
International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-67992147-6799 www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(1), 228–238 | 228

Prevention of Website SQL Injection Using a New Query Comparison and

Encryption Algorithm

1Mahmoud Baklizi, 2Issa Atoum, 3Mohammad Al-Sheikh Hasan, 4Nibras Abdullah, 5Ola A. Al-
Wesabi, 6Ahmed Ali Otoom

Submitted: 30/10/2022 Revised: 19/12/2022 Accepted: 02/01/2023

Abstract: Nowadays, a web application has become necessary in all organizations. Which deals directly with the databases in which data and

information are stored, organized, retrieved, and processed. Therefore, most of its attacks are on databases. Therefore, web applications must

be secure enough to prevent access to customs databases, destruction, and theft of bank accounts and transactions. Thus, most SQL injection

attacks are carried out through character spacing, as it is the tool used by hackers to find a vulnerability on the web. This paper proposes a new

algorithm to prevent hackers from accessing databases early on through the web application without accessing databases. The proposed

algorithm is designed to protect the web application from being voluntarily inserted by using a bind parameter, blocking the hacker's address,

and rejecting his request when executing the query. Also, this algorithm is designed to work in more than one layer, as it works at the web

application and URL levels so that things are sufficiently protected. The comparison was made with the algorithms SQLPMDS, SIUQAPTT,

and blind SQL injection, and the results showed that the presented algorithm gave better results based on more than one measure.

Keywords :SQL Injection, Prevention, Character Spacing, SQLPMDS, SIUQAPTT, Bind SQL Injection.

1. Introduction

With the continuous increase in the use of the web and its

spread to small or large organizations(even a minimum), it is

critical to protect the website from threats. The web is a means

of accessing the web server that contains any organization's

databases and application systems. Therefore, it has become a

subject of great interest by hackers who are always seeking to

reach any weak point that may be important to them to pounce

on the database and thus access the organization’s data and

destroy or steal data or blackmail [1]. Unfortunately, the

damage of SQL injection is one of the most common threats

that might jeopardize an organization's reputation and result

in data loss. For example, Sony enterprise has been exposed

to all its capabilities being hacked, where millions of accounts

were damaged. The hack included critical assets, including

credit cards, which caused significant financial losses [2-4].

Protecting the web from hackers is one of the significant

challenges facing institutions, banks, and other essential

organizations interested in protecting their data. However,

there is nothing to prevent the penetration of these sites for

several reasons entirely. First, the website’s design differs

from one institution to another. Great reliance, in this case,

depends on the programmer's knowledge of the site about the

threats that may result from gaps in the code. For example, if

code is not written correctly, hackers might find penetration

points. Next, applications are used in different implementation

layers, starting from the web client to the server and then to

the databases between these layers. Finally, we do not neglect

the Internet, an open place for hacking if it is not adequately

protected and tight [5].

In the past, most threats were interested in authenticating the

user name and password using many tools. However, we focus

here on the web and databases following many previous works

[6]. Vulnerabilities are known through random commands that

indicate to the hacker the presence of weaknesses in the sites.

These commands are called character spacing, as most

hackers rely on experimenting with these commands [7]. This

paper will focus on protecting the web and data before the

hacker reaches the databases. Therefore we do not allow him

to access the databases until after ensuring the integrity of the

written query, as we ensure that there are no commands that

allow the hacker to access the databases and manipulate

sensitive data.

1Computer Science/Network Department, Faculty of Information

Technology, Al-Isra University, Amman, Jordan, mbaklizi@iu.edu.jo
2Sofware Engineering Department, Faculty of Information Technology,

The World Islamic Sciences and Education, Amman, Jordan,

issa.atoum@wise.edu.jo
3Computer Science Department, University of Petra, Amman, Jordan,
malsheikh@uop.edu.jo
4School of Computer Sciences, Universiti Sains Malaysia (USM), Penang

11800, Malaysia; Faculty of Computer Science and Engineering,

Hodeidah University, Hodeidah P.O. Box 3114, Yemen,

neprasf@gmail.com
5School of Computer Sciences, Universiti Sains Malaysia (USM), Penang

11800, Malaysia;Faculty of Computer Science and Engineering,

Hodeidah University, Hodeidah P.O. Box 3114, Yemen,
ola.wosabi@gmail.com
6Faculty of Science and Information Technology, Irbid National

University, Irbid, Jordan, aotoom@inu.edu.jo

mailto:mbaklizi@iu.edu.jo
mailto:issa.atoum@wise.edu.jo
mailto:malsheikh@uop.edu.jo
mailto:neprasf@gmail.com
mailto:ola.wosabi@gmail.com
mailto:aotoom@inu.edu.jo

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(1), 228–238 | 229

This paper is organized as follows. Section two explains the

SQL Injection Attack. Section three displays the prevention of

SQL injection-related work. Section four discusses the

methodology of this paper. Section five discusses the

implementation and evaluation results. Finally, Section six

provides the conclusions.

2. SQL Injection Attack

One of the most crucial things in attacking requires finding

databases than finding a loophole in web applications.

Therefore, hackers often target databases with injections to

steal or destroy data[8]. The principle of SQL injection is with

the query. A query, in turn, deals with the databases. Therefore

hackers have full knowledge of how to build the query that

deals with the databases. As a result, they could find

weaknesses that they can exploit to reach their aspirations [9].

This section provides a simple example of how attackers could

reach a webpage as an authentic user without real credentials.

Usually, the query statement is written from a set of words and

symbols that allow it to use the web and databases. For

example, if we want to access the login screen, which usually

uses a username and password to be compared directly to the

values stored in the database tables. Figure 1 shows a login for

a specific employee [10].

Fig.1 :Login Screen

The user can enter if the user name is correct and the password

is confirmed by comparing it with the values stored in the

databases.

Otherwise, the user cannot enter, showing a message to reenter

the username and password. The following example shows the

process of querying typically for a value stored in databases

However, hackers can use the character spacing through

which they always get correct results regardless of the actual

query sentence if the result is wrong. The hacking activity

allows hackers to access the databases and retrieve the

information they want. See the following example:

Fig 1: Prevention Login Screen

Note that even if the value of ‘empn’ is wrong, it does not

allow it to retrieve data, but the presence of the character

spacing “or” made the query statement as a total result correct,

and therefore it can retrieve data as an authentic user.

Therefore, using SQL injection was necessary to prevent these

attacks, which hackers cause. Furthermore, it protects the web

and databases from any malicious attacks that may cause

physical and moral damage to the web application in

organizations.

3. Related Work

The danger of SQL injection that web applications are

exposed to has increased rapidly and dramatically recently.

Therefore, this risk had a strong motivation by researchers to

protect web applications from these attacks to preserve data

and databases. Researchers have found many ways to repel

these attacks, such as [11, 12]. However, the question remains

whether these methods and algorithms are sufficient for the

purpose, which ones are best for protecting web applications,

and which are suitable for application in the concerned

institution. Furthermore, some attack prevention solutions of

SQL injection may be expensive and need a strategy and

budget for the organization's infrastructure to operate

effectively. Of course, small and medium enterprises cannot

bear these financial burdens [13]. Therefore, some algorithms

have appeared that do not depend on high costs, and small and

medium enterprises can also use and apply them.

Nikto, SQLMAP, relies on its work on the vulnerability

scanner, which bears the name SQLMAP, which was initially

intended for use in hacking. This method provided alerts on

defects only[14]. One of the disadvantages of this algorithm is

the theft and misappropriation of data and information. SQL

injection with (SVM): In this algorithm, the researchers

suggested a design that depends on the queries if they are

natural or harmful, as they relied on trained questions to make

sure whether SQL injection is present in the queries or not,

Select username from user where

empn=” ALI”

Select username from user where empn=”

ALI1” or 1=1

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(1), 228–238 | 230

and the results were satisfactory at the time. However, this

algorithm was unsuitable for large data volumes [15]. The

SQL Pattern Algorithm (SQLPMDS) repels SQL injection

attacks. It relies in its work on storing well-known SQL

statements, which according to what the algorithm was

designed with, are present in the databases. When the query

reaches the databases, it is checked and compared to see if this

attack is malicious and is caused by a SQL injection or a

harmless query. Unfortunately, if the program cannot identify

the attack, this method has reached the database, and the

hacker can inject SQL injection and access and destroy the

databases. Also, this algorithm does not deal with cases except

insert, and this feature is critical in dealing with databases

[16].

SIUQAPTT is an algorithm designed to block SQL injection

attacks as an acceptable solution to check only a specific query

and static for all query strings. This algorithm depends in its

work only on the query that contains the word “WHERE” the

algorithm considers anything written after this sentence as an

attempt to inject SQL and excludes it to avoid access to the

databases. This algorithm is acceptable to a certain extent.

However, there are more things than the word “WHERE” that

hackers use to access a loophole that enables them to access

databases that were not included in this algorithm.

Furthermore, the algorithm did not also deal with insert cases,

although most insert statements do not have a “WHERE”

clause [17].

Blocking Blind SQL injection is utterly dependent on coding

and prevents attacks by blocking for IP, but this algorithm is

only tested on the login page; see Figure 2, which shows the

prevention login screen for blind SQL injection.

A few websites were used to check their results. This

algorithm displays an alert message if the hacker tries to enter

incorrect values and blocks his IP address. Nevertheless, as we

mentioned earlier, this algorithm relied only on coding, and

many things were not taken into account because it is a

powerful source for hackers to access databases or data such

as union as well as insert and not a lot of character spacing.

Moreover, their study covered the login screen and neglected

the rest of the pages in the web application [18].

The research gap is that many proposed algorithms were

designed to prevent SQL injection, but it has many limitations.

For example, where it did not use all the character spacing and

did not deal with the state of the insert when adding data to the

databases, only one layer was taken into account to detect the

query. Moreover, many researchers neglected a critical URL

layer, a weak point through which hackers can access the

databases. Finally, most of the mentioned algorithms only deal

with the login screen, and only a few queries are checked.

These parameters were a strong incentive for an algorithm to

process these parameters.

4. Methodology

Protecting the web from hacker attacks has become an

important matter that requires a great effort to think about how

to protect data and to suggest new ways to keep pace with the

massive development by attackers to access databases and

hack and access sensitive data. Therefore, protecting websites

and databases requires complete knowledge of how attackers

work to gain access to the data.

Most hackers are interested in collecting information that they

think may be valuable data for them to rely on to find a weak

point before doing SQL injection. For example, the behavior

of the system and how it works require time from the attacker

and much analysis to eventually reach a weak point so that, in

this case, he can carry out his attack through it. If an attacker

finds a weak point, the attacker may be able to access the user's

permissions and then obtain sensitive data and information.

For example, the issue of URL attacking is explained over this

site http://testphp.vulnweb.com/artists.php?artist=1 [19]. The

database data was accessed, and the admin’s powers were also

obtained, allowing him to take sensitive data from the

databases.

Therefore, this paper proposes the following model that

protects the first interface of the hacker from accessing the

databases and gives protection to the data stored in the

databases. Look at the following figure 3, which illustrates the

proposed methodology.

By finding a weak spot in the web, the attacker will try

injecting SQL commands into the web to be executed in the

particular database. As a result of the attacker's experience, it

is not difficult for him to implement a random SQL query in

the database through the web available to him. With SQL

injection, attackers could obtain powers that entitle them to

enter and deal with the databases and then change and

sabotage them or retrieve information from the databases such

as Credit cards, accounts, and banking transactions.

http://testphp.vulnweb.com/artists.php?artist=1

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(1), 228–238 | 231

Fig 2: the proposed methodology.

Any injected query passes through the web server, an

intermediary between the user and the databases, and

commands are executed directly on the underlying databases.

Of course, the web server receives any query, regardless of its

source, from a real user to carry out a routine, harmless

process or through an attacker whose goal is to sabotage and

access the database.

The proposed approach connects the webserver to ensure an

established connection exists as the request to execute a query

is made from the private server on the web. Figure 4, explains

the client and server communication process.

Fig. 3:communication between the client and the server.

After the connection between the client and the server, the

server is ready to receive the query sent from the web after

identifying the socket address, which in turn contains the IP

address for the server- side side side and port number. See the

following figure that shows the pseudo code to connect the

client to the server and send data between clients. and server

1- //server side

2- initialize the Server Socket // ServerSocket Socket =

new ServerSocket (80);

// server will listen for a connection from a client on

port 80

3- the Server relies into a Waiting State// link =

Socket.accept();

4- prepare Input and Output Streams//

getIStream(),getOStream

5- Send and Receive the query// input.nextLine();

6- After completing Close the Connection

7- //Client side

8- Create a Connection to Server side // Socket (host,

PORT_number)

9- prepare Input and Output Streams // link. getIStream;

10- Step 3: Send and Receive query// input. nextLine ();

11- Close the Connection// link. close ();

We refer to what was previously mentioned: the hacker relies

on character spacing randomly in his attacks to find a loophole

that helps him in the penetration process and access to

databases. Therefore, this paper aims to prevent any query

from executing except after ensuring that it is free of this

character to ensure that the hacker never accesses the

databases.

Fig. 4:insertion prevention

When a server receives queries from a web application, the

proposed algorithm compares the received queries with those

stored in the web server. Stored queries are nonmalicious and

authentic, recognized by the web or network administrator,

and allowed to access databases and retrieve data. Such

equerries are executed directly and are considered non-

harmless. However, it is neglected if it does not exist and

contains the texts that the hacker usually uses. It is also made

sure that they do not contain any insert clause. The query is

canceled if it contains the insert command, and the IP is sent

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(1), 228–238 | 232

to the malicious block list. Look at the following that shows

the comparison process.

1- Query in server-side //

2- Check the query

3- if the query does not have a character spacing

4- the query is executed, and it accesses the database

5- if the query has a character spacing

6- the query is not allowed to execute and reject

7- if the query has an insert process

8- the bind parameter is implemented

Finally, if the query contains an insert, a Bind parameter is

applied to protect the data entered into the databases. Then, a

Mark is placed to protect data from hackers. The bind

parameter is received in the second stage, where the real value

is entered into the databases. The last stage is the query

execution, where it will be entered at this stage to the database

and work. However, usefully when entering a single quote,

for example. This scenario does not receive it and transfer it

to a back-slash. Therefore we know that a hacker is attempting

to access the databases.

Consequently, the process is canceled, and the IP address of

the sending party is taken. The proposed Biber is designed as

a web application connected to the database to access the

database. Look at the following figure 5, which shows

insertion prevention

Fig 5:insertion prevention

The fields will be entered through the web application, and

when a user clicks on insert data, it will be stored in the

database where the database used is Mysql. The following

figure shows the structure of the database used. The following

is pseudo-code for insert prevention.

1- The (host, database user, database password, and

database name) have been initialized.

2- //Connect web server to baklizi database using

MySQL method.

Mysqli($host,$dbuser,$dbpass,$dbname);

3- The username is initialized and waits to execute

4- //The password is initialized and encrypted using the

md5 method

$password= (md5($_POST[‘password’]));

5- The query is waiting to be prepared

6- “Insert into users (username, password) values

(??)”);

7- The query is prepared

8- // bind parameter is invoked

bind_param (‘ss’, $user, $password);

9- execute (); \\ execute method is run

In this case, any unauthorized person has been prevented from

accessing database data if it aims to sabotage or steal, using

the previous algorithm that goes through more than one stage

to preserve the data and prevent SQL injection. Before

accessing databases, it is based on preventing the most

common type used by hackers to access databases: character

spacing.

5. Implementation, Evaluation, and Discussion

Protecting the web from hacker attacks has become necessary

to protect databases and sensitive data. So it was necessary to

propose an algorithm to protect the data and databases before

the hacker accessed them. Figure 5 shows the algorithm's

work to prevent SQL injection before accessing the databases

using the character spacing mentioned in Table 1, which

shows the character spacing [12].

Table 1 : Character Spacing

Task character

Line comment --

String “or”

Many lines comment /*---*/

Concatenate + ,||

URL ?php1=abc&ad=mar

Wait for the time delay ’0:0:10’

xIn this part of the paper, we will show the implementation of

the algorithm in detail, which shows the process of filtering a

query to accept or prevent a query from executing. Many tools

were used to help us build the application to fully implement

the algorithm, including MySQL databases, PHP, and

PhpMyAdmin [20].

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(1), 228–238 | 233

Fig. 6:the structure of the database.

A database has been created on the server to contain all the

tables needed to implement the algorithm called Comp1. Look

at figure 6 shows the structure of the database.

The proposed paper is concerned with preventing SQL

injection through the web application form and the URL of the

same site so that the protection is on more than one layer to

ensure that the hacker does not reach in any way he thinks. In

this part, we will show protection from the same web

application and the URL layer.

When the database is ready to receive data from any source,

the user can start from the well-known login screen, which is

the most crucial part of any web application. For example,

look at Figure 7 which shows the home login screen.

n the typical situation, the entry process should be with the

user name and password so that if the information is correct,

the web and its web-related pages are entered after accessing

the databases to ensure that the user name matches to allow

him to enter. However, if the hacker uses character spacing,

the algorithm stops and never allows

Look at the following example; if the value entered in the

password is Mariya, if it is compared to the databases and

exists, it is executed typically. On the contrary, the password

is incorrect if it is not present. However, if a hacker writes a

query from two or more parts; for example, one of the

character spacing, let it be OR, then if the result of the Or is

healthy, this is enough to execute the query.

Fig. 7:home login screen

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(1), 228–238 | 234

it to operate. What distinguishes character spacing is that it is

mainly used to give a valid result regardless of the first part of

the query.

See the following example, which shows that the service gives

true even if the password is wrong.

Look at Figure 8, which shows the process of preventing SQL

injection using the password field

Fig. 8: preventing SQL injection using the password field

It is not allowed to access because it contains character

spacing of type OR because it is considered SQL injection.

The algorithm is also concerned with the letter case of writing

the command. It can prevent the query from being executed,

whether it is a capital letter or a small letter, for example, “or”

or “Or.” In this case, the hacker was wholly prevented from

accessing the data.

If the user name and password are correct, the site enters the

user into the web to perform the operations of viewing,

searching, adding, and modifying. These operations are

considered the central part of any site. For example, look at

figure 9, which shows what basic operations there are on the

web.

Fig. 9:basic operations on the web

Fig 10:search page

This part shows examples of the process of preventing SQL

injection for search, modification, and addition.

In the search process, the employee who holds the number one

when inquiring about typically shows all its contents if his

number is correct; it is in the databases, where the result

appears as figure 10 from the search page.

Mariya or 1=1

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(1), 228–238 | 235

When a user clicks on search, the employee's information with

the number 1 appears, as shown in Figure 11.

Fig 11: Search Results

As shown, all data related to employee number 1 appeared.

However, if there was a breach, the web did not allow it to

perform the query we mentioned earlier. For example, look at

Figure 12 when using character spacing –.

The insertion process is considered one of the dangerous

processes through which the hacker can exploit it in the

penetration process. Therefore, what we talked about was

applied in the methodology part, which is the bind parameter,

where this process is a source of strength for data when it is

added to databases. For example, see Figure 13, which

explains the process of insertion prevention.

Fig 12: Injection Character Spacing

We note from the previous figure that the insert operation of

the four fields will be stored inside the databases, but after

applying the bind parameter

On the four fields, look at the emp Name field, where a single

quote was added, and it is one of the codes used in the

insertion process by hackers. In this case, the web will allow

it to be stored, but at the same time, the form of content in the

databases will change to indicate the presence of a hacker. At

the same time, if he wanted shows the data in the databases

after applying the bind parameter

Fig. 13: Insertion Prevention

to retrieve this information, it would not appear to him in the

future because the input value is different from the stored

value. Figure 14

Fig. 14: Results after Binding

We note from the above that the algorithm was able with high

efficiency to prevent SQL injection during the use of the web

application form, as well as from the hacker from accessing

the databases. The algorithm is also designed and

implemented to work not only in one layer. It works in the

URL layer, which is available to everyone, where any hacker

can access the URL if he knows it or searches for it, so this

layer is vital to protect it and prevent SQL injection through

it. For example, see Figure 15, which shows the process of

using a query through the URL so that the result appears

naturally and correctly as if it was executed through the web

application form

.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(1), 228–238 | 236

Fig. 15: the process of using query through the URL

after typing the query in the URL, it is clear that ‘eno’ = 2, and

all the fields related to the employee with the number 2 will

appear. However, if the query contains the following character

spacing, e.g., ‘Or,’ the query will not allow execution after

filtering and comparison. See Figure 16, which shows SQL

injection prevention via a URL.

Fig 16: URL prevention Results

We note that the query was not allowed to execute or access

the databases, although the query is correct in the two parts.

The first part has an employee with the number 2, and the

second part is correct. Thus, the algorithm prevents SQL

injection by more than one layer to protect the databases

before accessing them.

In this paper, 200 queries were examined to evaluate the

algorithm's results; 140 queries contained SQL injection, and

60 queries did not contain SQL injection. Where it is stored in

the query databases that contain SQL injection by showing the

entire query clause for future use by similar systems to benefit

significantly from the hackers' thinking in SQL injection

Also, queries not containing SQL injection are stored in the

databases and marked as Null. The following Figure 17 shows

samples of the results that are stored in the databases for both

cases.

Fig 17: samples of the results that are stored in the databases

Figure 18 shows the number of queries used in parsing and

evaluating the algorithm and the number of malicious queries

out of the total number recognized by the algorithm.

The table compares the proposed algorithm with SQLPMDS,

SIUQAPTT, and Blind SQL algorithms. We note that the

proposed Maria algorithm deals with all character spacing,

giving a solid rudder line from any expected attack by hackers

using one character spacing. Blind SQL Injection and the

proposed algorithm are concerned with its work to resist the

hacker and prevent him from accessing the database before

reaching it. This technique dramatically reduces the chance of

injection.

All of the mentioned algorithms do not treat the insert case

except the proposed algorithm, which deals with the case of

the insert as a layer alone due to the Bind Parameter's design.

All algorithms alert the hacker that the query is not allowed.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(1), 228–238 | 237

Blind SQL Injection and the proposed method block the IP

address coming from the hacker. Finally, the proposed

algorithm was used in the screening of most of the web

application screens.

Fig. 18: The proposed Algorithm Result

We note from the above that the proposed algorithm achieved

better results than the comparison algorithms. See Table 2,

which shows the proposed and current algorithms' comparison

results.

Table 2:comparison results.

Algorithm

name
SQLPMDS SIUQAPTT

Blind

SQL

injection

MARIA

All

character

spacing

NO NO NO yes

Protect

before

Access

Database

NO NO YES yes

Cover

Insert

function

NO NO NO Yes

Notify the

hacker
YES YES YES yes

Get the IP

Address
NO NO YES yes

Number of

screen test

Command

screen

Command

screen

One test

screen

Most web

application

screen

Figure 19 shows the number of queries used in the check

between the proposed and the comparison algorithms—the

all-out. For example, the attack was 30 in SQLPMDS, while

the proposed algorithm used 200.

Based on the apparent results, the number of tests performed

on all the algorithms compared them. According to the chart

shown.

We note that the Maria algorithm is the best among them as

an algorithm to protect the web application from SQL

injection

Fig 19: number of queries used in the check between the

proposed algorithm and the comparison algorithms

6. Conclusion

SQL injection is one of the most scathing attacks issued by

hackers, harming web applications and databases. An SQL

attack is a significant cause of data destruction and bank and

credit card transaction theft. Therefore, protecting the web and

databases from SQL injection has become a big challenge for

large, medium, and small organizations. Therefore, it was

necessary to think of ways to protect the web from these

attacks to protect the data of any organization that uses the

web. This paper proposes an approach to protect the web

inexpensively that is suitable for organizations regardless of

their size. This algorithm depends in its work on the principle

of preventing SQL injection at an early stage before accessing

the databases and on two layers; the web layer and the URL

layer. After the query reaches the server, the query is filtered

based on the presence of character spacing to be ignored,

rejected, and blocked for any query containing this character.

Also, if the query contains the insert command, a bind

parameter is set to protect the data entered into the databases.

The algorithm has been implemented for the main login screen

of the site and other screens related to the same web

application. The algorithm was examined by more than 200

queries spread over the web and URL layers. Results were

compared with SQLPMDS and SIUQAPTT, proving that the

proposed algorithm gave more scalability and speed to protect

and detect various attacks.

References

[1] Bayyapu, N., SQL Injection Attacks and Mitigation

Strategies: The Latest Comprehension, in Advances in

Cybersecurity Management, K. Daimi and C. Peoples,

200

140

60

0

50

100

150

200

250

number of queries SQL injection
Query

Normal Query

EVALUATION SQL INJECTION

0

100

200

300

Total Attack Non Vulnerable Vulnerable

Comparision algorithms

SQLPMDS SIUQAPTT MARIA

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(1), 228–238 | 238

Editors. 2021, Springer International Publishing: Cham. p.

199-220.

[2] Chen, D., et al., SQL Injection Attack Detection and

Prevention Techniques Using Deep Learning. Journal of

Physics: Conference Series, 2021. 1757(1): p. 012055.

[3] Marashdeh, Z., K. Suwais, and M. Alia. A Survey on SQL

Injection Attack: Detection and Challenges. in 2021

International Conference on Information Technology

(ICIT). 2021.

[4] Latchoumi, T.P., M.S. Reddy, and K. Balamurugan,

Applied Machine Learning Predictive Analytics to SQL

Injection Attack Detection and Prevention. European

Journal of Molecular & Clinical Medicine, 2020. 7(2): p.

3543-3553.

[5] Voitovych, O.P., O.S. Yuvkovetskyi, and L.M.

Kupershtein. SQL injection prevention system. in 2016

International Conference Radio Electronics & Info

Communications (UkrMiCo). 2016.

[6] Shanmughaneethi, V., et al., SQLIVD - AOP: Preventing

SQL injection vulnerabilities using aspect oriented

programming through web services. Vol. 169. 2011. 327-

337.

[7] Lu, D., et al. A GAN-based Method for Generating SQL

Injection Attack Samples. in 2022 IEEE 10th Joint

International Information Technology and Artificial

Intelligence Conference (ITAIC). 2022.

[8] Nikita, P., Fahim, and S. Soni, SQL Injection Attacks:

Techniques and Protection Mechanisms. International

Journal on Computer Science and Engineering, 2011. 3.

[9] Singh, N. and P. Tiwari. SQL Injection Attacks, Detection

Techniques on Web Application Databases. in Rising

Threats in Expert Applications and Solutions. 2022.

Singapore: Springer Nature Singapore.

[10] Kar, D. and S. Panigrahi, Prevention of SQL Injection

attack using query transformation and hashing. 2013.

1317-1323.

[11] Raut, S., et al., A Review on Methods for Prevention of

SQL Injection Attack. International Journal of Scientific

Research in Science and Technology, 2019: p. 463-470.

[12] Kini, S., et al. SQL Injection Detection and Prevention

using Aho-Corasick Pattern Matching Algorithm. in 2022

3rd International Conference for Emerging Technology

(INCET). 2022.

[13] Harefa, J., et al., SEA WAF: The Prevention of SQL

Injection Attacks on Web Applications. Advances in

Science, Technology and Engineering Systems Journal,

2021. 6: p. 405-411.

[14] Ojagbule, O., H. Wimmer, and R.J. Haddad. Vulnerability

Analysis of Content Management Systems to SQL Injection

Using SQLMAP. in SoutheastCon 2018. 2018.

[15] McWhirter, P.R., et al., SQL Injection Attack classification

through the feature extraction of SQL query strings using

a Gap-Weighted String Subsequence Kernel. Journal of

Information Security and Applications, 2018. 40: p. 199-

216.

[16] Chaki, S.M.H., M. Mat Din, and M. Md Siraj, Integration

of SQL Injection Prevention Methods. International

Journal of Innovative Computing, 2019. 9(2).

[17] Maheshwarkar, B. and N. Maheshwarkar, SIUQAPTT:

SQL Injection Union Query Attacks Prevention Using

Tokenization Technique. 2016. 1-4.

[18] Binu, S. and A. Albert, Proposed Method for SQL

Injection Detection and its Prevention. 2018.

[19] Aljebry, A.F., Y.M. Alqahtani, and N. Sulaiman.

Analyzing Security Testing Tools for Web Applications. in

International Conference on Innovative Computing and

Communications. 2022. Singapore: Springer Singapore.

[20] Yenduri, R. and M. Al-khassaweneh. PHP:

Vulnerabilities and Solutions. in 2022 2nd International

Mobile, Intelligent, and Ubiquitous Computing

Conference (MIUCC). 2022.

