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Abstract: Most over-parameterized deep neural networks can generalize to true data. Even over-parameterized networks can learn 

randomly shuffled bytes in true data, which is far better than just random guessing. In such a scenario where, localized relations are lost 

to a huge extent, over-parameterized networks show generalization capability. In this paper, multiple models have been trained on 

various subsets and derivations of CIFAR10 data. Then the models have been trained on true images and true labels, randomly shuffled 

bytes, and true labels, ordered shuffled bytes and true labels, and randomly generated noise. Shuffling of bytes instead of pixels can 

distort the image to a great extent, yet over-parameterized models are able to generalize the data. After experimentation, it has been 

observed that generalization in true pixels is easier in comparison to randomly shuffled bytes data, and generalization in randomly 

shuffled bytes data is similar to ordered shuffled pixel data. However, memorization is easier and is not affected by any relationships in 

data.  

Keywords: Deep learning, over-parameterized deep neural networks, generalization, over-fitting, memorization, CIFAR-10, VGG, 

Manifold learning, PCA  

1. Introduction

The question of what can a deep model generalize and what it 

cannot was highlighted by [1, 2]. They demonstrated that over-

parameterized neural networks have a huge capacity and can 

memorize an entire dataset. Most modern deep neural networks 

(where the number of parameters far exceeds the number of 

training samples) can fit random labels and/or complete 

random noise and reduce the training error to almost zero. The 

work in [1, 2, 3, 20] provides an experimental study on deep 

neural networks and suggests that optimization remains an easy 

process even when generalization is not possible, e.g., in cases 

such as where the labels are randomized. The work in this 

paper is hugely inspired by [1,2]. 

Multiple models on various subsets and derivations of 

CIFAR10 data have been trained. Models on true image and 

true labels randomly shuffled bytes and true labels, ordered 

shuffled bytes and true labels, and randomly generated noise 

were trained. Throughout the study, labels were never 

randomized. Randomizing labels shatter the relation in training 

and test data, and so there is no question of generalization in 

such cases. Doing this provides more distortion in the localized 

relation in a sample and through the dataset. Random shuffling 

implies the permutation of shuffling of bytes in an image is 

random and ordered shuffling implies a single permutation is 

applied to all the images in the dataset (test and train).  Even in 

such settings, over-parameterized deep neural networks show 

some learning that is far better than just random guessing. In 

this paper, the following observations have been found: 

i. Some data are easier to generalize than others;

generalization in over-parameterized networks is not

solely the property of architecture.

ii. The ease of generalization in over-parameterized

convolutional networks depends on the semantic and

localized relation in the dataset, but not completely.

Generalization is the combined property of data and

architecture (implicit regularization).

iii. Over-parameterized networks have a great tendency

to generalize before completely over-fitting (this

could be because of over-parameterization, implicit

regularization, and high dimensional data being

mapped to few classes, and so initial generalization is

easy, as long as it is possible).

iv. However, memorization remains easy and is not

affected by any existence of relation/meaning in data.

Memorization in over-parameterized networks is

solely the property of the architecture (remains fairly

similar for data of comparable size). Explicit

regularization can prevent memorization, but it is not

guaranteed.

v. Over-parameterized networks are extremely powerful

tools to extract features from the data. (This relation

may or may not be semantic and/or local)

2. Related Works

Numerous studies try to provide a framework to control 

generalization error. VC dimensions [4], Rademacher 

complexity [5], uniform stability [6,7,8]. Numerous studies try 
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to formulate some bounds on the network design and 

learnability of deep neural networks. It is known that a two-

layer network can optimize the regularized loss to a global 

minimum in polynomial iterations, using noisy gradient 

descent, if it has infinite width [9]. The expressive power of the 

shallow network is less than that of a deep network [10]. The 

universal approximation theorem defines the upper bound on 

the approximation capability of a two-layer network. Any 

continuous and bounded function can be approximated by a 

two-layer network having nonlinear activation [11, 12, 13]. A 

two-layer network can optimize the regularized loss to a global 

minimum in polynomial iterations, using noisy gradient 

descent, if it has infinite width [14]. The problem with such 

theoretical bounds is that such upper bounds fail to capture any 

meaningful real-life application. Under such assumptions, 

hypothesis space is infinite, and so is the width of the network

.  

SGD can optimize to global minima with zero classification 

error in polynomial time [15]. If the labels are true, SGD learns 

and generalizes, but when the labels are random, SGD finds a 

network that memorizes the data. Over-parameterized networks 

can improve generalization by leveraging larger sizes and more 

complex activations. The learned network distributes the 

information evenly among the neurons [16].  

3. Dataset Description 

Notations used: 

Ɗ (𝑖𝑚𝑎𝑔𝑒𝑠𝑚
𝑛 ): Dataset of true images and true labels, having 

total class n and m samples/ class. 

Ɗ (𝑖𝑚𝑎𝑔𝑒𝑠𝑚
′𝑛): Dataset of images with randomly shuffled 

bytes, having total class n and m samples/ class. 

Ɗ (𝑖𝑚𝑎𝑔𝑒𝑚
′′𝑛): Dataset of images with ordered shuffled bytes, 

having total class n and m samples/ class. The order of the 

shuffle remains the same for all images of the dataset.  

N: Noise (Randomly generated meaningless data)  

Description of datasets: 

A three-channel image of dimension 32x32 has 1024 pixels and 

3072 bytes. Shuffling of bytes instead of just shuffling of pixels 

further distorts/modifies the localized information as even the 

color information is lost/modified. The transformation of 

randomly shuffling the pixels/bytes is a lossy transformation 

(there is no way to retrieve the original image back easily), but 

the transformed dataset can also be treated as a standalone 

dataset with images and labels pairs. This assumption is crucial 

while interpreting the results obtained. Note that the ordered 

shuffled is not the lossy transformation, it only modifies the 

localized information.  

Ɗ (𝑖𝑚𝑎𝑔𝑒𝑚
𝑛 ) →Ɗ (𝑖𝑚𝑎𝑔𝑒𝑚

′𝑛) and Ɗ (𝑖𝑚𝑎𝑔𝑒𝑚
𝑛 ) →Ɗ 

(𝑖𝑚𝑎𝑔𝑒𝑚
′′𝑛) can be considered a data transformation. However, 

Ɗ (𝑖𝑚𝑎𝑔𝑒𝑠𝑚
𝑛 ), Ɗ (𝑖𝑚𝑎𝑔𝑒𝑠𝑚

′𝑛), Ɗ (𝑖𝑚𝑎𝑔𝑒𝑠𝑚
′′𝑛) and Ɗ (𝑁𝑚

𝑛 ) can 

also be considered a separate dataset.  

CIFAR-n data have been used for the experiments, where 10 

<= n < 1 (1 not inclusive), n being the total number of classes 

in the dataset. CIFAR-n data was also shuffled bytes wise, in 

an ordered and unordered manner. Also, models were trained 

on randomly generated noise.  

While training the various networks, 5000 training samples and 

1000 test samples were used per class. For all other purposes, 

1000 samples per class were considered for ease of 

computation and better visibility of the plots.   

 
Fig 1: samples from dataset (a) Sample images from cifar10 (b) corresponding images from (a) with randomly shuffled bytes (c) 

randomly generated noise 

The purpose of the experiment was to study the ability of 

various architectures to generalize and memorize the data. 

Under these circumstances, it also becomes important to 

understand the data and the effect of shuffling the bytes.  The 

transition Ɗ (𝐶𝐼𝐹𝐴𝑅𝑚
𝑛 )  →Ɗ (𝐶𝐼𝐹𝐴𝑅𝑚

′𝑛) is not a lossy 

transformation as the transition Ɗ (𝐶𝐼𝐹𝐴𝑅𝑚
′𝑛) →Ɗ (𝐶𝐼𝐹𝐴𝑅𝑚

𝑛 ) is 

possible.  The transition Ɗ (𝐶𝐼𝐹𝐴𝑅𝑚
𝑛 ) →Ɗ (𝐶𝐼𝐹𝐴𝑅𝑚

′′𝑛) is a 

lossy transformation as the transformation Ɗ (𝐶𝐼𝐹𝐴𝑅𝑚
′′𝑛) →Ɗ 

(𝐶𝐼𝐹𝐴𝑅𝑚
𝑛 ) is not possible. This is because in Ɗ (𝐶𝐼𝐹𝐴𝑅𝑚

′𝑛) 

bytes are shuffled in fixed permutation.  In transition Ɗ 

(𝐶𝐼𝐹𝐴𝑅𝑚
𝑛 ) →Ɗ (𝐶𝐼𝐹𝐴𝑅𝑚

′𝑛) and Ɗ (𝐶𝐼𝐹𝐴𝑅𝑚
𝑛 ) →Ɗ (𝐶𝐼𝐹𝐴𝑅𝑚

′′𝑛) 

Localized relation is distorted/modified.  

Principal component analysis (PCA) decomposes a high 

dimensional dataset in a set of successive orthogonal 

components that explain a maximum amount of the variance. 

PCA Visualizations can highlight important patterns in the 

dataset. Figure 2 plots PCA visualization of a class with respect 

to all others in the dataset [18].  Each block in the figure 

represents a pair of classes from an n-class dataset (except the 

diagonals, which represent only 1 single class). While for 

extremely high dimensional data, a 2D PCA plot may not be 

sufficient to explain the dataset, however, it may provide some 

visual information about the separability of classes. The 

clusters in Fig. 2(a) are more dispersed than the clusters in Fig 

2(b), implying the samples of   Ɗ (𝐶𝐼𝐹𝐴𝑅𝑚
′𝑛) are more similar 



 

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(1s), 97–112 |  99 

than Ɗ (𝐶𝐼𝐹𝐴𝑅𝑚
𝑛 ), and localized relations are lost in shuffling. 

Fig. 2(c) is remarkably similar to Fig. 2(b) implying the data 

sets Ɗ (𝐶𝐼𝐹𝐴𝑅𝑚
′𝑛) and Ɗ (𝐶𝐼𝐹𝐴𝑅𝑚

′′𝑛) are very similar. Fig. 2(d) 

represents evenly distributed samples that are randomly 

generated.    

  

(a) PCA visualization of a class with respect to all 

other class of Ɗ (𝐶𝐼𝐹𝐴𝑅1000
10 ) (true image) 

(b) PCA visualization of a class with respect to all 

other class of Ɗ (𝐶𝐼𝐹𝐴𝑅1000
′10 ) (randomly shuffled 

bytes) 

  

(c) PCA visualization of a class with respect to all 

other class of Ɗ (𝐶𝐼𝐹𝐴𝑅1000
′′10 ) (ordered shuffled bytes) 

(d) PCA visualization of a class with respect to all 

other class of Ɗ (𝑁1000
10 ) (Randomly generated noise) 

Fig. 2. 2D PCA plot of the data Ɗ (𝐶𝐼𝐹𝐴𝑅1000
10 ), Ɗ (𝐶𝐼𝐹𝐴𝑅1000

′10 ), Ɗ (𝐶𝐼𝐹𝐴𝑅1000
′′10 ) and Ɗ (𝑁1000

10 ) 

 

4.1 Data Visualization 

To better understand the results that are obtained, it is 

important to understand the dataset that is used for training. 

The generalization achieved for each dataset is different. It is a 

challenge for us to measure the loss of information in the 

dataset achieved from shuffling in a meaningful manner. 

Mapping high dimensional data to a 2D plot may still not be a 

particularly good idea [32]; however, this might give some 

indication of the change in information the true data undergoes 

after random shuffling of bytes.  

The figures in the section show various visualizations of the 

three-class subset of the data, Ɗ (𝐶𝐼𝐹𝐴𝑅1000
3 ), Ɗ (𝐶𝐼𝐹𝐴𝑅1000

′3 ), 

and Ɗ (𝑁1000
3 ). A 3-class subset of the data has been selected 

for better visibility of the Figures.  Figures 3-9 shows manifold 

embedding [19], Random projection, truncated SVD, isomap, 

standard LLE, modified LLE, MDS, random trees, spectral, t-

SNE, and NCA embedding for 3 class data.  

Random projection is an efficient dimensionality reduction 

technique, where the pairwise distance between any two 

samples is preserved [21, 22].  
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3(a) Ɗ (𝐶𝐼𝐹𝐴𝑅1000
3 )  3(b) Ɗ (𝐶𝐼𝐹𝐴𝑅1000

′3 )  3(c) Ɗ (𝑁1000
3 )  

 

Fig. 3. Random projection embedding of the data sets. (a) Random projection embedding of 3 class true images (b) Random projection embedding of 3 

class ordered shuffled bytes. (c) Random projection embedding of 3 class randomly generated noise. 

 

Truncated singular value decomposition (Truncated SVD) is 

very similar to PCA and produces a low rank approximation of 

the data [23]. 

   

4(a) Ɗ (𝐶𝐼𝐹𝐴𝑅1000
3 )  4(b) Ɗ (𝐶𝐼𝐹𝐴𝑅1000

′3 )  4(c) Ɗ (𝑁1000
3 )  

 

Fig. 4: truncated SVD embedding of the data sets. (a) truncated SVD embedding of 3 class true images (b) truncated SVD embedding of 3 class ordered 

shuffled bytes. (c) truncated SVD embedding of 3 class randomly generated noise. 

 

Isometric Mapping seeks a lower-dimensional embedding that 

maintains geodesic distances between all points. It can be 

considered an extension of multidimensional scaling [24].  

   

5(a) Ɗ (𝐶𝐼𝐹𝐴𝑅1000
3 )  5(b) Ɗ (𝐶𝐼𝐹𝐴𝑅1000

′3 )  5(c) Ɗ (𝑁1000
3 )  

 

Fig. 5. Isomap embedding of the data sets. (a) Isomap embedding of 3 class true images (b) Isomap embedding of 3 class ordered 

shuffled bytes. (c) Isomap embedding of 3 class randomly generated noise. 

 

Locally linear embedding (LLE) is a dimensionality reduction 

technique; it preserves distances within local neighborhoods. It 

can be thought of as a series of local PCA which are globally 

compared to find the best nonlinear embedding [25].  
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6(a) Ɗ (𝐶𝐼𝐹𝐴𝑅1000
3 )  6(b) Ɗ (𝐶𝐼𝐹𝐴𝑅1000

′3 )  6(c) Ɗ (𝑁1000
3 )  

 

Fig. 6. LLE embedding of the data sets. (a) LLE embedding of 3 class true images (b) LLE embedding of 3 class ordered shuffled bytes. (c) LLE 

embedding of 3 class randomly generated noise. 

 

Multidimensional scaling (MDS) is a technique that creates 

mappings of items based on distance. It is used for analyzing 

similarity or dissimilarity in data [26,27].  

   

7(a) Ɗ (𝐶𝐼𝐹𝐴𝑅1000
3 )  7(b) Ɗ (𝐶𝐼𝐹𝐴𝑅1000

′3 )  7(c) Ɗ (𝑁1000
3 )  

 

Fig. 7. MDS embedding of the data sets. (a) MDS embedding of 3 class true images (b) MDS embedding of 3 class ordered shuffled bytes. (c) MDS 

embedding of 3 class randomly generated noise. 

 

Spectral clustering results in a low-dimension embedding of the 

similarity matrix between the samples, followed by clustering 

[28,29,30,31].  

   

8(a) Ɗ (𝐶𝐼𝐹𝐴𝑅1000
3 )  8(b) Ɗ (𝐶𝐼𝐹𝐴𝑅1000

′3 )  8(c) Ɗ (𝑁1000
3 )  

 

Fig. 8. Spectral embedding of the data sets. (a) MDS embedding of 3 class true images (b) MDS embedding of 3 class ordered shuffled bytes. (c) MDS 

embedding of 3 class randomly generated noise. 

 

T-distributed Stochastic Neighbor Embedding (t-SNE) is a 

technique to visualize high-dimensional data. It converts 

similarities between data points to joint probabilities and tries 

to minimize the Kullback-Leibler divergence between the joint 

probabilities of the low-dimensional embedding and the high-

dimensional data. 
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9(a) Ɗ (𝐶𝐼𝐹𝐴𝑅1000
3 )  9(b) Ɗ (𝐶𝐼𝐹𝐴𝑅1000

′3 )  9(c) Ɗ (𝑁1000
3 )  

Fig. 9. t-SNE embedding of the data sets. (a) t-SNE embedding of 3 class true images (b) t-SNE embedding of 3 class ordered shuffled bytes. (c) t-SNE 

embedding of 3 class randomly generated noise. 

 

5. Architecture and Training 

Four architectures VGG (modified) [17], small net, tNet, 

convNet have been trained for experimentation purposes. In the 

VGG network, the dense layer has been modified to 512 

parameters. The VGG architecture contains no normalization 

and dropout. Small net has four convolutional layers and one 

dense layer. Small net has no regularization but has three 

dropouts. TNet is the largest network of all with a total of 

67,716,666 trainable parameters. Normalization is used with 

each layer. No dropout and maxpool are used in tNet. ConvNet 

is a convolution network with convolutional layers along with 

batch normalization, dropout, and max pooling. In Fig. 10. 

shows four architectures used for the experimentation. Each 

architecture is trained on CIFAR-n data: true images, randomly 

shuffled images, and randomly generated noise, where 10 <= n 

< 1 and n is the total number of classes in the dataset. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10. VGG (modified), small net, tNet, convNet Architecture 

 

Extraordinarily little to no extra efforts were made to train the 

model better. Each model was trained for 250 epochs. 

Categorical cross entropy for loss function. SGD and ReLU are 

used for VGG (modified), tNet and convNet Learning rate of 

0.01 SGD and no decay while small net use RMSprop and 

ReLU for training with a learning rate of 0.0001, decay equals 

1e-06. The batch size of 512 was used for training.  
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6. Performance Analysis of Models 

Table 1 shows the best accuracy of VGG (modified), small net, 

tNet and convNet for the dataset Ɗ (𝐶𝐼𝐹𝐴𝑅5000
𝑛 ), Ɗ 

(𝐶𝐼𝐹𝐴𝑅5000
′𝑛 ) and   Ɗ (𝑁5000

𝑛 ).   Ɗ (𝑁5000
𝑛 ) is evenly and 

randomly generated noise, and there is nothing to be learned in 

sthe data.   Ɗ (𝑁5000
𝑛 ) is used to test the memorization ability of 

the model, and the test accuracy remains equal to just random 

guessing. E.g., for a 2-class classification task, just random 

guessing will result in 50% accuracy. ForƊ (𝐶𝐼𝐹𝐴𝑅5000
′𝑛 ) each 

model shows some learning greater than random guessing, 

implying some form of learning (initial generalization). Near-

perfect train accuracy with low test accuracy implies 

memorization. Similar test and train accuracy mean good 

generalization. Models, when trained on Ɗ (𝐶𝐼𝐹𝐴𝑅5000
𝑛 ), show 

good generalization. Models, when trained on Ɗ (𝐶𝐼𝐹𝐴𝑅5000
′𝑛 ), 

show initial generalization before over-fitting.  

 

Table 1:  best train and test accuracy of VGG (modified), small net, tNet and convNet for the dataset Ɗ (𝐶𝐼𝐹𝐴𝑅5000
𝑛 ), Ɗ (𝐶𝐼𝐹𝐴𝑅5000

′𝑛 ) 

and   Ɗ(Nn5000). 

Dataset Variant Best accuracy 

  VGG (Modified) Small Net tNet convNet Random 

Guess 

CIFAR2 True Image Train: 100% 

Test: 95.90% 

Train: 99.67% 

Test: 97.05% 

Train: 100% 

Test: 94.70% 

Train: 100% 

Test: 97.05% 

50.00% 

Shuffled Bytes  Train: 100% 

Test: 75.80% 

Train: 92.77% 

Test: 74.80% 

Train: 100% 

Test: 73.95% 

Train: 99.87% 

Test:75.30% 

Noise Train: 100% 

Test: 50.00% 

Train: 91.49 

Test: 50.00% 

Train: 100% 

Test: 50.00% 

Train: 50.65 

Test: 50.00% 

CIFAR3 True Image Train: 100% 

Test: 91.53% 

Train: 98.29% 

Test: 92.80% 

Train: 100% 

Test: 88.27% 

Train: 100% 

Test: 93.30% 

33.33% 

Shuffled Bytes  Train: 100% 

Test: 57.43% 

Train: 76.10% 

Test: 53.53% 

Train: 99.99% 

Test: 54.83% 

Train: 99.10% 

Test: 57.17% 

Noise Train: 100% 

Test: 33.33% 

Train: 78.39% 

Test: 33.33% 

Train: 99.99% 

Test: 33.33% 

Train: 34.12% 

Test: 33.33% 

CIFAR4 True Image Train: 100% 

Test: 84.70% 

Train: 95.00% 

Test: 87.80% 

Train: 99.98% 

Test: 82.07% 

Train: 99.98% 

Test: 89.23% 

25.00% 

Shuffled Bytes  Train: 100% 

Test: 42.72% 

Train: 61.23% 

Test: 38.50% 

Train: 99.97% 

Test: 40.83% 

Train: 98.26% 

Test: 42.97% 

Noise Train: 100% 

Test: 25.00% 

Train: 60.23% 

Test: 25.00% 

Train: 99.97% 

Test: 25.00% 

Train: 25.12% 

Test: 25.00% 

CIFAR5 True Image Train: 100% 

Test: 81.32% 

Train: 90.88% 

Test: 84.58% 

Train: 99.98% 

Test: 76.10% 

Train: 99.96% 

Test: 87.02% 

20.00% 
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Shuffled Bytes  Train: 100% 

Test: 37.12% 

Train: 55.24% 

Test: 34.54% 

Train: 99.96% 

Test: 35.66% 

Train: 97.00% 

Test: 36.86% 

Noise Train: 100% 

Test: 20.00% 

Train: 45.45 

Test: 20.00% 

Train: 99.95% 

Test: 20.00% 

Train: 19.89% 

Test: 20.00% 

CIFAR 6 True Image Train: 100% 

Test: 75.28% 

Train: 86.44% 

Test: 81.15% 

Train: 99.98% 

Test: 69.87% 

Train: 99.92% 

Test: 84.08% 

16.66% 

Shuffled Bytes  Train: 100% 

Test: 23.78% 

Train: 45.40% 

Test: 28.85 

Train: 99.95% 

Test: 28.35 

Train: 97.34% 

Test: 31.33% 

Noise Train: 100%  

Test: 16.66% 

Train: 41.74% 

Test: 16.66% 

Train: 99.96% 

Test: 16.66% 

Train 16.84% 

Test: 16.66%s 

CIFAR7 True Image Train: 100% 

Test: 75.64% 

Train: 85.5% 

Test: 80.54% 

Train: 99.97% 

Test: 69.23% 

Train: 99.93% 

Test: 84.59% 

14.28% 

Shuffled Bytes  Train: 99.85% 

Test: 27.19% 

Train: 37.83% 

Test: 25.59% 

Train: 99.96% 

Test: 23.79% 

Train: 97.11% 

Test: 27.04% 

Noise Train: 99.87% 

Test: 14.28% 

Train: 36.43% 

Test: 14.28% 

Train: 99.87% 

Test: 14.28% 

Train: 14.14 

Test: 14.28% 

CIFAR8 True Image Train: 100% 

Test: 74.00% 

Train: 82.69% 

Test: 78.95% 

Train: 99.97% 

Test: 68.59 

Train: 99.98% 

Test: 85.05% 

12.50% 

Shuffled Bytes  Train: 99.74% 

Test: 24.28% 

Train: 29.33% 

Test: 21.30% 

Train: 99.96% 

Test: 23.39% 

Train: 97.35 

Test: 24.01 

Noise Train: 99.81 

Test: 12.50% 

Train: 27.12 

Test: 12.50% 

Train: 99.95% 

Test:12.50% 

Train: 12.37% 

Test: 12.50% 

CIFAR9 True Image Train: 100% 

Test: 75.80% 

Train: 83.16% 

Test: 79.90% 

Train: 99.97% 

Test: 69.16% 

Train: 99.86 

Test: 85.13% 

11.11% 

Shuffled Bytes  Train: 99.61% 

Test: 21.48% 

Train: 32.08% 

Test: 19.40% 

Train 99.95%: 

Test: 20.47% 

Train: 96.55%: 

Test: 21.06% 

Noise Train: 99.86% 

Test: 10% 

Train: 24.10% 

Test:10% 

Train: 99.94% 

Test:10% 

Train: 11.06 

Test:10% 
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CIFAR10 True Image Train: 100% 

Test: 74.94% 

Train: 79.79% 

Test: 78.28% 

Train: 99.96% 

Test: 68.76% 

Train: 99.90% 

Test: 85.35% 

10.00% 

Shuffled Bytes  Train: 99.64% 

Test: 20.85% 

Train: 27.68% 

Test: 18.15% 

Train: 99.94% 

Test: 19.27 

Train: 96.69% 

Test: 20.67% 

Noise Train: 99.77% 

Test:10% 

Train: 20.95% 

Test: 10% 

Train: 99.87% 

Test: 10% 

Train: 9.98% 

Test: 10% 

 

6.2 Training Plots The test/train and loss plotted against epoch maintain a similar 

trend for the number of classes, as shown in Fig. 11, 12, 13, 

and 14.  

 
Fig. 11: Accuracy and Loss of VGG (Modified), small net, tNet and convNet trained on CIFAR10 true data 
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Fig 12: Accuracy and Loss of VGG(Modified), small net, tNet and cconvNet trained on CIFAR10 randomly shuffled bytes. 
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Fig 13: Accuracy and Loss of VGG(Modified), small net, tNet and cconvNet trained on noise, size = CIFAR10 

 

Experiment has also been performed for datasets CIFAR-n, 

(n=9,8,7,6,5,4,3,2). And it has been seen that training and test 

plots of accuracy and loss are similar to the 10-class dataset as 

shown in Fig. 18. 

   

Accuracy and Loss of VGG(Modified), 

small net, tNet and cconvNet trained on 

CIFAR 9 true data 

 Accuracy and Loss of VGG(Modified), 

small net, tNet and cconvNet trained on 

CIFAR 9 randomly shuffled Bytes.  

Accuracy and Loss of VGG(Modified), 

small net, tNet and cconvNet trained 

on Noise, size = CIFAR 9  
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Accuracy and Loss of VGG(Modified), 

small net, tNet and cconvNet trained on 

CIFAR 8 true data 

Accuracy and Loss of VGG(Modified), 

small net, tNet and cconvNet trained on 

CIFAR 8 randomly shuffled Bytes.  

Accuracy and Loss of VGG(Modified), 

small net, tNet and cconvNet trained on 

noise, size = CIFAR 8 

 

 

   

Accuracy and Loss of VGG(Modified), 

small net, tNet and cconvNet trained 

on CIFAR 7 true data 

Accuracy and Loss of VGG(Modified), 

small net, tNet and cconvNet trained on 

CIFAR 7 randomly shuffled Bytes.  

Accuracy and Loss of VGG(Modified), 

small net, tNet and cconvNet trained on 

noise, size = CIFAR 7 

   

Accuracy and Loss of VGG(Modified), 

small net, tNet and cconvNet trained on 

CIFAR 6 true data 

Accuracy and Loss of VGG(Modified), 

small net, tNet and cconvNet trained on 

CIFAR 6 randomly shuffled Bytes.  

Accuracy and Loss of VGG(Modified), 

small net, tNet and cconvNet trained on 

noise, size = CIFAR 6 
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Accuracy and Loss of VGG(Modified), 

small net, tNet and cconvNet trained on 

CIFAR 5 true data 

Accuracy and Loss of VGG(Modified), 

small net, tNet and cconvNet trained on 

CIFAR 5 randomly shuffled Bytes.  

Accuracy and Loss of VGG(Modified), 

small net, tNet and cconvNet trained on 

noise, size = CIFAR 5 

 

 

   

Accuracy and Loss of VGG(Modified), 

small net, tNet and cconvNet trained on 

CIFAR 4 true data 

Accuracy and Loss of VGG(Modified), 

small net, tNet and cconvNet trained on 

CIFAR 4 randomly shuffled Bytes.  

Accuracy and Loss of VGG(Modified), 

small net, tNet and cconvNet trained on 

noise, size = CIFAR 4 

   

Accuracy and Loss of VGG(Modified), 

small net, tNet and cconvNet trained on 

CIFAR 3 true data 

Accuracy and Loss of VGG(Modified), 

small net, tNet and cconvNet trained on 

CIFAR 3 randomly shuffled Bytes.  

Accuracy and Loss of VGG(Modified), 

small net, tNet and cconvNet trained on 

noise, size = CIFAR 3 
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Accuracy and Loss of VGG(Modified), 

small net, tNet and cconvNet trained on 

CIFAR 2 true data 

Accuracy and Loss of VGG(Modified), 

small net, tNet and cconvNet trained on 

CIFAR 2 randomly shuffled Bytes.  

Accuracy and Loss of VGG(Modified), 

small net, tNet and cconvNet trained on 

noise, size = CIFAR 2 

 

Fig. 14: Train and test accuracy and loss for datasets CIFAR-n, (n=9,8,7,6,5,4,3,2) 

 

It can be observed from Fig. 17 and Fig. 18 that over-

parameterized networks can generalize to true data easily, as in 

the case with CIFAR-n data. In the case of randomly shuffled 

bytes, over-parameterized networks show accuracy which is 

greater than just mere guessing, implying there is some form of 

learning that takes place. Considering randomly shuffled bytes 

of CIFAR-n dataset, a separate dataset CIFAR-n’ and ordered 

shuffle bytes of CIFAR-n dataset another separate dataset 

CIFAR-n”, It is observed that it is easier to generalize CIFAR-

n than CIFAR-n’ and CIFAR-n”. The trainability and 

learnability of CIFAR-n’ and CIFAR-n” remain similar. It is in 

this regard that most theoretical bounds do not capture the true 

generalization ability of deep neural networks.  

 

An interesting observation is that results for randomly shuffled 

bytes and ordered shuffle bytes remained the same. This could 

be because CNNs extract localized information. Once the 

localized information is lost (or distorted), over-parameterized 

networks do not capture the difference between randomly 

shuffled and ordered shuffled bytes. This could indicate that 

over-parameterized networks tend to learn a broader relation in 

data than just simply (over) fitting the training data pairs.  

If pixel randomization is considered as a data transformation 

problem, ordered pixel shuffling and random pixel shuffling 

are two different transformations. But this data transformation 

is supplemented by loss in information (distortion in localized 

semantic relation). This implies localized semantic relation in 

data is of vital importance in the generalization of over-

parameterized networks. However, even with complete 

distortion in localized information, networks capture some 

relation and show some learning, implying that localized 

information is not all that deep neural networks look for while 

learning.  

Learning in shuffled bytes datasets shows that the over-

parameterized deep networks are great tools for feature 

extraction. It can also be observed that memorization remains 

an easy task across architectures and datasets. However, 

convNet fails to memorize the randomly generated noise each 

time. But convNet achieves best performance for true images 

and at par results for shuffled bytes. By increasing the size of a 

fully connected layer or reducing the explicit regularization, by 

either approach convNet could memorize the randomly 

generated noise. ConvNet is the only architecture in the 

experiment with heavy explicit regularization and smaller fully 

connected layers. Using explicit regularization may help in not 

memorization but this is not necessary, as by just increasing the 

size of fully connected layers, the model could overcome the 

effect of regularization.  

7. Conclusion 

It is observed that generalization in Ɗ (𝐶𝐼𝐹𝐴𝑅𝑛 ) is easier in 

comparison to Ɗ (𝐶𝐼𝐹𝐴𝑅′𝑛) and generalization in Ɗ 

(𝐶𝐼𝐹𝐴𝑅′𝑛) is similar to Ɗ (𝐶𝐼𝐹𝐴𝑅′′𝑛). If one considers Ɗ 

(𝐶𝐼𝐹𝐴𝑅𝑛 ), Ɗ (𝐶𝐼𝐹𝐴𝑅′𝑛), Ɗ (𝐶𝐼𝐹𝐴𝑅′′𝑛) a separate dataset, it 

can be concluded that some data can be generalized easier than 

others. Thus, generalization is the combined property of data 

and model.  

Optimization remains easy even under scenarios where 

generalization is not possible [1-2]. The work presented in this 

paper concludes that generalization remains a possibility if 

there is some consistent relationship between train and test data 

(images and labels). Considering transformation Ɗ (𝐶𝐼𝐹𝐴𝑅𝑛 ) 

→Ɗ (𝐶𝐼𝐹𝐴𝑅′𝑛) and Ɗ (𝐶𝐼𝐹𝐴𝑅𝑛 ) →Ɗ (𝐶𝐼𝐹𝐴𝑅′′𝑛), even after 

distortion/modification in localized relation, all models show 

some learning for Ɗ (𝐶𝐼𝐹𝐴𝑅′𝑛) and Ɗ (𝐶𝐼𝐹𝐴𝑅′′𝑛). This 

implies that, even after complete distortion in localized relation 

in the data, over-parameterized deep networks can extract some 

information and show some learning. Over-parameterized deep 

networks have enormous potential for generalization.  

It has been observed that convNet failed to memorize the 

randomly generated data, but by increasing the parameters or 

by decreasing the explicit regularization, convNet could fit the 

randomly generated noise, implying explicit regularization may 

work against over-fitting, but this is not guaranteed.  

 

8. Future Possibilities 

Studying generalization as a combined property of architecture 

and data could help develop better deep learning models. Most 

theoretical bounds only capture the extreme possibility of the 

data or the model in practical applications; this is not a 
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sufficient measure of the possible results. While localized 

information in data plays a vital role in the generalization of 

convolutional neural networks, this is not all the information 

that a network learns. A better understanding of what an over-

parameterized network learns is to be developed.  

It is difficult to say for sure when and how much effect various 

explicit regularization techniques have on generalization and 

memorization. Such design decisions are mostly hit and trail; 

this points to the lack of very fundamental understanding of the 

over-parameterized networks and regularization techniques.  

Is it possible to develop a framework to understand what can 

and cannot be generalized? It remains a question for us, how 

much information is lost in the transformation from true pixels 

to shuffled bytes, and what is the best generalization that is 

possible against the loss of information due to this 

transformation.  

Even after a huge distortion in information, over-parameterized 

networks can learn the data to some extent. This knowledge 

can be used to develop a method of training models that are 

more resilient against adversarial attacks.  
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