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Abstract: Today's system developers can choose from many electronic gadgets. There are simple integrated circuits, programmable 

microcontrollers, bespoke chips, and more complex logic devices on the market. FPGA technology is famous for rapid prototyping and 

implementing small-unit systems. They offer high logic density and the ability to readily upgrade established designs to meet new standards 

or change system function or structure. FPGAs have a shorter design cycle than custom devices and can use low-cost design tools. These 

benefits reduce FPGA design NRE. Their weakness is radiation [1]. This primarily involves SRAM-based FPGAs, which are in high 

demand because they have high throughput at a low cost. The design of fault-tolerant systems can reduce the number of errors they 

experience. 

A fault-tolerant FPGA design approach is presented as a proposal in this study. This technique can be utilized in systems with a constrained 

redundancy area and cannot use excess resources while operational. In order to alleviate some of the issues with the system, we will 

implement FPGA partial dynamic reconfiguration. This technique's primary focus is recovery from both temporary and permanent flaws. 

SEU faults will be simulated via errors in the FPGA configuration memory. After the job, an analysis of the solution's hardware overhead 

and the effectiveness of the secured system design is carried out. 

Keywords: Fault Tolerant System, Generic Controller, Partial Reconfiguration, Triple Modular Redundancy. 

1. Introduction

Manufacturers have reduced processors and transistors. Chip 

power doubles every two years, per Moore's law. 1965's idea 

lasted 50 years. When ICs drop to 14 nm [2], the law will be 

void. 

Smaller transistors boost performance, reduce power 

consumption, and lower prices. Wires and gadgets with fewer 

atoms and bonds are fragile and more prone to defects. Stress 

and the environment affect these gadgets. These factors can alter 

device fabric and performance. Small data nodes are more 

radiation-prone and use less power. 

Recently, related Junocircled Jupiter in 2016. Its radiation belts 

are stronger [3]. Spacecraft electronics must be radiation- and 

fault-resistant. Juno uses BAE Systems' RAD750 processor [4]. 

Missing Juno's orbit is costly and time-consuming. 

Dependability matters. Dependable, maintainable, durable, safe, 

and secure. It is trustworthy. System-reliability mechanisms 

exist. Fault-tolerant system design survives failure. Faults slow 

but do not stop operations. Reliability increases with 

redundancy. Copying and comparing circuits can uncover and 

disclose system problems. 

Electronics gives system engineers options. Textiles include 

programmable microcontrollers and ICs. Small-unit systems and 

prototyping employ FPGA. Meet new standards or modify 

system function or structure easily. FPGAs are faster and 

cheaper than custom devices. FPGAs reduce NRE. [5] They are 

radiation-vulnerable. This uses cheap SRAM-based FPGAs. 

Fault-tolerant system design reduces failures. 

Reconfigurable systems increase fail-safety. Reconfigure 

FPGA. DPR allows fault localization and mitigation. This reuses 

FPGA. Custom circuit designs can avoid destroying FPGA 

resources and keep programs running. This enhances system 

uptime. 

A fault-tolerant FPGA design is proposed. This solution requires 

no extra space or resources. Dynamic FPGA reconfiguration 

decreases system issues. They are targeting temporary and 

permanent flaws. FPGA mistakes imitate SEUs. Hardware and 

architecture analysis ends the work. 

2. Goals of The Research

Various fault-tolerant system applications require different 

levels of reliability. The breadth of hardware on which a bad 

design can be executed is crucial. This is especially true for long-

term missions when hardware must be reliable (in terms of 

years). 

The following is a synopsis of the objectives of the study, which 

may be found in the research: 

(1) To offer a way for designing a digital system in FPGA

that can recover from transient and persistent faults.

i. The system's planned architecture operates in a

constrained implementation region; thus, it can

only use FPGA resources assigned at the start of

its life.
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ii. FPGA modules are unaffected by a transient fault 

in one system module. 

iii. If a system's architecture must be changed to 

recover from a permanent fault, the new one must 

continue to produce accurate outputs and be 

fault-tolerant. 

(2) To create the controller for reconfiguration that 

controls FPGA fault mitigation after PDR. It provides 

defect detection, localization, type, and 

reconfiguration information. It can induce 

synchronization as needed. 

(3) Create a test platform to evaluate the suggested 

methodology's methodologies and procedures. Fault 

injection tests the survivability of FT architectures 

created using methodological principles. 

3. Methodology 

This paper describes the fundamentals of a suggested technique 

for protecting systems by implementing their elements as fault-

tolerant systems in FPGA. The method uses precompiled setups 

to mitigate faults. 

LIA refers to collecting FPGA resources given to implement 

some dependability-critical system parts. This implementation 

region is specified during system design and cannot be changed. 

During permanent fault recovery, this assessment limits fault 

mitigation. The limited implementation area statement makes it 

possible to build deterministic fault mitigation scenarios, 

simplifying fault reduction for both temporary and permanent 

problems based on previously prepared parameters. Offline 

optimization reduces the hardware and performance overhead of 

fault mitigation strategies. 

3.1. Methodology - Basic Principles 

The solution safeguards digital FPGA systems. It is a formula 

for changing FPGA system architecture for fault recovery to 

increase its life. Long-term missions, where the small 

implementation area with every design error, justify such tactics: 

combined fault detection, localization, and mitigation. 

FT architectures are picked from the original system's several 

portions. Comparing repeated functional units in FT and CED 

designs facilitates identification and localization. Unplanned. 

Mitigation needs PRM-level localization. When a PRM fails, its 

fault model must be determined. Transient vs. permanent fault 

mitigation exists. Both are controlled by GPDR (GPDRC). This 

unit regulates ICAP interface reconfiguration and fault 

mitigation. 3.2 gives details. 

The approach can detect and correct temporary faults induced by 

SEU in the FPGA configuration memory, which can lead to 

faulty system functionality if unchecked. A relocatable golden 

copy of the PRM unit-type bitstream is needed to mitigate 

transient defects. When an FT architectural unit causes an issue, 

the GPDRC reconfigures the PRM. After this procedure and any 

unit synchronization, the system will usually work. 

The methodology also fixes irreversible faults in FPGA physical 

resources (CLBs, connectivity resources, etc.). Permanent fault 

mitigation depends on many FT design sequences that perform 

the same function. Functional units and fault-tolerant 

components are implemented with single PRMs. If the situation 

is irreparable, download another FT design into the FPGA. It has 

less diagnostic circuitry. Faulty FPGA components will not be 

used after FT. A "degradation approach" selects FT designs that 

implement one system unit in varying numbers of PRMs and 

excludes the remaining PRM. 

3.1.1. Design of the System Methodology 

This method results in the production of a new system protected 

by FT architecture, which guarantees resilience against 

transitory failures and various persistent flaws that interfere with 

the proper operation of the FT system. 

The following information needs to be specified by the designer 

on the input side of the securing process: 

i. The language used to describe hardware is used to 

explain the system's design. 

ii. The specification of the FPGA is desired. 

iii. The limitations imposed by the users on the 

implementation. 

iv. The process of allocating implementation space in the 

FPGA for a particular system. 

The following items are produced as a result of the process of 

securing: 

i. The hardware language describes the Secured system's 

FT system design, including all the essential 

components. 

ii. The comprehensive configuration bitstream for the 

initialization of the FPGA's configuration. 

iii. The process for fault mitigation employs the collection 

of bitstreams with a limited configuration. 

3.1.2. Fundamentals Underlying the Structure of The 

Fault-Tolerant System  

In the method that has been developed, the design is guarded by 

FT architecture, which guarantees the method's resilience 

against transient and permanent faults that interfere with the FT 

system's ability to function correctly. The technique 

recommends deploying PRMs. A set of PRMs is what we refer 

to as a configuration. Each component of the FT system is placed 

in the same PRM. 

Figure 1 displays the approach's FPGA FT architecture. 

Dynamic FT and static GPDRC are included. GPDRC detects 

and localizes flaws using FT CED logic units. PRM error signals 

reach GPDRC (PRR1-PRR4). Splitting FT into several PRMs 

eliminates PRMs with chronic errors. Signals between modules 

and a module and the FPGA are routed through a single PRM 

near all other PRRs. 

FT PRMs can allocate the other 4 PRRs. PRRs vary in number. 

PRR (3,4) can only implement simple FT designs (for example, 

TMR with the simple voter, duplex with checker). After 

irreversible defects, he has little opportunity of recovering the 

system. Fewer alternatives exist. More PRRs reduce errors but 

increase configuration options. 

Several FT architectures illustrated securing a system by 

degrading particular parts. First, TMR architecture with doubled 

voter detects voter mistakes. TMR uses unprotected voter units. 

A duplex with a comparator is the final architecture. This 

architecture lacks fault tolerance since it cannot tell which two 

repeated outputs are wrong. This system works until the 

comparison unit identifies the first error.  

3.1.3. Possible Configurations for The FT Architecture 

Precompiled FT settings are used for persistent faults. 

Generation 1 configurations use the same FT and PRM. Figure 

2 shows different FT generations. 
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Every generation has underutilized PRMs. Flags show if the 

PRM assigned the matching PRR. This system part's generation 

0 configuration is 1111. After finding the first permanent fault, 

the next-generation configuration without the problematic PRM 

is implemented. When a new problem impacts another PRM, 

this is done. Incorrect PRMs increase setups. Bitstream 

relocation reduces memory utilization by preventing duplicate 

PRM units from being created. Every PRM type requires a single 

bitstream, except PRM ROUTE. Each setup only stores the PRM 

ROUTE bitstream.  

 

 

Fig. 1. Fundamental Framework of Proposed Research Approach. 

3.1.4. The Bitstream Relocation Method to Reduce the 

Number of Configurations 

Due to Xilinx's design and implementation processes, the 

generated PRM partial configuration bitstream cannot be 

allocated to a different PRR. Each PRR with a PRM must have 

a PRB. If N separate PRMs are to be applied to M PRRs, N * M 

PRBs must be constructed and kept in external memory for 

partial run-time Reconfiguration. 

Bitstream relocation reduces PRBs to N. These PRBs can be 

used to reconfigure all PRRs meeting relocation parameters. 

Design and implementation apply these requirements. This 

approach requires equivalent FPGA resources for all PRRs. 

This approach always generates PRBs for all PRM kinds in one 

PRR location. Before run-time Reconfiguration, bitstream 

manipulation is needed to adjust its position information for 

other PRRs. 

 
Fig. 2. Many Generations of FT Architectures and Various Ways to Configure. 
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3.1.5. Synchronization Issues 

Reconfiguring a failing PRM in a replicated FT design can 

produce synchronization concerns. During Reconfiguration, 

other units run with individual states. This problem occurs 

because PRM's PDR uses sequential circuits during transient 

fault mitigation. Another synchronization issue may occur when 

the FT architecture is reconfigured, and all PRMs are changed to 

prevent permanent faults. Its active components are reset, and 

any input or output system portions are paused. PDR fault 

mitigation raised synchronization concerns. 

Several synchronization solutions were suggested to recover the 

TMR unit. Different target systems. [6] describes a checkpoint 

method for consecutive FSMs. The reconfigured unit must be 

readily reachable while awaiting other units. [7] discusses 

softcore CPUs. After Reconfiguration, any units can be put into 

stop mode, and their memory registers written. Other 

synchronization methods are used in packet processing. Until the 

next packet arrives, hide the modified unit's output. [8] describes 

how to prevent defective outputs from the reconfigured unit 

from causing additional Reconfiguration by temporarily 

disabling the system's fault detection unit for a given minimum 

(the most extended amount of time that can pass between the 

arrival of two consecutive packets). Local reset synchronizes 

units while this window is open. 

This breakthrough explored synchronizing massive sequential 

circuits by replicating another repetitive unit's state. The 

synchronization-capable architecture's voting unit has flaw 

detection, localization, and a simple control mechanism. Figure 

3 depicts TMR architecture. 

Due to the synchronization approach, each unit is connected to 

the ring by oriented point-to-point (source-destination) links. 

These links face the ring. When the enable signal is off, 

functional units reveal state register values. Enabled units save 

previous units' values in their state registers. Once the values of 

all registers are recorded, the unit sends the sync signal to the 

voter. The voter hides an unsynchronized unit's fault signals until 

the sync termination impulse. This prevents the Reconfiguration 

of an unsynchronized unit in an indeterminate state. 

This synchronization method is available for usage in FT 

architectures whenever it is required to do so. It is possible to 

create the implementation for FT systems based on duplexes in 

a manner that is analogous to TMR. The detection logic of PRM 

ROUTE can govern state copying in place of a voter unit. 

The amount of overhead caused by this method is proportional 

to the number and size of the FU state registers. This procedure 

was explained in [9]. 

 

Fig. 3. FT Architecture with Unit Synchronization [9]. 

3.2. Generic Partial Dynamic Reconfiguration Controller 

Microprocessors control dynamic reconfigurations. 

Reconfiguration's universal processors may waste power. 

Wasted performance adds power, complexity, and failure risk. 

Software errors can delay or disrupt microprocessor 

reconfiguration. The general PDR reconfiguration controller 

was designed as hardware to reduce resource utilization and 

failure possibility. 

The first GPDRC for fault mitigation appeared in [10]. [11] 

demonstrated the implementation using a counter and SEU 

injection. When a PRM fails permanently, the GPDRC can 

reconfigure the entire FT system, which comprises numerous 

PRMs. The new controller moves loaded PRBs, chooses the 

next-generation configuration, and synchronizes the FT system. 

[12] proposed the GPDRC to reduce transient and permanent 

faults. 
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Fig. 4. Structure of Fault Resistant System using SRAM for FPGA [12].

3.2.1. Objectives of the GPDRC's Design 

Prior to the construction of the GPDRC, several design goals that 

needed to be accomplished were identified as follows: 

• New controllers with universal softcore processors 

must use fewer resources. 

• In settings with variable PRM numbers, the controller 

must be generic. The controller can and should be 

smaller if the system is simple and has few PRMs. 

• The number of subsequent reconfiguration cycles 

should help the controller identify if a PRM issue is 

transitory or permanent (false PRM detection, PRM 

reconfiguration, PRM synchronization). If the fault 

occurs fewer than n times, it is transitory. 

• PDR will be done at maximum speed utilizing ICAP 

on Xilinx FPGAs (up to 100MHz). 

• To reduce precompiled PRBs, the controller must 

utilize the same PRB for numerous PRMs' PDRs. 

• Before synchronization, the controller should 

disregard the changed PRM error output. FT can 

synchronize autonomously or with an external 

controller. 

• The controller should support external bitstream 

memory. Bitstream data transmission must be 

universal for compatibility with external memory 

controllers. 

3.2.2. Design of GPDRC Unit 

Figure 4 depicts GPDRC's architecture. The interface accepts FT 

error vectors. This component's width depends on FT 

architectures and PRMs. FPGA's ICAP interface and external 

bitstream storage communicate bitstream address, data, and 

validity indicators. Sync done and rec done regulate FT PRM 

synchronization. 

The PRM error index vector shows the PRM that GPDRC 

maintains, whereas the arch. index vector shows the current FT 

architecture for fault mitigation. Strong signal suggests 

persistent PRM. The fatal signal means GPDRC cannot build FT 

since insufficient PRMs. 

The GPDRC has multiplexers, LUTs, nine primary units, and 

FIFO (MUX). Input register errors are stored in the error register 

while a GPDRC reconfiguration cycle runs over FT error 

signals. The error vector from the previous cycle is stored to 

determine the problem. Complex error detection may designate 

a flaw as permanent if it is identified twice. 

The round-robin unit checks for transient faults in the register 

and delivers its index to the encoder unit if none are found. It 

picks PRM units. Each configuration's PRM index and type are 

stored in the LUT. Address counter uses bitstream's memory 

address after PRM type resolution. Index = 0 uses the PRM 

bitstream routing address. 

Permanent failures cause FT architecture PRM reconfiguration. 

PRM loops from 0 to PRM - 1. FT fault signals create LUT 

configuration codes. Mistake PRM's routing error 0 signal does 

not affect FT architecture. Resolving an indexed PRM bitstream 

address uses the same methods. 

The address counter addresses each bitstream data word. Since 

only one copy of each unit type is stored, bitstream must be 

relocated. The relocation unit adjusts the bitstream frame address 

using the updated PRM's Frame Address LUT. 

The FT Architecture Status unit's rec done signal is set when all 

problematic PRMs are PDR'd. GPDRC ignores architecture 

problems until PRMs are externally synchronized. After 

activating sync-done, GPDRC will not ignore FT failure signals. 

By excluding them from GPDRC, our approach enables multiple 

FT synchronization techniques. 

3.2.3. Fault-Tolerant Implementation of GPDRC Unit 

A defense mechanism against SEUs should be developed in the 

GPDRC's reconfigurable architecture. Radiation-resistant cloth 
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is one choice. Also, FT. In this scenario, the GPDRC must be 

relocated inside the active FPGA. The GPDRC's error output 

must also be connected to the FPGA. GPDRC's FT design 

mitigates errors. This technique comes before any PRM fault 

mitigation. Because only one ICAP instance can be accessed, 

this approach is not included in GPDRC instances. 
 

 

Fig. 5. Flow Diagram of Reconfiguration. 

3.3. Fault Mitigation Procedure 

Figure 5 depicts system operation following PRM fault 

detection. FT error signals indicate a faulty PRM (step 0). 

Functional units and voters are built using independent PRMs, 

and their relationship is understood. 

The GPDRC evaluates if the erroneous PRM is temporary or 

permanent when localized. Option A is for temporary defects. 

The following steps depend on whether the issue can never be 

corrected, independent of configuration creation. GPDRC stores 

the last generation's configuration code. If this is the last 

generation, this new permanent fault cannot be prevented, and 

the FT architecture will tell the GPDRC. Need outside help (e.g., 

the physical placement of configuration is moved to another 

locality of FPGA, or the FPGA is replaced with a new one). 

Option B works when the present setup is not complete. 

Case 1 - Rehabilitation from a problem that was just 

temporary  

GPDRC from external memory reads the PRB corresponding to 

the erroneous PRM. The GPRDC has an understanding of the 

unit's configuration as well as its kind and PRM distribution. The 

downloaded PRB is sent to the most appropriate PRR, as in 

Figure 6 (step A1).  

The next step in mitigating the problem is to reroute this 

bitstream such that it can be used to modify the problematic 

PRM. GPDRC is the driving force for the PRM reconfiguration 

and the relocated PRB (step A2). 

After Reconfiguration, the PRM must be synced with other FT 

components. GPDRC controls synchronization (step A3). 

Case 2 - Recovering from a permanent error 

When PRM detects a permanent failure and the current 

configuration is not from the last generation, a new configuration 

from the next generation is chosen. The malfunctioning PRM 

will not be used. The GPDRC chooses a configuration based on 

code that responds to the bitwise negation of FT fault signals (B1 

step). 

For example, say the current configuration is 111 (generation 0), 

and a voter unit defect is permanent. The FT error signal vector 

on GPDRC will be 100. This value's bitwise negative is the 
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generation 1 configuration code 011. 

The external bitstream storage stores the PRB for PRM ROUTE. 

This bitstream reconfigures PRR0 (the only FPGA PRR where 

it can be allocated). This means this PRB is not moving (step 

B2). 

Next, download all remaining PRB copies implementing PRMs. 

Configuration determines the number of bitstream copies needed 

and their type. As with transient fault reconfiguration, all PRBs 

are downloaded from the exact location. Each downloaded PRB 

will be relocated to fit applicable PRRs (step B3). 

The downloaded and moved PRBs are utilized to reconfigure 

PRMs (step B4). After Reconfiguration, PRMs are locally reset. 

This stage can also involve synchronization (state recovery of all 

impacted PRMs). 

 

 

Fig. 6. Dislocation of Partial Reconfiguration Zones within 

FPGA belongs to FT Architecture. 

4. Experimental Results 

This section discusses the technique's design and execution 

results. It shows implementation details and additional hardware 

overhead for TMR-secured designs. Analyze GPDRC 

installation outcomes on secured systems. A transient fault 

simulator tests a platform's capacity to recognize, locate, and 

mitigate transient faults. Permanent flaws in the created system 

are simulated, and it is verified that problematic modules may be 

avoided by modifying FT architecture. 

All experimental systems were designed using Xilinx 14.7. The 

target FPGA was Xilinx's Virtex 7 XC7S100.  

4.1. Implementation of GPDRC 

GPDRC helps design secure systems. It is a smaller, speedier 

alternative to softcore controllers. The system's size depends on 

how many PRMs it has employed. 

4.1.1. Implementation of GPDRC on a Generic Level and 

Scaling 

Partitioned systems can use GPDRC. It is a generic unit with 

definable attributes for varied designs. 

Several FT system parts. This option controls PRB storage. PRM 

COUNT shows how many PRMs each FT architecture has to 

implement units. The product of these generic values is the width 

of GPDRC and many system PRM error vectors. GPDRC 

handles FT and PRM architectures. Save only one copy of each 

PRM type to reduce defects. Type index width determines the 

PRM type. PRM TYPE WIDTH is PRM's square root. Finally, 

Address WIDTH. 

Counters, registers, decoders, and other logic evaluated GPDRC 

resource utilization for several system partitioning methods. 

GPDRC size is unaffected by system complexity. Several 

variables affect it, including PRMs. FPGA design included FT 

and PRM designs. Testing 3 to 6 PRMs. FT Architecture started 

employing TMR with the duplex voter when each design 

required five or six PRMs. All four PRMs started with TMR, 

voter, and duplex with the checker. 

Table 1 compares MicroBlaze's PDR IP core with GPDRC's 

modules. 32 GPDRC-controlled FT designs with 6 PRMs were 

analyzed. Columns include unit name (column 1), unit size in 

slices (column 2), occupied LUTs and FlipFlops (columns 3 and 

4), and TMR alternative size (5). 

Table 1. The quantities of FPGA resources dedicated to the 

GPDRC (32 FT architectures, 6 PRM per FT architecture). 

XC7S100 Virtex 7 

192 PRMs 

Size 

[slices] 

LUTs 

[#] 

F/Fs 

[#] 

TMR 

[slices] Input Capture Register 38 (0.5%) 73 168 98 (2.4X) 

Actual Error Register 37 (0.5%) 78 78 102 (2.4X) 

Previous Error Register 37 (0.5%) 164 168 104 (2.4X) 

Hard Error Unit 2 (0.1%) 3 0 7 (2.8X) 

Round Robin Unit 4 (0.1%) 4 4 12 (2.7X) 

Error Encoder 2 (0.1%) 2 0 5 (1.8X) 

Relocation Unit 4 (0.1%) 12 1 17 (2.6X) 

Architecture Status Unit 2 (0.1%) 36 24 5 (2.8X) 

Address Counter 14 (0.2%) 38 15 42 (2.2X) 

FSM 14 (0.2%) 36 12 46 (2.3X) 

Others (LUTs, MUXs...) 112 (1.3%) 264 154 378 (2.7X) 

GPDRC total 266 (3.7%) 710 624 816 (2.0X) 

MicroBlaze 628 (7.7%) 1414 1491 1664 (2.8X) 

4.1.2. Amount of Time Needed for PRM to Reconfigure 

Controllers must measure reconfiguration time. Table 2 shows 

GPDRC metrics by PRM bitstream size. Reconfiguration time is 

determined by PRB size, not PRM resource use. 

The table contains multiples of the Virtex 7 FPGA's smallest 

PRM, which has 20 CLBs. Multiples of the smallest PRM in 

column 1 are mentioned in columns 2 through 3 and 4. 

Table 2. Amount of Time Required to Reconfigure one PRM. 

XC7S100 Virtex 7 CLBs in 

multiples  

of the size of the smallest PRM 

CLBs 

[#] 

Bitstream 

Length 

[kB] 

Reconfiguration 

Time [ms] 

1X 20 5 0.23 

2X 40 10 0.42 

3X 60 15 0.67 

4X 80 20 0.93 

5 X 100 25 1.14 

4.2. Evaluation of Hardware Overhead  

This section describes the FT architectures developed for each 

generation (0 and 1), along with their qualities and restrictions. 

These architectures are models for describing system 

methodology. Different FT architectures can identify and 

localize PRM errors. 

The suggested FT designs use 5 PRMs; hence five error signals 

are emitted from the PRM ROUTE block. These signals indicate 
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a malfunction at GPDRC's inputs. 

4.2.1. Fault Tolerant Architecture of Generation 0 

Initial Generation 0 FT architecture is built on TMR, where the 

majority element checks all FU outputs (voter). 3 PRM FUs, 1 

PRM VOTER, and 1 PRM ROUTE make up this architecture. 

Figure 7 shows this architecture's structure. 

 

Fig. 7. Generation 0 of FT Architecture based on TMR. 

Each FU has its PRM and no diagnostic logic. All PRM FU 

outputs connect to PRM VOTER. PRM VOTER features a voter 

and diagnostic logic for FU fault detection (comparators, logic 

gates). The voter's duplex design detects problems and modifies 

the PRM VOTER block. Voter design can also use two-rail 

logic. GPDRC reconfigures the PRM based on PRM VOTER 

error outputs, then selects the appropriate bitstream from 

bitstream storage. PRM ROUTE is the FT PRM-FPGA 

interface. Because this architecture's PRM ROUTE block lacks 

diagnostic logic or FPGA logic elements, it is not protected 

against failures, and the error signal err route is always logic 

zero. 

The architecture may fail if most aspects of a duplex design 

cannot be identified. Small logic mitigates this hazard. FT 

outputs may indicate inaccurate values while adjusting PRM 

VOTER and PRM ROUTE. 

4.2.2. Architecture Fault Tolerant of Generation 1 

The architecture of the first generation of FTs is a duplex that 

includes a PRM CHECKER unit. The structure of Generation 1 

FT can be shown in Figure 8. This architecture consists of four 

PRMs (2 PRM FU, PRM CHECKER, and PRM ROUTE). Each 

FU is realized as a single PRM, and the error-controlled output 

multiplexor is responsible for switching between the PRM's 

outputs. Checker is a PRM that is played solo. 

 

Fig. 8. Generation 1 of FT Architecture based on Duplex with Checker Protocol. 
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4.2.3. Evaluation of Resource Overhead 

Table 3 shows FT components that generate FPGA hardware 

overhead. This table shows our methods' unit overhead. PRM 

ROUTE and PRM VOTER are generation 0 overheads. Any 

three FU sizes were not considered overhead because they were 

in the standard TMR architecture. PRM VOTER unit size was 

lowered without using incorrect unit localization to acquire only 

the overhead for our solution. For the same reasons as generation 

0, generation 1 overhead contains PRM ROUTE units solely. 

Column 1 shows FU output width in bits; column 2 shows 

generation 0 overhead in slices; column 3 shows generation 1 

overhead in slices. 

Table 3. The overheads of Generations in Slices. 

XC7S100 

data width [bits] 

Generation 0 

[slices] 

Generation 1 

[slices] 

2 10 4 

4 18 9 

8 30 13 

16 54 24 

32 98 42 

64 168 78 

5. Conclusion 

This section outlines the process of securing a system design to 

reduce fault occurrences and fault mitigation steps. 

System designer designed FT-based subsections. CED is 

required for fault detection, and logic pinpoints incorrect PRM. 

GPDRC drives fault mitigation. This controller picks the 

scenario based on fault type and previous issues. 

PDR reduces transitory faults, and FT ensures correct outputs. 

Moving the PRB golden copy corresponding to the appropriate 

PRM type reduces the stored precompiled PRBs. When a 

persistent flaw is detected, and an alternative FPGA 

configuration is available, the FT architecture is changed. This 

method enables many configurations. They are characterized by 

their ability to handle erroneous PRMs. GPDRC can pick which 

system configuration to employ if an issue persists. FT's 

hardware overhead was compared to TMR's. One FT 

architecture requires less hardware. Fewer PRMs make the 

GPDRC a lower priority. More considerable PRBs slow 

Reconfiguration. Overhead and PRB size must be balanced (and 

the reconfiguration time). 

In the future, Markov models will be built for the proposed fault 

recovery FT structures. Moreover, Pipelined microprocessor 

partitioning experimented with hardware overhead and PRB 

size.  
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