
International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-67992147-6799 www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(1s), 183–192 | 183

An Efficient FPGA-Based Dynamic Partial Reconfigurable

Implementation

Raghunath B H*1, Dr. Aravind H S2

Submitted: 15/10/2022 Accepted: 03/01/2023

Abstract: Today's system developers can choose from many electronic gadgets. There are simple integrated circuits, programmable

microcontrollers, bespoke chips, and more complex logic devices on the market. FPGA technology is famous for rapid prototyping and

implementing small-unit systems. They offer high logic density and the ability to readily upgrade established designs to meet new standards

or change system function or structure. FPGAs have a shorter design cycle than custom devices and can use low-cost design tools. These

benefits reduce FPGA design NRE. Their weakness is radiation [1]. This primarily involves SRAM-based FPGAs, which are in high

demand because they have high throughput at a low cost. The design of fault-tolerant systems can reduce the number of errors they

experience.

A fault-tolerant FPGA design approach is presented as a proposal in this study. This technique can be utilized in systems with a constrained

redundancy area and cannot use excess resources while operational. In order to alleviate some of the issues with the system, we will

implement FPGA partial dynamic reconfiguration. This technique's primary focus is recovery from both temporary and permanent flaws.

SEU faults will be simulated via errors in the FPGA configuration memory. After the job, an analysis of the solution's hardware overhead

and the effectiveness of the secured system design is carried out.

Keywords: Fault Tolerant System, Generic Controller, Partial Reconfiguration, Triple Modular Redundancy.

1. Introduction

Manufacturers have reduced processors and transistors. Chip

power doubles every two years, per Moore's law. 1965's idea

lasted 50 years. When ICs drop to 14 nm [2], the law will be

void.

Smaller transistors boost performance, reduce power

consumption, and lower prices. Wires and gadgets with fewer

atoms and bonds are fragile and more prone to defects. Stress

and the environment affect these gadgets. These factors can alter

device fabric and performance. Small data nodes are more

radiation-prone and use less power.

Recently, related Junocircled Jupiter in 2016. Its radiation belts

are stronger [3]. Spacecraft electronics must be radiation- and

fault-resistant. Juno uses BAE Systems' RAD750 processor [4].

Missing Juno's orbit is costly and time-consuming.

Dependability matters. Dependable, maintainable, durable, safe,

and secure. It is trustworthy. System-reliability mechanisms

exist. Fault-tolerant system design survives failure. Faults slow

but do not stop operations. Reliability increases with

redundancy. Copying and comparing circuits can uncover and

disclose system problems.

Electronics gives system engineers options. Textiles include

programmable microcontrollers and ICs. Small-unit systems and

prototyping employ FPGA. Meet new standards or modify

system function or structure easily. FPGAs are faster and

cheaper than custom devices. FPGAs reduce NRE. [5] They are

radiation-vulnerable. This uses cheap SRAM-based FPGAs.

Fault-tolerant system design reduces failures.

Reconfigurable systems increase fail-safety. Reconfigure

FPGA. DPR allows fault localization and mitigation. This reuses

FPGA. Custom circuit designs can avoid destroying FPGA

resources and keep programs running. This enhances system

uptime.

A fault-tolerant FPGA design is proposed. This solution requires

no extra space or resources. Dynamic FPGA reconfiguration

decreases system issues. They are targeting temporary and

permanent flaws. FPGA mistakes imitate SEUs. Hardware and

architecture analysis ends the work.

2. Goals of The Research

Various fault-tolerant system applications require different

levels of reliability. The breadth of hardware on which a bad

design can be executed is crucial. This is especially true for long-

term missions when hardware must be reliable (in terms of

years).

The following is a synopsis of the objectives of the study, which

may be found in the research:

(1) To offer a way for designing a digital system in FPGA

that can recover from transient and persistent faults.

i. The system's planned architecture operates in a

constrained implementation region; thus, it can

only use FPGA resources assigned at the start of

its life.

1 Assistant Professor, Acharya Institute of Technology,

Bangalore, Karnataka – 560 107, India

2 Professor, JSS Academy of Technical Education,

Bangalore, Karnataka – 560 060, India

* Corresponding Author Email: raghunathbh.publicatons@gmail.com

 Revised: 22/12/2022

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(1s), 183–192 | 184

ii. FPGA modules are unaffected by a transient fault

in one system module.

iii. If a system's architecture must be changed to

recover from a permanent fault, the new one must

continue to produce accurate outputs and be

fault-tolerant.

(2) To create the controller for reconfiguration that

controls FPGA fault mitigation after PDR. It provides

defect detection, localization, type, and

reconfiguration information. It can induce

synchronization as needed.

(3) Create a test platform to evaluate the suggested

methodology's methodologies and procedures. Fault

injection tests the survivability of FT architectures

created using methodological principles.

3. Methodology

This paper describes the fundamentals of a suggested technique

for protecting systems by implementing their elements as fault-

tolerant systems in FPGA. The method uses precompiled setups

to mitigate faults.

LIA refers to collecting FPGA resources given to implement

some dependability-critical system parts. This implementation

region is specified during system design and cannot be changed.

During permanent fault recovery, this assessment limits fault

mitigation. The limited implementation area statement makes it

possible to build deterministic fault mitigation scenarios,

simplifying fault reduction for both temporary and permanent

problems based on previously prepared parameters. Offline

optimization reduces the hardware and performance overhead of

fault mitigation strategies.

3.1. Methodology - Basic Principles

The solution safeguards digital FPGA systems. It is a formula

for changing FPGA system architecture for fault recovery to

increase its life. Long-term missions, where the small

implementation area with every design error, justify such tactics:

combined fault detection, localization, and mitigation.

FT architectures are picked from the original system's several

portions. Comparing repeated functional units in FT and CED

designs facilitates identification and localization. Unplanned.

Mitigation needs PRM-level localization. When a PRM fails, its

fault model must be determined. Transient vs. permanent fault

mitigation exists. Both are controlled by GPDR (GPDRC). This

unit regulates ICAP interface reconfiguration and fault

mitigation. 3.2 gives details.

The approach can detect and correct temporary faults induced by

SEU in the FPGA configuration memory, which can lead to

faulty system functionality if unchecked. A relocatable golden

copy of the PRM unit-type bitstream is needed to mitigate

transient defects. When an FT architectural unit causes an issue,

the GPDRC reconfigures the PRM. After this procedure and any

unit synchronization, the system will usually work.

The methodology also fixes irreversible faults in FPGA physical

resources (CLBs, connectivity resources, etc.). Permanent fault

mitigation depends on many FT design sequences that perform

the same function. Functional units and fault-tolerant

components are implemented with single PRMs. If the situation

is irreparable, download another FT design into the FPGA. It has

less diagnostic circuitry. Faulty FPGA components will not be

used after FT. A "degradation approach" selects FT designs that

implement one system unit in varying numbers of PRMs and

excludes the remaining PRM.

3.1.1. Design of the System Methodology

This method results in the production of a new system protected

by FT architecture, which guarantees resilience against

transitory failures and various persistent flaws that interfere with

the proper operation of the FT system.

The following information needs to be specified by the designer

on the input side of the securing process:

i. The language used to describe hardware is used to

explain the system's design.

ii. The specification of the FPGA is desired.

iii. The limitations imposed by the users on the

implementation.

iv. The process of allocating implementation space in the

FPGA for a particular system.

The following items are produced as a result of the process of

securing:

i. The hardware language describes the Secured system's

FT system design, including all the essential

components.

ii. The comprehensive configuration bitstream for the

initialization of the FPGA's configuration.

iii. The process for fault mitigation employs the collection

of bitstreams with a limited configuration.

3.1.2. Fundamentals Underlying the Structure of The

Fault-Tolerant System

In the method that has been developed, the design is guarded by

FT architecture, which guarantees the method's resilience

against transient and permanent faults that interfere with the FT

system's ability to function correctly. The technique

recommends deploying PRMs. A set of PRMs is what we refer

to as a configuration. Each component of the FT system is placed

in the same PRM.

Figure 1 displays the approach's FPGA FT architecture.

Dynamic FT and static GPDRC are included. GPDRC detects

and localizes flaws using FT CED logic units. PRM error signals

reach GPDRC (PRR1-PRR4). Splitting FT into several PRMs

eliminates PRMs with chronic errors. Signals between modules

and a module and the FPGA are routed through a single PRM

near all other PRRs.

FT PRMs can allocate the other 4 PRRs. PRRs vary in number.

PRR (3,4) can only implement simple FT designs (for example,

TMR with the simple voter, duplex with checker). After

irreversible defects, he has little opportunity of recovering the

system. Fewer alternatives exist. More PRRs reduce errors but

increase configuration options.

Several FT architectures illustrated securing a system by

degrading particular parts. First, TMR architecture with doubled

voter detects voter mistakes. TMR uses unprotected voter units.

A duplex with a comparator is the final architecture. This

architecture lacks fault tolerance since it cannot tell which two

repeated outputs are wrong. This system works until the

comparison unit identifies the first error.

3.1.3. Possible Configurations for The FT Architecture

Precompiled FT settings are used for persistent faults.

Generation 1 configurations use the same FT and PRM. Figure

2 shows different FT generations.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(1s), 183–192 | 185

Every generation has underutilized PRMs. Flags show if the

PRM assigned the matching PRR. This system part's generation

0 configuration is 1111. After finding the first permanent fault,

the next-generation configuration without the problematic PRM

is implemented. When a new problem impacts another PRM,

this is done. Incorrect PRMs increase setups. Bitstream

relocation reduces memory utilization by preventing duplicate

PRM units from being created. Every PRM type requires a single

bitstream, except PRM ROUTE. Each setup only stores the PRM

ROUTE bitstream.

Fig. 1. Fundamental Framework of Proposed Research Approach.

3.1.4. The Bitstream Relocation Method to Reduce the

Number of Configurations

Due to Xilinx's design and implementation processes, the

generated PRM partial configuration bitstream cannot be

allocated to a different PRR. Each PRR with a PRM must have

a PRB. If N separate PRMs are to be applied to M PRRs, N * M

PRBs must be constructed and kept in external memory for

partial run-time Reconfiguration.

Bitstream relocation reduces PRBs to N. These PRBs can be

used to reconfigure all PRRs meeting relocation parameters.

Design and implementation apply these requirements. This

approach requires equivalent FPGA resources for all PRRs.

This approach always generates PRBs for all PRM kinds in one

PRR location. Before run-time Reconfiguration, bitstream

manipulation is needed to adjust its position information for

other PRRs.

Fig. 2. Many Generations of FT Architectures and Various Ways to Configure.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(1s), 183–192 | 186

3.1.5. Synchronization Issues

Reconfiguring a failing PRM in a replicated FT design can

produce synchronization concerns. During Reconfiguration,

other units run with individual states. This problem occurs

because PRM's PDR uses sequential circuits during transient

fault mitigation. Another synchronization issue may occur when

the FT architecture is reconfigured, and all PRMs are changed to

prevent permanent faults. Its active components are reset, and

any input or output system portions are paused. PDR fault

mitigation raised synchronization concerns.

Several synchronization solutions were suggested to recover the

TMR unit. Different target systems. [6] describes a checkpoint

method for consecutive FSMs. The reconfigured unit must be

readily reachable while awaiting other units. [7] discusses

softcore CPUs. After Reconfiguration, any units can be put into

stop mode, and their memory registers written. Other

synchronization methods are used in packet processing. Until the

next packet arrives, hide the modified unit's output. [8] describes

how to prevent defective outputs from the reconfigured unit

from causing additional Reconfiguration by temporarily

disabling the system's fault detection unit for a given minimum

(the most extended amount of time that can pass between the

arrival of two consecutive packets). Local reset synchronizes

units while this window is open.

This breakthrough explored synchronizing massive sequential

circuits by replicating another repetitive unit's state. The

synchronization-capable architecture's voting unit has flaw

detection, localization, and a simple control mechanism. Figure

3 depicts TMR architecture.

Due to the synchronization approach, each unit is connected to

the ring by oriented point-to-point (source-destination) links.

These links face the ring. When the enable signal is off,

functional units reveal state register values. Enabled units save

previous units' values in their state registers. Once the values of

all registers are recorded, the unit sends the sync signal to the

voter. The voter hides an unsynchronized unit's fault signals until

the sync termination impulse. This prevents the Reconfiguration

of an unsynchronized unit in an indeterminate state.

This synchronization method is available for usage in FT

architectures whenever it is required to do so. It is possible to

create the implementation for FT systems based on duplexes in

a manner that is analogous to TMR. The detection logic of PRM

ROUTE can govern state copying in place of a voter unit.

The amount of overhead caused by this method is proportional

to the number and size of the FU state registers. This procedure

was explained in [9].

Fig. 3. FT Architecture with Unit Synchronization [9].

3.2. Generic Partial Dynamic Reconfiguration Controller

Microprocessors control dynamic reconfigurations.

Reconfiguration's universal processors may waste power.

Wasted performance adds power, complexity, and failure risk.

Software errors can delay or disrupt microprocessor

reconfiguration. The general PDR reconfiguration controller

was designed as hardware to reduce resource utilization and

failure possibility.

The first GPDRC for fault mitigation appeared in [10]. [11]

demonstrated the implementation using a counter and SEU

injection. When a PRM fails permanently, the GPDRC can

reconfigure the entire FT system, which comprises numerous

PRMs. The new controller moves loaded PRBs, chooses the

next-generation configuration, and synchronizes the FT system.

[12] proposed the GPDRC to reduce transient and permanent

faults.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(1s), 183–192 | 187

Fig. 4. Structure of Fault Resistant System using SRAM for FPGA [12].

3.2.1. Objectives of the GPDRC's Design

Prior to the construction of the GPDRC, several design goals that

needed to be accomplished were identified as follows:

• New controllers with universal softcore processors

must use fewer resources.

• In settings with variable PRM numbers, the controller

must be generic. The controller can and should be

smaller if the system is simple and has few PRMs.

• The number of subsequent reconfiguration cycles

should help the controller identify if a PRM issue is

transitory or permanent (false PRM detection, PRM

reconfiguration, PRM synchronization). If the fault

occurs fewer than n times, it is transitory.

• PDR will be done at maximum speed utilizing ICAP

on Xilinx FPGAs (up to 100MHz).

• To reduce precompiled PRBs, the controller must

utilize the same PRB for numerous PRMs' PDRs.

• Before synchronization, the controller should

disregard the changed PRM error output. FT can

synchronize autonomously or with an external

controller.

• The controller should support external bitstream

memory. Bitstream data transmission must be

universal for compatibility with external memory

controllers.

3.2.2. Design of GPDRC Unit

Figure 4 depicts GPDRC's architecture. The interface accepts FT

error vectors. This component's width depends on FT

architectures and PRMs. FPGA's ICAP interface and external

bitstream storage communicate bitstream address, data, and

validity indicators. Sync done and rec done regulate FT PRM

synchronization.

The PRM error index vector shows the PRM that GPDRC

maintains, whereas the arch. index vector shows the current FT

architecture for fault mitigation. Strong signal suggests

persistent PRM. The fatal signal means GPDRC cannot build FT

since insufficient PRMs.

The GPDRC has multiplexers, LUTs, nine primary units, and

FIFO (MUX). Input register errors are stored in the error register

while a GPDRC reconfiguration cycle runs over FT error

signals. The error vector from the previous cycle is stored to

determine the problem. Complex error detection may designate

a flaw as permanent if it is identified twice.

The round-robin unit checks for transient faults in the register

and delivers its index to the encoder unit if none are found. It

picks PRM units. Each configuration's PRM index and type are

stored in the LUT. Address counter uses bitstream's memory

address after PRM type resolution. Index = 0 uses the PRM

bitstream routing address.

Permanent failures cause FT architecture PRM reconfiguration.

PRM loops from 0 to PRM - 1. FT fault signals create LUT

configuration codes. Mistake PRM's routing error 0 signal does

not affect FT architecture. Resolving an indexed PRM bitstream

address uses the same methods.

The address counter addresses each bitstream data word. Since

only one copy of each unit type is stored, bitstream must be

relocated. The relocation unit adjusts the bitstream frame address

using the updated PRM's Frame Address LUT.

The FT Architecture Status unit's rec done signal is set when all

problematic PRMs are PDR'd. GPDRC ignores architecture

problems until PRMs are externally synchronized. After

activating sync-done, GPDRC will not ignore FT failure signals.

By excluding them from GPDRC, our approach enables multiple

FT synchronization techniques.

3.2.3. Fault-Tolerant Implementation of GPDRC Unit

A defense mechanism against SEUs should be developed in the

GPDRC's reconfigurable architecture. Radiation-resistant cloth

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(1s), 183–192 | 188

is one choice. Also, FT. In this scenario, the GPDRC must be

relocated inside the active FPGA. The GPDRC's error output

must also be connected to the FPGA. GPDRC's FT design

mitigates errors. This technique comes before any PRM fault

mitigation. Because only one ICAP instance can be accessed,

this approach is not included in GPDRC instances.

Fig. 5. Flow Diagram of Reconfiguration.

3.3. Fault Mitigation Procedure

Figure 5 depicts system operation following PRM fault

detection. FT error signals indicate a faulty PRM (step 0).

Functional units and voters are built using independent PRMs,

and their relationship is understood.

The GPDRC evaluates if the erroneous PRM is temporary or

permanent when localized. Option A is for temporary defects.

The following steps depend on whether the issue can never be

corrected, independent of configuration creation. GPDRC stores

the last generation's configuration code. If this is the last

generation, this new permanent fault cannot be prevented, and

the FT architecture will tell the GPDRC. Need outside help (e.g.,

the physical placement of configuration is moved to another

locality of FPGA, or the FPGA is replaced with a new one).

Option B works when the present setup is not complete.

Case 1 - Rehabilitation from a problem that was just

temporary

GPDRC from external memory reads the PRB corresponding to

the erroneous PRM. The GPRDC has an understanding of the

unit's configuration as well as its kind and PRM distribution. The

downloaded PRB is sent to the most appropriate PRR, as in

Figure 6 (step A1).

The next step in mitigating the problem is to reroute this

bitstream such that it can be used to modify the problematic

PRM. GPDRC is the driving force for the PRM reconfiguration

and the relocated PRB (step A2).

After Reconfiguration, the PRM must be synced with other FT

components. GPDRC controls synchronization (step A3).

Case 2 - Recovering from a permanent error

When PRM detects a permanent failure and the current

configuration is not from the last generation, a new configuration

from the next generation is chosen. The malfunctioning PRM

will not be used. The GPDRC chooses a configuration based on

code that responds to the bitwise negation of FT fault signals (B1

step).

For example, say the current configuration is 111 (generation 0),

and a voter unit defect is permanent. The FT error signal vector

on GPDRC will be 100. This value's bitwise negative is the

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(1s), 183–192 | 189

generation 1 configuration code 011.

The external bitstream storage stores the PRB for PRM ROUTE.

This bitstream reconfigures PRR0 (the only FPGA PRR where

it can be allocated). This means this PRB is not moving (step

B2).

Next, download all remaining PRB copies implementing PRMs.

Configuration determines the number of bitstream copies needed

and their type. As with transient fault reconfiguration, all PRBs

are downloaded from the exact location. Each downloaded PRB

will be relocated to fit applicable PRRs (step B3).

The downloaded and moved PRBs are utilized to reconfigure

PRMs (step B4). After Reconfiguration, PRMs are locally reset.

This stage can also involve synchronization (state recovery of all

impacted PRMs).

Fig. 6. Dislocation of Partial Reconfiguration Zones within

FPGA belongs to FT Architecture.

4. Experimental Results

This section discusses the technique's design and execution

results. It shows implementation details and additional hardware

overhead for TMR-secured designs. Analyze GPDRC

installation outcomes on secured systems. A transient fault

simulator tests a platform's capacity to recognize, locate, and

mitigate transient faults. Permanent flaws in the created system

are simulated, and it is verified that problematic modules may be

avoided by modifying FT architecture.

All experimental systems were designed using Xilinx 14.7. The

target FPGA was Xilinx's Virtex 7 XC7S100.

4.1. Implementation of GPDRC

GPDRC helps design secure systems. It is a smaller, speedier

alternative to softcore controllers. The system's size depends on

how many PRMs it has employed.

4.1.1. Implementation of GPDRC on a Generic Level and

Scaling

Partitioned systems can use GPDRC. It is a generic unit with

definable attributes for varied designs.

Several FT system parts. This option controls PRB storage. PRM

COUNT shows how many PRMs each FT architecture has to

implement units. The product of these generic values is the width

of GPDRC and many system PRM error vectors. GPDRC

handles FT and PRM architectures. Save only one copy of each

PRM type to reduce defects. Type index width determines the

PRM type. PRM TYPE WIDTH is PRM's square root. Finally,

Address WIDTH.

Counters, registers, decoders, and other logic evaluated GPDRC

resource utilization for several system partitioning methods.

GPDRC size is unaffected by system complexity. Several

variables affect it, including PRMs. FPGA design included FT

and PRM designs. Testing 3 to 6 PRMs. FT Architecture started

employing TMR with the duplex voter when each design

required five or six PRMs. All four PRMs started with TMR,

voter, and duplex with the checker.

Table 1 compares MicroBlaze's PDR IP core with GPDRC's

modules. 32 GPDRC-controlled FT designs with 6 PRMs were

analyzed. Columns include unit name (column 1), unit size in

slices (column 2), occupied LUTs and FlipFlops (columns 3 and

4), and TMR alternative size (5).

Table 1. The quantities of FPGA resources dedicated to the

GPDRC (32 FT architectures, 6 PRM per FT architecture).

XC7S100 Virtex 7

192 PRMs

Size

[slices]

LUTs

[#]

F/Fs

[#]

TMR

[slices] Input Capture Register 38 (0.5%) 73 168 98 (2.4X)

Actual Error Register 37 (0.5%) 78 78 102 (2.4X)

Previous Error Register 37 (0.5%) 164 168 104 (2.4X)

Hard Error Unit 2 (0.1%) 3 0 7 (2.8X)

Round Robin Unit 4 (0.1%) 4 4 12 (2.7X)

Error Encoder 2 (0.1%) 2 0 5 (1.8X)

Relocation Unit 4 (0.1%) 12 1 17 (2.6X)

Architecture Status Unit 2 (0.1%) 36 24 5 (2.8X)

Address Counter 14 (0.2%) 38 15 42 (2.2X)

FSM 14 (0.2%) 36 12 46 (2.3X)

Others (LUTs, MUXs...) 112 (1.3%) 264 154 378 (2.7X)

GPDRC total 266 (3.7%) 710 624 816 (2.0X)

MicroBlaze 628 (7.7%) 1414 1491 1664 (2.8X)

4.1.2. Amount of Time Needed for PRM to Reconfigure

Controllers must measure reconfiguration time. Table 2 shows

GPDRC metrics by PRM bitstream size. Reconfiguration time is

determined by PRB size, not PRM resource use.

The table contains multiples of the Virtex 7 FPGA's smallest

PRM, which has 20 CLBs. Multiples of the smallest PRM in

column 1 are mentioned in columns 2 through 3 and 4.

Table 2. Amount of Time Required to Reconfigure one PRM.

XC7S100 Virtex 7 CLBs in

multiples

of the size of the smallest PRM

CLBs

[#]

Bitstream

Length

[kB]

Reconfiguration

Time [ms]

1X 20 5 0.23

2X 40 10 0.42

3X 60 15 0.67

4X 80 20 0.93

5 X 100 25 1.14

4.2. Evaluation of Hardware Overhead

This section describes the FT architectures developed for each

generation (0 and 1), along with their qualities and restrictions.

These architectures are models for describing system

methodology. Different FT architectures can identify and

localize PRM errors.

The suggested FT designs use 5 PRMs; hence five error signals

are emitted from the PRM ROUTE block. These signals indicate

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(1s), 183–192 | 190

a malfunction at GPDRC's inputs.

4.2.1. Fault Tolerant Architecture of Generation 0

Initial Generation 0 FT architecture is built on TMR, where the

majority element checks all FU outputs (voter). 3 PRM FUs, 1

PRM VOTER, and 1 PRM ROUTE make up this architecture.

Figure 7 shows this architecture's structure.

Fig. 7. Generation 0 of FT Architecture based on TMR.

Each FU has its PRM and no diagnostic logic. All PRM FU

outputs connect to PRM VOTER. PRM VOTER features a voter

and diagnostic logic for FU fault detection (comparators, logic

gates). The voter's duplex design detects problems and modifies

the PRM VOTER block. Voter design can also use two-rail

logic. GPDRC reconfigures the PRM based on PRM VOTER

error outputs, then selects the appropriate bitstream from

bitstream storage. PRM ROUTE is the FT PRM-FPGA

interface. Because this architecture's PRM ROUTE block lacks

diagnostic logic or FPGA logic elements, it is not protected

against failures, and the error signal err route is always logic

zero.

The architecture may fail if most aspects of a duplex design

cannot be identified. Small logic mitigates this hazard. FT

outputs may indicate inaccurate values while adjusting PRM

VOTER and PRM ROUTE.

4.2.2. Architecture Fault Tolerant of Generation 1

The architecture of the first generation of FTs is a duplex that

includes a PRM CHECKER unit. The structure of Generation 1

FT can be shown in Figure 8. This architecture consists of four

PRMs (2 PRM FU, PRM CHECKER, and PRM ROUTE). Each

FU is realized as a single PRM, and the error-controlled output

multiplexor is responsible for switching between the PRM's

outputs. Checker is a PRM that is played solo.

Fig. 8. Generation 1 of FT Architecture based on Duplex with Checker Protocol.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(1s), 183–192 | 191

4.2.3. Evaluation of Resource Overhead

Table 3 shows FT components that generate FPGA hardware

overhead. This table shows our methods' unit overhead. PRM

ROUTE and PRM VOTER are generation 0 overheads. Any

three FU sizes were not considered overhead because they were

in the standard TMR architecture. PRM VOTER unit size was

lowered without using incorrect unit localization to acquire only

the overhead for our solution. For the same reasons as generation

0, generation 1 overhead contains PRM ROUTE units solely.

Column 1 shows FU output width in bits; column 2 shows

generation 0 overhead in slices; column 3 shows generation 1

overhead in slices.

Table 3. The overheads of Generations in Slices.

XC7S100

data width [bits]

Generation 0

[slices]

Generation 1

[slices]

2 10 4

4 18 9

8 30 13

16 54 24

32 98 42

64 168 78

5. Conclusion

This section outlines the process of securing a system design to

reduce fault occurrences and fault mitigation steps.

System designer designed FT-based subsections. CED is

required for fault detection, and logic pinpoints incorrect PRM.

GPDRC drives fault mitigation. This controller picks the

scenario based on fault type and previous issues.

PDR reduces transitory faults, and FT ensures correct outputs.

Moving the PRB golden copy corresponding to the appropriate

PRM type reduces the stored precompiled PRBs. When a

persistent flaw is detected, and an alternative FPGA

configuration is available, the FT architecture is changed. This

method enables many configurations. They are characterized by

their ability to handle erroneous PRMs. GPDRC can pick which

system configuration to employ if an issue persists. FT's

hardware overhead was compared to TMR's. One FT

architecture requires less hardware. Fewer PRMs make the

GPDRC a lower priority. More considerable PRBs slow

Reconfiguration. Overhead and PRB size must be balanced (and

the reconfiguration time).

In the future, Markov models will be built for the proposed fault

recovery FT structures. Moreover, Pipelined microprocessor

partitioning experimented with hardware overhead and PRB

size.

References

[1] M. Wirthlin, E. Johnson, N. Rollins, M. Caffrey, and P.

Graham. The reliability of FPGA circuit designs in the

presence of radiation-induced configuration upsets. In

Field-Programmable Custom Computing Machines,

2003. FCCM 2003. 11th Annual IEEE Symposium on,

pages 133-142, 2003.

[2] Flynet E., Yuffie M. and Knoll E. 4.1 14nm 6th-

generation core processor soc with low power

consumption and improved performance. In 2016 IEEE

International Solid-State Circuits Conference, ISSCC

2016, San Francisco, CA, USA, January 31 - February

4, 2016, pages 72-73, 2016.

[3] Patrick Blau. Juno: Spacecraft information. URL:

<http://spaceflight101.com/juno/spacecraft-

information/>. Accessed: 2016-07-06.

[4] John Rhea. Bae systems move into third-generation rad-

hard processors. Military & Aerospace Electronics,

13(5), 2002.

[5] Aiwu Ruan, Bairui Jie, Li Wan, Junhao Yang, Chuanyin

Xiang, Zujian Zhu, and Yu Wang. A bitstream readback-

based automatic functional test and diagnosis method for

Xilinx FPGAs. Microelectronics Reliability,

54(8):1627-1635, 2014.

[6] Conrado Pilotto, Jose Rodrigo Azambuja, and Fernanda

Lima Kastensmidt. They synchronize triple modular

redundant designs in dynamic partial reconfiguration

applications. In SBCCI '08: Proceedings of the 21st

annual symposium on Integrated circuits and system

design, pages 199-204, New York, NY, USA, 2008.

ACM.

[7] Yoshihiro Ichinomiya, Shiro Tanoue, Motoki

Amagasaki, Masahiro Iida, Morihiro Kuga, and

Toshinori Sueyoshi. Improving the robustness of a

softcore processor against us by using tmr and partial

Reconfiguration. In Proceedings of the 2010 18th IEEE

Annual International Symposium on Field-

Programmable Custom Computing Machines, FCCM

'10, pages 47-54, Washington, DC, USA, 2010. IEEE

Computer Society.

[8] Jason A. Cheatham, John M. Emmert, and Stan

Baumgart. A survey of fault-tolerant methodologies for

FPGAs. ACM Trans. Des. Autom. Electron. Syst.,

11(2):501-533, 2006.

[9] Miculka L. and Kotasek Z. Synchronization technique

for tmr system after dynamic Reconfiguration on FPGA.

In The Second Workshop on Manufacturable and

Dependable Multicore Architectures at Nanoscale

(MEDIAN 2013), pages 53-56. Politecnico di Milano,

2013.

[10] M. Straka, J. Kastil, and Z. Kotasek. Generic partial

dynamic reconfiguration controller for fault-tolerant

designs based on FPGA. In NORCHIP '10, pages 1-4,

Washington, DC, USA, 2010. IEEE CS.

[11] Straka M., Miculka L., Kastil J. and Kotasek Z. Test

platform for fault tolerant systems design qualities

verification. In 15th IEEE International Symposium on

Design and Diagnostics of Electronic Circuits and

Systems pages 336-341. IEEE Computer Society, 2012.

[12] Miculka L. and Kotasek Z. Generic partial dynamic

reconfiguration controller for transient and permanent

fault mitigation in fault tolerant systems implemented

into FPGA. In 17th IEEE Symposium on Design and

Diagnostics of Electronic Circuits and Systems, pages

171-174. IEEE Computer Society, 2014.

http://spaceflight101.com/juno/spacecraft-information/
http://spaceflight101.com/juno/spacecraft-information/

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(1s), 183–192 | 192

Mr. Raghunath is working as an

Assistant Professor at AIT,

Bengaluru, and He is a Research

Scholar at JSSATE, Bengaluru,

affiliated with Visveswaraya

Technological University. He has

completed B E in electronics and

communication engineering from

Mysore University and M.Tech

degree from Visveswaraya

Technological University. His

research interest includes Fault

tolerance in FPGA, VLSI design,

and Embedded System design.

Dr. Aravind H S is working as

Professor at JSSATE,

Bangalore. He obtained his B E

degree in Electronics and

Communication Engineering

from Bangalore University and

M.Tech from the University of

Mysore. He obtained his Ph.D.

from Visveswaraya

Technological University,

Belagavi. His research interest

includes signal processing, Fault

Tolerance computing, and

instrumentation.

