: Scheduling of tasks in accordance with rank

and new capacity.

Step 11: Verify resource availability for all unscheduled

and unexecuted tasks

while (workflow execution not over)

if (resource available)

schedule task

 if, (resource failure occurs

during execution)

 recover from

resource failure and

restart execution;

 end if;

else

 wait for the resource to become

available

end if;

end while;

Step 12: Finish;

4. Result Analysis

A grid model is simulated containing twenty computational

resources. With a rising failure rate into consideration, the

shape parameter can range from 1.8 to 3.6. The value of

the scale parameter is set to equal 20. Both the checkpoint

storage cost and the recovery time are equal to 2 minutes

and 0.5 minutes respectively for full and incremental

checkpoint. The value used for the re-computing time

coefficients is 0.5. Grid applications run with a varying

number of dependent tasks whose workflow is represented

by DAG, typically falling somewhere in the range [20,

100]. The parameter values are referred from [9], [17],

[18].

In order to verify that the workflow based failure-aware

scheduling (WBFAS) algorithm is effective, we examine

its performance in relation to that of speed-only scheduling

approach (SOSA) using a variety of evaluation parameters.

Only resource performance factors are taken into

consideration by the SOSA algorithm when it is scheduling

tasks. In order to test how well the suggested method

performs, the performance metrics that are mentioned

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(1), 208–214 | 212

below are utilized [20].

Performance Ratio: The performance ratio (PR) is the ratio

of makespan of SOSA and makespan of WBFAS.

PIR: It stands for performance improvement rate. It

provides a breakdown of the percentage by which the

recommended method (WBFAS) performs better than any

other algorithm that is currently in use (SOSA).

PIR=((𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛 (𝑆𝑂𝑆𝐴) − 𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛 (𝑊𝐵𝐹𝐴𝑆))/
𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛(𝑊𝐵𝐹𝐴𝑆)) ∗ 100 (6)

Throughput: The term "throughput" refers to the number of

tasks that are finished within a specified amount of time.

Failure Ratio: It is the ratio of number of accidents

(failures) that occurred during scheduling with WBFAS to

the total number of accidents that occurred while using

other procedure.

The performance of WBFAS is analyzed with SOSA over

PR, FR, throughput, and PIR in Table 2 and Figures 3 to

Figure 8.

The analytical values of various results of performance

parameters are given in Table 2 which we can relate with

graphs.

Table 2. Simulation Results for WBFAS and SOSA

Numb

er of

Task

Makespa

n

(SOSA)

Makesp

an

(WBFA

S)

Performan

ce Ratio

(PR)

Performan

ce

Improvem

ent Rate

(PIR)

Throughp

ut (SOSA)

Throughp

ut

(WBFAS)

NOF

(SOSA)

NOF

(WBFA

S)

Failure

Ratio

(WBFAS

)

20 1177.00 841.44 1.3988 39.8798 0.0581 0.0873 1522.90 1151.60 0.7562

40 1151.50 1054.10 1.0924 9.2401 0.0538 0.0749 3804.30 3113.80 0.8185

60 1535.90 1457.10 1.0541 5.4080 0.0348 0.043
13234.0

0

11530.0

0
0.8712

80 2397.80 2082.30 1.1515 15.1515 0.025 0.0282
32370.0

0

30606.0

0
0.9455

100 3135.00 2659.70 1.1787 17.8704 0.0231 0.0257
52077.0

0

47007.0

0
0.9026

Fig 3. Performance Comparison (Makespan)

Fig 4. Performance Ratio (PR)

Fig 5. Performance Improvement Rate (PIR)

Figure 3 investigate the execution time (makespan) taken

by both the algorithm for performing job, and graph shows

that makespan of WBFAS is always less than SOSA and

hence performance ratio continuously remains more than 1

(see Figure 4). Both makespan and PR are direct indicators

performance improvement by the WBFAS.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(1), 208–214 | 213

Fig 6. Throughput

Fig 7. Number of Failures (NOF)

Fig 8. Failure Ratio (FR)

Figure 5 asses the PIR. For instance for 80 task PIR is

around 15, it means that WBFAS improved the system

performance by 15 % by decreasing the execution time and

similarly for 100 task around 18% performance

improvement is recorded.

Figure 6 examine the throughput of the system and result

depicts that the throughput of WBFAS is always higher

than SOSA. It means that WBFAS executes more number

of jobs in the same time duration.

Figure 7 compares the number of failures (NOF) and graph

shows that WBFAS recoded comparatively lesser NOF

than SOSA. Similarly, in Figure 8 failure ratio (FR) always

comes out to be less than 1. Lesser NOF means WBFAS

increases the reliability of the system.

Hence, simulation results and graphs depicts that WBFAS

increases system performance and reliability by reducing

execution time and number of failures.

5. Conclusion

To solve the NP-complete scheduling problem in grid

computing for dependent task, a workflow based failure-

aware scheduling (WBFAS) approach is proposed in this

research. The workflow of dependant task is represented

with the help of directed acyclic graph (DAG) as explained

in methodology section. The proposed approach uses

incremental checkpoint approach for fault tolerance and

use failure information of nodes for making the scheduling

decision. The dependant tasks were assigned a rank based

on workflow and then resources allocation was done

according to their new calculated computational capacity.

The WBFAS is compared with SOSA and simulation

results depicts that WBFAS improves the system

performance by reducing the makespan and increase

system reliability by reducing the number of failures and

failure ratio.

Author contributions

Manjeet Singh: Literature, methodology, implementation,

result analysis, preparing and editing draft have been done

by first author, who is a Ph.D. Scholar. Dr. Javalkar

Dinesh Kumar: The review and editing of write-up,

supervision and administration, has been done by second

author, who is the Ph.D. supervisor of the first author.

Conflicts of interest

The authors state that there are no conflicts of interest.

References

[1] M. Baker, R. Buyya, and D. Laforenza, “Grids and

Grid technologies for wide-area distributed

computing”, Software – Practice and Experience. Vol.

32, No. 15, 2002.

[2] Manjot Kaur Bhatia, “Task Scheduling in Grid

Computing: A Review”, Advances in Computational

Sciences and Technology ISSN 0973-6107 10(6)

(2017) 1707-1714.

[3] H. B. Prajapati, V. A. Shah, “Scheduling in Grid

Computing Environment”, 2014 Fourth International

Conference on Advanced Computing &

Communication Technologies, ISBN:978-1-4799-

4910-6, DOI: 10.1109/ACCT.2014.32, (2014).

[4] S. Haider and B. Nazir, “Fault tolerance in

computational grids: perspectives, challenges, and

issues”, Springer Plus, Vol. 5, pp. 1-20, 2016.

[5] R. Garg and A. K. Singh, “Fault Tolerance in Grid

Computing: State of the Art and Open Issues”,

International Journal of Computer Science &

Engineering Survey (IJCSES), Vol. 2, No. 1, pp. 88-

97, 2011.

[6] R. Garg and A. K. Singh, “Fault Tolerant Task

Scheduling on Computational Grid Using

Checkpointing Under Transient Faults”, Springer,

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(1), 208–214 | 214

Arab J Sci Eng, Vol. 39, pp. 8775–8791, 2014.

[7] R. Garg and A. K. Singh. “Adaptive workflow

scheduling in grid computing based on dynamic

resource availability”, Engineering Science and

Technology, an International Journal, Vol. 18, pp.

256-269, 2015.

[8] Yang Zhang, Anirban Mandal, Charles Koelbel and

Keith Cooper, "Combined Fault Tolerance and

Scheduling Techniques for Workflow Applications on

Computational Grids", 9th IEEE/ACM International

Symposium on Cluster Computing and the Grid, pp

244-251, 2009, ISBN: 978-0-7695-3622-4/09, DOI

10.1109/CCGRID.2009.59.

[9] A. Iosup, M. Jan, O. Sonmez and D. H. J. Epema, “On

the Dynamic Resource Availabilty in Grids”, IEEE 8th

Grid Computing Conference, pp. 26-33, 2007.

[10] Zhifeng Yu, Chenjia Wang and Weisong Shi,

“Failure-aware workflow scheduling in cluster

environments”, Cluster Comput, Vol. 13, pp. 421–434,

2010. DOI 10.1007/s10586-010-0126-7.

[11] Liang Yu, Gang Zhou, Yifei Pu, “An Improved Task

Scheduling Algorithm in Grid Computing

Environment”, Int. J. Communications, Network and

System Sciences, Vol. 4, pp. 227-231, 2011.

DOI:10.4236/ijcns.2011.44027.

[12] M. Hemamalini, M.V. Srinath, “State of ART: Task

Scheduling Algorithms in Heterogeneous Grid

Computing Environment”, Elysium Journal of

Engineering Research & Management, Vol. 1, Issue 1,

pp. 15-21, 2014.

[13] C. Chandrasekar, V. Manuprasad, “A Review on

Scheduling Algorithms for Resource Management in

Data Grids”, International Journal of Scientific &

Engineering Research, Vol. 6, Issue 5, pp. 1865-1873,

2015.

[14] P. Jiang, Y. Xing, X. Jia, and B. Guo, “Weibull

Failure Probability Estimation Based on Zero-Failure

Data”, Hindawi Publishing Corporation, Mathematical

Problems in Engineering Volume , pp. 1-8, 2015.

[15] Lulu Zhang , Guang Jin, and Yang You, “Reliability

Assessment for Very Few Failure Data and Weibull

Distribution”, Mathematical Problems in Engineering,

Hindawi, Volume 2019, Article ID 8947905, pp. 1-9,

2019. https://doi.org/10.1155/2019/8947905.

[16] Cappello F. et al., “Modeling and tolerating

heterogeneous failures in large parallel systems”, In:

Proceedings of the SC’2011 International Conference

for High Performance Computing, Networking,

Storage and Analysis, ACM Press (2011).

[17] Yudan Liu, Raja Nassar, Chokchai Leangsuksun,

Nichamon Naksinehaboon, Mihaela Paun, and

Stephen L. Scott, “An optimal checkpoint/restart

model for a large scale high performance computing

system”, In: IEEE International Symposium on

Parallel and Distributed Processing (IPDPS 2008), pp.

1–9 (2009).

[18] Bianca Schroeder and Garth A. Gibson, “A large-scale

study of failures in high performance computing

system”, IEEE Trans. Dependable Secur. Comput.

7(4), 337–350 (2010).

[19] M. Paun, N. Naksinehaboon, and R. Nassar,

“Incremental Checkpoint Scheme for Weibull

Distribution”, International Journal of Foundations of

Computer Science, Oct. 2009.

[20] Manjeet Singh and Javalkar Dinesh Kumar,

“Designing and Implementation of Failure-Aware

Based Approach for Task Scheduling in Grid

Computing”, IJEER 10(3), pp- 651-658, 2022. DOI:

10.37391/IJEER.100339.

https://doi.org/10.1155/2019/8947905Hindawi

