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Abstract: Electricity theft is a major concern for electric power distribution companies. The data set from the State Grid Corporation of 

China (SGCC) is preprocessing; first, order dataset by date, second, remove the empty record from the dataset, third, missing values by 

linear interpolation, and finally, imbalanced data handling technique. Then find feature extraction including monthly average, slope, 

moment and standard deviation, Variance, Peak to Peak, Energy Entropy, Skewness, Crest Factor, Total harmonic distortion, Log 

Energy, and Kurtosis for all months with gather. After finding features of the dataset, Deep Convolution Neural Network (DCNN) 

applied DCNN with A map is classified using a convolution layer to extract features, followed by a softmax layer. DCNN is used for data 

classification in energy theft or non-theft. Finally, the calculated accuracy achieved 100%, which is quite promising in comparison to 

other reported categorization schemes. The number and date of the theft were then calculated for each of the records in which the theft 

occurred. 

Keywords: Electricity Theft Detection, SGCC dataset, Statistical Features, Deep Learning, DCNN, Date of Theft.   

1. Introduction

Electricity loss is the difference between the amount of energy 

injected and the amount of energy supplied to consumers. 

Electricity losses in a power system are primarily due to the 

generation, transmission, and distribution of electrical energy 

[1]. There is much research using the SGCC dataset for 

detecting electricity theft, such as Bohani Farah Aqilah's 

(2021), Many supervised learning approaches, such as decision 

trees (DT), artificial neural networks (ANN), deep artificial 

neural networks (DANN), and AdaBoost, are compared in 

terms of accuracy, recall, precision, AUC, and F1 scores. The 

data used in this investigation were given by the State Grid 

Corporation of China (SGCC) [2]. Noor Ibrahim (2021) The 

architecture of the smart grid (SG) generates data that includes 

each consumer's power use. With this knowledge, machine 

learning and deep learning algorithms could be able to 

recognize power thieves. It is possible to identify automated 

power theft using a CNN model. To categorize and recognize 

electricity theft, this study proposes experimenting with 

different configurations of the sequential model (SM). Two 

layers of 128 nodes and 64 nodes have been found to provide 

the most efficient performance. The accuracy got up to 0.92 

[3].  

In [4], proposes a smart grid energy theft detecting technology 

that preserves privacy. CNN is used to find irregularities in 

long-term metering data. Paillier algorithm protects your 

energy usage's anonymity. Sensitive energy consumption data 

is safely communicated with little loss. Their security study 

shows that their system protects data and authenticates users. 

Their revised CNN model can detect deviant behaviors with 

92.67 percent accuracy. 

In [5], describes a CNN-LSTM electrical theft detection 

system. CNN automatically extracts and classifies features. 

Since smart grid power consumption data is a time series, they 

developed a CNN-LSTM model for data categorization. When 

a dataset has gaps, a revolutionary data pre-processing method 

calculates missing instances. Very few electrical theft victims 

may have hampered the model's accuracy. Synthetic data was 

used to remedy this inequality. The results show that the 

suggested technique can consistently separate paying and 

stealing electricity customers. 

In [6], the authors described an energy theft detection technique 

based on power providers' power consumption data collection 

systems to identify energy theft at the edge. The steps are as 

follows. Using K-means and neural network parameters, the 

centralized data center decomposes large amounts of data into 

little data for feature extraction. For more precise features, they 

create DWMCNN, which can extract day, week, and month 

features. In the edge data center, RF classifies collected 

characteristics. Clustering speeds up edge computing-

distributed processing, according to tests. The feature extractor 

is convergent. It's more precise and less computationally 

demanding than previous multiple-classifier techniques, 

making it perfect for edge data centers. 

In [7], suggested Ensemble-based deep learning can identify 

erroneous readings in real-time. A sliding window of readings 

is used to train deep-learning models. The best-performing 

model is used to train other models on a range of false reading 

ratios; these models are employed in their ensemble-based 

detection approach. Extensive testing shows that, compared to 

the typical daily and weekly detection processes, which require 

144 and 1,008 measurements, their detector can detect 
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erroneous readings after only a few (around 15). 

In [8], proposes a three-part ETD structure. The first module 

handles power anomalies, outliers, and non-standard data. 

Second-module class balancing uses a hybrid method. The third 

module uses an artificial neural network (ICANN) to anticipate 

electricity theft. A conventional neural network (ANN) may be 

enhanced by changing hyper-parameters, regularization, and 

skip connections to classify smart meters. The additional study 

improves the final classification's generalization and function-

fitting. Numerical studies reveal that the ETD model 

outperforms machine learning and deep learning on real-world 

energy datasets. This model is industrial. 

In [9], introduces a novel hybrid DL model for smart grid 

power theft detection. AlexNet handles dimensionality while 

adaptive boosting classifies energy thieves and normal 

consumers (AdaBoost). Near miss sampling addresses class 

imbalance. AdaBoost and AlexNet hyper-parameters are also 

optimized with bees. The hybrid approach uses smart meter 

data. Simulations demonstrate the hybrid model is the most 

accurate classifier. Their recommended model achieves 88 

percent accuracy, precision, recall, F1-score, Matthew 

correlation coefficient, and receiver AUC, respectively. 

In [10], introduces Data obtained by Smart Grid Infrastructure 

(SGCC) including electricity usage per consumer. By utilizing 

a 16-layer CNN model with high data processing and extracting 

a set of statistical characteristics, algorithms based on machine 

learning and deep learning may be able to identify electric 

force thieves using this data. The result is quite high. To 

classify and identify electricity theft. 

2. The SGCC Dataset  

This section covers the attributes of the dataset, where the 

electricity theft data was obtained from the State Grid 

Corporation of China (http://www.sgcc.com.cn/ ) [11]. Data set 

for 34 months. Smart meters or user sensors collect electricity 

usage data. The data network collects data. In this case, the 

smart meter, sensor, or data transmission server may fail to 

store and therefore the electricity consumption statistics will 

contain missing or incorrect data. This data set contains 

missing values. If the missing duplicates are eliminated, the 

data set decreases, making analysis difficult.  SGCC provides 

real-time energy usage data for the investigation. 42,372 rows 

and 1,035 columns make up this collection. The customer ID is 

in the first column, a prediction indication called "Tag" is in the 

second column, and the day's columns begin in the third 

column (1035). The collection's non-numeric metadata 

categories include values, characters, and numbers that are 

missing or wrong. The two-year and ten-month energy usage 

for each user is represented by missing or erroneous numbers 

and statistics. The flag column's information (zero and one) 

identifies the different customer types (normal or thief). The 

total number of zeros in the "Flag" column represents the 

average amount of energy consumed, and it is 1. (38757). 

While "the flag" only mentions one thief, there are a total of 

(3615). The number (42372) refers to the statistics of total 

energy consumers' usage for a period of 1,035 days (from 

January 1, 2014, to October 31, 2016). 

 

Table 1: Metadata information of the original electricity theft dataset. 

Description Value 

Time window of data collection 1 January 2014–31 October 2016 

Total number of consumers 42 372 

Number of normal users 38 757 approx. 91.5% 

Number of aberrant users or electricity thieves 3 615 approx. 8.55% 

Missing data cases approx. 25.6393% 

Smart meters or sensors collect electricity usage data and the 

network collects data. In this case, the smart meter, sensor, or 

data transmission server may fail to store it. Consequently, the 

electricity consumption statistics will contain missing or 

incorrect data. This data set contains missing values. If they are 

discarded, the data set decreases, making analysis difficult. 

Therefore we manipulated the missing values to prevent 

shrinkage of the data set and thus negatively affect the final 

result. We have filled in the missing data and will mention this 

in detail later. Table (1) shows the original data for the data set 

and Table (2) the updated data for the data set. The updated 

data includes 25,790 consumers, 2088 deviant users, and 

23,702 impartial users. After processing the blank cells, we 

deleted all records with more than 10 blank cells and performed 

unbalanced data processing. 

Table 2: Metadata information of the updated electricity theft dataset. 

Description Value 

Time window of data collection 1 January 2014–31 October 2016 

Total number of consumers 25790 

Number of normal users 23702 approx. 91.19% 

Number of aberrant users or electricity thieves 2088 approx. 8.81% 

Missing data cases approx. 0.00000388% 

Normal users have varied electricity usage habits. Figure (1)  

 

depicts a typical user and an electrical thief's monthly use. An 

aberrant or electricity-theft user has a fluctuating usage pattern. 

http://www.sgcc.com.cn/
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Fig. 1: monthly electric power consumption pattern. 

 

The electricity theft dataset is an unbalanced dataset, where one 

class is much lower than the other. Figure (2) shows the 

distribution of users who are normal and thieves, Figure (3) 

shows their distribution in the updated dataset, and Figure (4) 

shows their distribution in a balanced updated dataset.

 

 
Fig. 2: Distribution of theft and normal users in the original dataset 

 

 
Fig. 3: Distribution of theft and normal users in the updated dataset 
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Fig. 4: Distribution of theft and normal users in a balanced updated dataset 

 

3. The Proposed System Layout 

This section explains the general layout of the proposed theft 

classification system. The proposed system consists of six main 

stages, as shown in Figure (5) and Figure (6) shows the 

description of the SGCC dataset.   

 
Fig. 5: The Proposed System Stages. 

 

 
Fig. 6: SGCC Dataset description. 

 

7.1 Pre-processing Stage  

Primary data processing is one of the most important steps that 

affect the accuracy of the system, so it is necessary to filter the 

raw data and find the updated data. The feature extraction 

methods are applied to this updated data.  Figure (7) shows the 

pre-processing steps of the SGCC dataset.  

1. The columns of the dataset are ordered by date. This order 

is easy to deal with the dataset and determine the periods of 

the theft. The dataset history starts from January in the year 

2014 to October in the year 2016. 

2. Remove all empty records, where there are five empty 

records in the SGCC dataset. Empty records indexes are 

(421, 686, 3030, 37832, and 41000). Three of these 

records are electricity theft (theft) and two of them records 

are natural electrical energy (no-theft). 

3. Before the size empty reading, the centroid value is 

calculated for the closest neighbor. Find the M nearest non-

empty readings at the before side 

(posb(1),posb(2),...,posb(M)) whose days numbers are Find 

the position and centroid value of the nearest non-empty 

neighbor: 

              Cb =
1

M
∑ Rb(i),         Pb

M

i=1

=
1

M
∑ Posb(i)

M

i=1

                                (1) 

4. Following the size empty reading, the centroid value for the 

closest neighbor is calculated. Locate the M non-empty 

readings that are nearest to each other on the after side 

(Ra(1), Ra(2),..., Ra(M)) whose days numbers are (posa(1), 

posa(2),..., posa(M)). Find the position and centroid value 

of the nearest non-empty neighbor: 
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             Ca =
1

M
∑ Ra(i),              Pa =M

i=1
1

M
∑ Posa(i)M

i=1                            (2) 

5. (5) On the SGCC dataset, linear interpolation (LI) is used 

to process missing values. Using the centroids, the missing 

value R(i) is as follows: 

                R(i) =
Ca − Cb

Pa − Pb

(i − Pb)

+ Cb                                                          (3) 

6. Remove all records with more than ten cells missing 

values, where the missing data ratio is approx. is 

0.00000388%. The total number of consumers is 25790. 

The number of normal users is 23702 approximation of 

91.19%. The number of aberrant users or electricity thieves 

is 2088 approx. 8.81%.  

7. We use ADASYN to acquire comprehensive SGCC data. 

In essence, SMOTE is improved upon. Minor change: it 

inserts new random values that are linearly connected with 

the parent samples but have a little bit larger variance after 

creating n-nearest neighbor samples. This tweak produces a 

more representative sampling of data. To produce more 

examples of the underrepresented classes, the ADASYN 

algorithm must first determine how many synthetic data 

samples, g, must be generated. The following equation may 

be used to determine this value: 

                g 

=  (m j − mi)β,                                                                       (4) 

where (mj, mi) is the number of representatives from the 

majority and minority groups, respectively. An equality 

constraint between the two groups, [0,1], is employed to 

determine the relative weight of each group. Then, using the 

Euclidean distance, we determine K's closest neighbors and use 

that information to compute the ratio ri as: 

ri =
δi

k
,      where i =  1 … ..                                                    (5) 

To clarify,  the number of samples from the majority class in 

the k nearest neighbors, and the number of synthetic samples; 

hence, r i is in the range [0, 1]. Last but not least, g i is the total 

of simulated data samples. 

Gi

=  ri  

∗  g                                                                                              (6) 

ADASYN serves a dual purpose: it avoids the model from 

being biased while also enhancing the classifier’s learning 

performance for challenging theft scenarios. 

 
Fig. 7: SGCC pre-processing Steps. 

 

3.2 Features Extraction Stage 

The feature extraction is include many features are slope, 

average, moment, Stander Deviation (SD), total harmonic 

distortion, log energy, Peak to Peak (P2P),  energy entropy, 

5skewness, kurtosis, and Crest Factor (CF). All these features 

are explained in chapter two, where the first three measures are 

applied each month in the year for the SGCC dataset, and other 

measures are applied to all recorded for the SGCC dataset.  

Figure (8) shows the steps for extracting features through 

statistical measures of the SGCC dataset. 
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Fig. 8: The feature extraction by statistical measures. 

 

3.3 Create DCNN Model  Stage 

The proposed CNN model was designed with several layers to 

classify the dataset. The input layer is a 2D image with a size of 

13×19×1, whereas the original records are 1D with a size of 

1×247. We convert a 1D record into a 2D image by using 

reshape function, whereas CNN is dealing with 2D-image. 

Figure (9) describes all Layers of the CNN Model. 

 
Fig. 9:  Layers for CNN Model. 

 

Tabel (3) shows the proposed CNN layers and parameters 

where the number of parameters is weights and bias, FS is filter 

size, the stride is a stride of filter, and NF is the number of 

filters, the number of filters computes as follows: 

No. of paramteres = (fwidth × fheight × inputchannel

+ bias) × Nfilter 

The output of the pooling layer compute as follows: 

sizepooling =
image size − filter size

stride 
+ 1 
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Table 3: The proposed CNN layers and parameters. 

Id Layers Input size Output size 
 

Filter Size(FS) 

 

N. parameters 

1.  Input layer 19 × 13 × 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

82 

 

 

 

 

8 

- 

 

- 0 

2.  Convolution layer 1 19 × 13 × 1 

 

19 × 13 × 200 

 

𝐹𝑆 = 3 × 3 

NF=200 

2000 

3.  Batch normalization layer 19 × 13 × 200 

 

19 × 13 × 200 

 

- 0 

4.  Activation Using ReLU 

(relu1) 

19 × 13 × 200 

 

19 × 13 × 200 

 

- 0 

5.  Max pooling layer 

(maxpool1) 

19 × 13 × 200 

 

9 × 6 × 200 

 

𝐹𝑆 = 2 × 2 

𝑆𝑡𝑟𝑖𝑑 = 2 × 2 

 

 

2 × 2 

 

2 × 2 

 

0 

6.  Convolution layer 

(conv2) 

9 × 6 × 200 

 

9 × 6 × 200 

 

3 × 3 

 

360200 

7.  ReLU (relu2) 9 × 6 × 200 

 

9 × 6 × 200 

 

- 0 

8.  Max pooling layer 

(maxpool2) 

9 × 6 × 200 

 

4 × 3 × 200 

 

𝐹𝑆 = 2 × 2 

𝑆𝑡𝑟𝑖𝑑 = 2 × 2 

 

0 

9.  Convolution layer 

(conv3) 

5 × 4 × 200 

 

5 × 4 × 200 

 

3 × 3 

 

360200 

10.  ReLU (relu3) 4 × 3 × 200 

 

4 × 3 × 200 

 

- 0 

11.  Max pooling layer 

(maxpool3) 

 

 

 

4 × 3 × 200 

 

2 × 1 × 200 

 

- 0 

12.  Fully connected layer 

(fc1) 

2 × 1 × 200 

=400 

20 - 8000 

13.  Dropout layer(0.5) 20 10 D=0.5 0 

14.  Fully connected layer 

(fc2) 

10 2 - 20 

15.  Softmax layer 2 2 - 0 

16.  Classification output  2 1 - 0 

 

Experiments with the proposed CNN are conducted by first 

providing a sample data set, which is then subdivided into two 

distinct categories: designing and testing. The model 

parameters are initially defined using the training set, and the 

trained model is then tested using the validation data. After the 

training process is over, the model is put to the test on the test 

dataset. The goal of separating design data into training and 

validation is to set aside some of the data for later use in 

evaluating results. The training data partitioning is depicted in 

Figure (10). 

 

 
Fig. 10: The split of the data into training, validation, and test data. 

After the training procedure is finished, the testing set is used 

to measure the efficiency of the final model. The test dataset is 

used to compute the different performance characteristics such 

as accuracy, sensitivity, specificity, and F-measure.  

 

4. Compute the Energy Theft Period  

This section explains and shows how to determine the period of 

power theft in the SGCC data set after processing the missing 

values and deleting the records with the largest 10 blank cells. 

We obtained a data set consisting of 2088 thieves and 23701 

non-thieves records, Then we took the data of houses from the 

category of thieves, which numbered 2088, and applied 

algorithm (1) to it, and we got the total number of days and 

date in which the theft occurred for each house among the 2088 

houses. Algorithm(1) explain the Compute the Energy Theft 

Period steps, Table (6) represents the total number of days in 
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which the theft occurred for five houses Only, the date is 

mentioned for the same days in Table (7), and finally, Figures 

(11, 12, 13, 14, 15) respectively... show the normal and 

abnormal consumption of electrical energy in five houses out of 

the 2088 houses over 1034 a day. 

Algorithm (1): Date of energy theft 

 

Input: daily consumption of SGCC dataset (A), where the first record is the date and the other record is daily consumption for 

each house, the number of records is N=2089, and the number of columns is M=1034. 

Output: Date of the energy theft day (Date_Theft). 

Begin: 

Step 1: Create matrix (Date_Theft) with zeros and size (N-1), where  

Step 2: The select different threshold is th = [0.75, 0.85], and the number of  the threshold is L = 2 

Step 3: Normalization of records and find the date of day theft period as follows: 

     For k=1: L 

   For i =2 to N 

             Norm_A(i, : ) = A(i, : )/max(A(i, : )) 

        For j =1 to M 

           If Norm_A(i, j) >= th then  

                         Date_Theft(i, j) = A(1, j)     

               End if 

                End for j 

               End for i 

           End for k 

   End of algorithm 

 

Table 4: The number of theft periods for  five records 

Homes Numbers of period 

Home1 13 

Home2 6 

Home3 3 

Home4 1 

Home5 1 

 

Table 5: The dates of theft periods for five records 

Homes Numbers of period 

Home1 

"2016/6/25" "2016/7/8" "2016/7/17" "2016/7/23" "2016/7/26"  "2016/7/27"

 "2016/7/28" "2016/7/29" "2016/7/30" "2016/8/1"  "2016/8/5" "2016/8/8"

 "2016/8/25" 

Home2 "2014/4/11" "2014/4/18" "2014/5/1" "2014/5/9" "2014/5/16" "2014/5/17" 

Home3 "2016/2/6" "2016/2/7" "2016/2/8" 

Home4 "2015/8/10" 

Home5 "2015/8/10" 

 

The below figure explains five homes representing five records, 

where the x-axis represented days and y axis represented 

energy. The maximum wave represented energy theft.  
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Fig. 11: Show the Energy consumption of Homes (1-5) in 1034 days. 

 

 

The below figure explains one home represented one record, 

where the x-axis represented days and y axis represented 

energy. The maximum wave represented energy theft, where 

the number of theft days is 13 days when the threshold is 0.75.  

 

 
Fig. 12: show the Energy consumption of Home1 in 1034 days. 

 

      

The below figure explains one home represented one record, 

where the x-axis represented days and y axis represented 

energy. The maximum wave represented energy theft, where 

the number of theft days is six days when the threshold is 0.75. 
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Fig. 13: show the Energy consumption of  Home2 in 1034 days. 

 

The below figure explains one home represented one record, 

where the x-axis represented days and y axis represented 

energy. The maximum wave represented energy theft, where 

the number of theft days is three days when the threshold is 

0.75. 

 
Fig. 14: show the Energy consumption of Home3 in 1034 days. 

 

      The below figure explains one home represented one 

record, where the x-axis represented days and y axis 

represented energy. The maximum wave represented energy 

theft, where the number of theft days is one day when the 

threshold is 0.75. 

 
Fig. 15: show the Energy consumption of Home 4 in 1034 days. 

 

The below figure explains one home represented one record, 

where the x-axis represented days and y axis represented 

energy. The maximum wave represented energy theft, where 

the number of theft days is one day when the threshold is 0.75.

 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(1s), 01–13 |  11 

 
Fig. 16: Show the Energy consumption of  Home5 in 1034 day. 

 

5. Discuss the Results 

Multiple cases have been studied to train different features and 

get different accuracy, as shown below: 

Case 1: if some features were selected, such as average, 

standard division, and standard division/average, then accuracy 

was equal to 93.2.    

Case 2: if some features are selected, such as average, slope, 

and moment, then accuracy equals 93.8. 

Case 3: if some features are selected, such as average, Std 

Deviation, Variance, Peak to Peak, Energy Entropy, Skewness, 

Crest Factor, Total harmonic distortion, Log Energy, and 

Kurtosis; then attained accuracy was equal to 91.9. 

Case 4: if using the feathers average, slope, and moment for 

every period and Std Deviation, Variance, Peak to Peak, 

Energy Entropy, Skewness, Crest Factor, Total harmonic 

distortion, Log Energy, and Kurtosis for all periods with gather, 

then attained accuracy was equal to 100. 

Also, balance Dataset applied on same cases. Table (6) show 

the accuracy of the balance and imbalance dataset, Figure (16) 

shows the Confusion Matrix for the learning rate change, 

Figure Error! No text of specified style in document. shows 

the training process and loss rate learning rate change, and 

Table (7) shows the  Measures of the training dataset and 

shows the result of the DCNN model and comparison with 

previous work in Table (8). 

 

Table 6: Accuracy for balance and imbalance dataset. 

Cases  Accuracy (Imbalance) Accuracy (Balance) 

1 93.2 88.4 

2 93.8 88.8 

3 91.9 63.2 

4 100 91.8 

 

 
Fig. 16: Confusion Matrix for the learning rate change. 
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Fig. 17: Error! No text of specified style in document.: training process and loss rate learning rate change. 

 

Table 7:  Measures of the training dataset. 

 

Parameters 

Training method =ADAM; Mini Batch=256; Epochs=10; Learn 

Rate=3e-4 

Accuracy 100 

Precision 100 

Recall 100 

F-measure 100 

False Negative Rate 0 

False Positive Rate 0 

 

6. The Comparison with the Previous Work 

This section explains the comparison with other works as 

shown in table (5). Table (4) shows measures of the training 

dataset for optimal parameters. From the review of previous 

studies, we note the superiority of the proposed system by 

accuracy and other criteria such as recall, Precision, F-measure, 

False Negative Rate, and False Positive Rate. 

 

Table 8: Summary of models, data sets, and performance measures. 

Method Year Accuracy 

Proposed DCNN model 2022 100 

self-attention mechanism model [22] 2020 0.926 

convolutional Neural Networks (CNN) and  Long Short-Term 

Memory (LSTM) [23] 

2019 89 

combined convolutional neural networks (CNNs) [24] 2019 92.67 

hybrid DL model [25] 2022 88 

CNN-GRU-PSO [26] 2020 87 

CNN [27] 2019 93 

Hybrid 2DCNN and BiLSTM [28] 2022 97 

Ensemble Deep Convolutional Neural Network (EDCNN) 

algorithm.[29] 

2020 99 

autoencoder-bidirectional gated recurrent unit (AE-BiGRU) 

model [30] 

2022 91.1 

Autoregressive Integrated moving average (ARIMA). In the 

second stage, the distributed random forest (DRF) [31] 

2022 98 

 

 

7. Conclusion 

The important conclusions of this paper are solving the 

problems of the SGCC dataset and finding feature extraction. 

SGCC dataset problems are missing values, empty records, 

Imbalanced data, and non-order. First, find feature extraction of 

the SGCC dataset by many methods, such as creating a new 

dataset for theft or non-theft classification. The features are 
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slope, average, moment, stander deviation, total harmonic 

distortion, Log Energy, Peak to Peak, Energy Entropy, 

Skewness, Kurtosis, and Crest Factor. Then applied DCNN to 

the classification dataset and computed accuracy. Finally, 

compare the proposed model with models for previous works. 

The number and date of the theft were then calculated for each 

of the records in which the theft occurred. 
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