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Abstract: Multi-objective Master production scheduling problem is  NP-hard problem, therefore because there is no algorithm that can 

identify the proper solution to this problem, the processing time required to solve it grows exponentially as the size of the problem increases, 

So, finding optimal solution is considered very difficult, and that is why meta-heuristics algorithm such as genetic algorithm (GA), 

simulated annealing (SA) and memetic algorithm (MA)are used to obtain the optimal solution. This article presented a hybrid particle 

swarm optimization (HPSO) technique for the purpose of solving fuzzy multi-objective master production schedules (FMOMPS). The 

fundamental concept is to integrate PSO and GA mutation operations. The purpose of this work is to apply the FMOMPS to an industrial 

case study involving a textile facility in Mosul, Iraq. The application includes decide the gross requirements by forecasting of demand 

using artificial neural networks, in addition to locate available production rate of every production line by using geometric process model 

for all stops and failures, and calculate availability values. The proposed method confirmed its usefulness in locating optimal solutions for 

MPS issues when compared to genetic algorithms for fuzzy and non-fuzzy models, as the results clearly demonstrated HPSO's superiority 

over GA, SA, and MA across all objectives. 

Keywords: Fuzzy Logic, Particle Swarm Optimization, Master production scheduling, Multi-Objective Optimization. 

1. Introduction

Production planning at the tactical level, commonly referred to as 

Master Production Scheduling (MPS), is a theory that has been 

adopted by numerous businesses for many years. One of the 

challenges inherent in developing tactical production plans is the 

fact that demand fluctuates over time due to a variety of 

unforeseeable factors. However, due to the industry's limited 

resources, it is impossible to estimate demand perfectly. These 

factors make the production planner's job extremely difficult. One 

could recommend increasing capacity during periods of high 

demand, but this wastes time and money, and in addition, the 

business will have even more unused capacity during periods of low 

demand Vieira (2004).   

The search for an optimal solution to the master production 

schedule problem deals with several factors and performance 

indexes. Among the multiple objectives to be considered, 

maximizing the level of customer service, minimizing of Inventory 

level, reduction overtime, and reduced inventory levels below the 

safety stock level. All of this is in a scenario composed of resource 

capacity constraints, production rates that vary according to the 

productive resources and the products to be manufactured, 

preparation times, a seasonal demand that is close to or, often, 

higher than the installed capacity Higgins and Browne (1992) 

In such an environment, the aforementioned objectives constitute 

an arduous mission to be accomplished, as some are in conflict with 

each other, for example: service level versus stock level. For if there 

is ademand in a certain period above the productive capacity. It is 

necessary to raise the level of stocks in the previous periods in order 

to maintain the level of service. 

Garey and Johnson (1979) established mathematically that this 

problem is NP-Hard, namely, unlikely to have an algorithm that can 

discover an optimal solution to the problem in polynomial time 

when capacity limitations and preparation durations are taken into 

account. Therefore, due to difficulties in solving the problem, it 

may be advisable to use heuristics algorithms, whether they are 

constructive, probabilistic or stochastic based on artificial 

intelligence techniques, which are called meta-heuristics. 

It is important to note that heuristics algorithms do not guarantee 

the achievement of an optimal solution to the problem. However, in 

most cases, they arrive at a solution close to the optimum in a 

reasonable computational time Ribas (2003). 

Hybrid evolutionary algorithm (HPSO) has been proposed to tackle 

the fuzzy multi-objective MPS problem in this study, PSO and GA 

mutations are integrated into this algorithm. The purpose of this 

article is to implement FMOMPS in a textile manufacturing facility. 

The application uses artificial neural networks to estimate demand 

and determine the gross requirement for each production line.

The remainder of the essay is structured as follows: The following 

part discusses a brief change of master production scheduling, and 

Section 3 discusses the proposed technique for solving FMOMPS 

difficulties. In Section 4, an FMOMPS has been developed for the 

purpose of conducting an industrial case study. Section 5 contains 

a comparison of HPSO and GA. Section 6 contains of the study 

conclusion. 

2. Foundation Of MPS

The production schedule master calendar. MPS management is a 

basic issue in the manufacturing process that might result in a low 
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service level because it relates directly between customer service 

and the optimal use of production resources. MPS management is a 

critical interface between marketing and manufacturing. 

According to the APICS dictionary( American Production and 

Inventory Control Society), Cox in 2001, master production 

schedule is “The expected construction schedule that includes a 

group of plans that drive the material requirement planning (MRP). 

The company plans represent a description of the special shapes, 

quantities, and dates. The main production schedule does not 

represent the sales forecast that describes the demand situation only, 

but it takes into consideration the forecast, the production plan, and 

other important considerations such as pending orders, available 

materials, available energy, production policy, etc. In other words, 

the master production schedule represents a description of demand, 

forecast, accumulated orders, available inventory and agreed 

quantities.” Cox (2001). 

Proud in 1999 considered  that the real challenge is to develop the 

master production schedule to achieve the  balance between supply 

and demand Proud. As the request may include the expectation, the 

customer’s requests (which may or may not be part of the 

expectation), long-term contracts and agreements, the requirements 

of the subsidiary store (the refilling of distribution centres) or 

requests from another department within the company if the product 

is considered one. The components are in another part of the 

company, as well as for special works such as industrial exhibitions 

and for increasing safety storage needs. All of these requests are 

referred to as gross Vollmann, et al. (1997). 

To achieve these requirements, the master production schedule 

needs availability of materials and production capacity (production 

lines or machines). It includes those materials that are produced 

internally in addition to those that are obtained from external 

sources, beside the product itself. Other parameters such as 

quantities, dates and time of supply must be taken into 

consideration. While capacity includes workers and equipment. 

Both of which are united with its processing. Time, capacity and 

capital are also important parameters that must be taken into 

consideration Slack(2001). 

The improvement in mathematical programming methods greatly 

led to a significant improvement in the MPS production schedule in 

various production systems, as well as in objectives and limitations. 

Chu in (1995) developed a linear programming system to obtain an 

optimal or near-optimal solution to the MPS problem to increase 

profits subject to demand, supply and labor resources. Vieira in 

(2004) proposed a practical heuristic algorithm to solve the MPS 

problem, and provided an example that illustrated the important and 

complex details of creating the optimal MPS capable of maximizing 

system throughput. Wu et al. in (2002), constructed a mathematical 

model of MPS problem and developed it by using genetic 

algorithm, in addition to combining several techniques such as 

branch and bound to achieve constraints of production scheduling 

problem in order to obtain the optimum solution of production lines. 

Vieira and Ribas in (2004) have solved MPS problem by using 

simulated annealing. The study revealed that evolutionary 

algorithms are able to overcome the Local Optimum. Vieira et al. 

in ( 2004) compared between Genetic Algorithm GA and Simulated 

Annealing SA in solving the MPS problem.  Soares and 

Vieira(2008) introduced a new evolutionary algorithm to tackle the 

MPS problem. The study developed a fitness function to minimize 

inventory levels, requirement not met levels, overtime, and 

inventory below safety stock levels Soares and Vieira(2008).On the 

other hand, Supriyanto in (2011) proposed fuzzy MPS model and  

used genetic algorithm as a way to compare the fuzzy model with 

the classic model. The results showed significant improvement in 

some objectives. Sadiq et al. in (2020) suggested a memetic 

algorithm for resolving the problem of master production 

scheduling. The findings demonstrated the algorithm's capability 

when compared to GA and SA .  

2.1 Mathematical Model of FMOMPS 

Supriyanto (2011) detailed the comparable crisp model for fuzzy 

multi-objective MPS as follows: .[13] 

 

𝑚𝑎𝑥   𝑤1𝜇𝑧1(𝑥) + 𝑤2𝜇𝑧2(𝑥) + 𝑤3𝜇𝑧3(𝑥) + 𝑤4𝜇𝑧4(𝑥)            

𝑠. 𝑡.  

 𝜇𝑧1(𝑥) ≤
𝑍1

1 − 𝑍1(𝑥)

𝑍1
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𝜇𝑧4(𝑥) ≤ 1 −
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1 − 𝑍4(𝑥)

𝑎
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𝑍4(𝑥) − 𝑍4

1

𝑏
                                             

𝐶𝑈𝐻𝑟𝑝 − 𝐴𝐶𝑟𝑝 ≤ 𝑂𝐿𝑚𝑎𝑥                                              

𝑤1 + 𝑤2 + 𝑤3 + 𝑤4 = 1                                               

𝜇𝑧𝑖 ∈ [0,1]; 𝑖 = 1,2,3,4                                                  

 𝑥𝑘𝑟𝑝 ≥ 0 𝑎𝑛𝑑 𝑖𝑛𝑡𝑒𝑔𝑒𝑟                                                                (1) 

Where 

 

𝑍1(𝑥) =
∑ ∑ 𝐸𝐼𝑘𝑝

𝑃
𝑝=1

𝐾
𝑘=1

𝑇𝐻
                                                            (2) 
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𝑃

𝑝=1

𝑅

𝑟=1

                                                                 (5) 

𝐵𝐼𝑘𝑝 = {
𝑂𝐻𝑘                                    𝑖𝑓(𝑝 = 1)
𝐸𝐼𝑘(𝑝−1)                             𝑖𝑓(𝑝 > 1)

                        (6) 

𝐸𝐼𝑘𝑝 = 𝑚𝑎𝑥 [0, ((𝑀𝑃𝑆𝑇𝑘𝑝 + 𝐵𝐼𝑘𝑝) − 𝐺𝑅𝑘𝑝)]                 (7) 

𝑀𝑃𝑆𝑇𝑘𝑝 = ∑ 𝑀𝑃𝑆𝑘𝑝𝑟

𝑅

𝑟=1

                                                              (8) 

𝑀𝑃𝑆𝑘𝑝𝑟 = 𝐵𝑁𝑘𝑝𝑟 ∗ 𝐵𝑆𝑘𝑝𝑟                                                           (9) 

𝑅𝑁𝑀𝑘𝑃 = 𝑚𝑎𝑥 [0, (𝐺𝑅𝑘𝑝 − (𝑀𝑃𝑆𝑇𝑘𝑝 + 𝐵𝐼𝑘𝑝))]         (10) 

𝐵𝑆𝑆𝑘𝑝 = max[0, (𝑆𝑆𝑘𝑝 − 𝐸𝐼𝑘𝑝)]                                         (11) 

𝐶𝑈𝐻𝑟𝑝 = ∑
(𝑀𝑃𝑆𝑘𝑟𝑝)

𝑈𝑅𝑘𝑟

𝐾

𝑘=1

                                                        (12) 

𝑂𝐶𝑟𝑝 = 𝑚𝑎𝑥[0, (𝐶𝑈𝐻𝑟𝑝 − 𝐴𝐶𝑟𝑝)]                                      (13) 
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The characters of this formulation describe as follows: wi: 

represents the weighting coefficients used to determine the priority 

of each fuzzy goal; and x: the MPS solution; When the objective 

function has a value of Z i0 or Z i1, then the degree of membership 

function is 0 or 1, respectively; a and b: the upper and lower limits 

of permissible violations of the overtime object; K: Total amount 

of various items; R: Total amount of various producing resources; 

P: Number of planning periods in total; TH: Time horizon for 

planning; EI kp: End-of-period inventory level for product k at 

period p; RNM kp: Requirements for product k that were not met 

during period p; BSS kp: Quantity below the level of safety 

inventory for product k during period p; OC rp: Required excess 

capacity at resource r during period p; BI kp: The initial inventory 

level of the product k at the beginning of the period p; OH k: Initial 

inventory available (on-hand) at the start of the scheduling period; 

GR kp denotes the gross need for product k during period p; BS kp: 

Lot size standard for product k during period p; NR kp: Net 

requirement for product k during period p, taking infinity capacity 

into account; SS kp: Level of safety inventory for product k during 

period p; UR kr: Units per hour of production of product k at 

resource r; AC rp: Capacity available, in hours, at resource p during 

period p; BN kpr: The number of standard lot sizes required to 

produce the product k at the resource r during the period p (number 

of lots); MPS kpr: Total quantity of product k to be made at resource 

r during period p; MPST kp: Total quantity of product k to be 

manufactured during period p (taking into account all available 

resources); CUH rp: Capacity consumed by the resource r during 

the time p; 𝑂𝐿𝑚𝑎𝑥: Allowed maximum overtime. 

 

3. Solving FMOMPS Using HPSO 

Particle Swarm Optimization (PSO) was developed by Kennedy 

and Eberhart in 1995 and is based on the social behavior of flocks 

of birds. In PSO, each individual represents a particle that travels 

through a solution space of the problem. Each particle is assigned a 

position, which represents a possible solution to the problem to be 

solved, and a velocity value, which regulates the movement in the 

position of the particle. The quality of the position of each particle 

(fitness) is related to one or more objective functions that represent 

the problem to be solved. To promote broad exploration of the 

search space Hansheng et al. in (1999). The initial positions and 

velocities assigned to each particle are randomly generated 

Hansheng et al. (1999). 

As the algorithm progresses, velocity and position change as a 

function of social interaction based on the social tendency of each 

individual to emulate the success of other individuals in the 

population. The change in the position of each particle depends on 

its own knowledge and environment, since in this change the best 

position visited by the particle and the best position visited by some 

individual in the swarm (pbest) is considered. As the algorithm 

progresses, the particles are concentrated in areas with good quality 

solutions of the search space (gbest)Baweja,  and Saxena (2018). 

Upon completion, the algorithm returns the best solution visited by 

some individual in the swarm Zhan et al. (2009).  

 

A. FMOMPS Information : 

For FMOMPS problems, the proposed algorithm takes into 

observance many parameters presented in real industrial milieu: 

desired level of performance for each objective function. 

products number, productive resources number (production lines, 

workstations, machines), time periods number and duration for each 

period. 

on-hand (initial) inventories, gross requirements and production 

rate. 

lot sizes, setup time and available capacity. 

safety stock (safety inventory) level. 

B. The Objective Function : 

The equation 1 is designed to maximize weighted additive of the 

membership function of objectives. Due to the fact that HPSO 

minimizes the objective function, it is possible to decrease to obtain 

the maximum optimum solution. Assuming that DM's preference 

(w1=w2=w3=w4=0.25) holds true, the objective function for 

HPSO can be stated as follows : 

function z=f(x) 

𝜇𝑧1(𝑥) = ⋯ 

𝜇𝑧2(𝑥) = ⋯ 

𝜇𝑧3(𝑥) = ⋯ 

𝜇𝑧4(𝑥) = ⋯ 

𝑔(𝑥) = ⋯ 

z=- (0.25𝜇𝑧1(𝑥)+0.25 𝜇𝑧2(𝑥)+0.25 𝜇𝑧3(𝑥)+ 0.25𝜇𝑧4(𝑥))+ 𝑔(𝑥); 

end 

C. Particle Structure : 

A single vector structure is not used for describing particle content 

and shape in MPS issues, unlike the bulk of representations found 

in the literature. For a scenario with three products, four resources, 

and two time periods, the structure of a particle is shown in Figure 

1. 

Fig. 1. MPS Particle Structure 

The particle is made up of several layers of smaller components 

(objects). Each item is an integer positive number that represents 

the quantity of a product that one of the resources can make over a 

given time period. 

D. Initial Population Creation : 

By Generating a good initial population, HPSO algorithm could 

reache better solution in short time. This study presents a method 

for creating an initial population using uniform random integer 

numbers that are proportional to the production batch size, which is 

defined as: 

𝑷𝒂𝒓𝒕𝒊𝒄𝒍𝒆 = 𝒓𝒂𝒏𝒅𝒊𝒏𝒕(𝑵𝒑𝒐𝒑, 𝑵𝒗𝒂𝒓, [𝑽𝒂𝒓𝑴𝒊𝒏  𝑽𝒂𝒓𝑴𝒂𝒙])   (𝟏𝟒) 

Where 𝑵𝒑𝒐𝒑 represents size of population; 𝑵𝒗𝒂𝒓 represents the 

length of particle which equals to 𝑲 × 𝑹 × 𝑷; 

𝑽𝒂𝒓𝑴𝒊𝒏 𝒂𝒏𝒅 𝑽𝒂𝒓𝑴𝒂𝒙 represent lower and upper bound 

respectively. The function 𝒓𝒂𝒏𝒅𝒊𝒏𝒕 generates random integer with 

size of 𝑵𝒑𝒐𝒑 × 𝑵𝒗𝒂𝒓 and the number must be member of interval 

(𝑽𝒂𝒓𝑴𝒊𝒏  𝑽𝒂𝒓𝑴𝒂𝒙) Zhan et al. (2009). 

In general, the lower bound for all variables is equal to zero, while 

the upper bound takes different values. The pseudo code of 

determined upper bound may be written as follows. 

Procedures of determined upper bound 

s=0; 

for k=1:K 

    for r=1:R 

        if UR(k,r) ≠0 

for p=1:P 

   VarMax(s)=ceil(GR(k,p)/BS(k,p))*BS(k,p);    

   s=s+1; 

end 
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        else 

            VarMax(s:s+P-1)=0; 

            s=s+P; 

        end  

    end 

end  

 

E. Particles Movement : 

Moving a particle involves updating its speed and position at each 

iteration. The importance of this stage cannot be overstated because 

it provides the algorithm with the power to optimize. It is necessary 

to update the velocity of each particle in the swarm by applying the 

following equation: 

 

𝑉𝑖
𝑛+1 = 𝑟𝑜𝑢𝑛𝑑 (

𝑤∗𝑉𝑖
𝑛+𝑐1∗𝑟1(𝑃𝑖

𝑛−𝑥𝑖
𝑛)+𝑐2∗𝑟2(𝑃𝑔−𝑥𝑖

𝑛)

𝐵𝑆
) ∗ 𝐵𝑆     (15)  

in which c1 and c2 are both positive constant integers, which are 

referred to as the cognition and social coefficients respectively r1 

and r2 are random number vectors in the range (0, 1); w is a 

coefficient of inertia that decreases or increases in proportion to the 

speed of the particle. P i(n+1) is the velocity of particle I at iteration 

n+1; V i(n) is the velocity of particle I at iteration n; x i(n) is the 

position of particle I at iteration n; P i(n+1) is the best position the 

particle has passed through in its history (stored in memory); P g is 

the best particle in the entire universe (stored in memory). Finally, 

the new position of particle I denoted by the symbol x i(n+1), is 

computed using the equation (16). 

𝑥𝑖
𝑛+1 = 𝑥𝑖

𝑛 + 𝑉𝑖
𝑛+1                                                                    (16) 

Some parameters can be adjusted to improve the solutions. The 

linear reduction of the coefficient of inertia 𝑤. This strategy 

consists of gradually reducing the coefficient of inertia as the 

iterations progress. In the first iterations, the particles have a great 

capacity for exploration and, as the process progresses, their speed 

decreases favoring convergence. This effect can be achieved with 

the equation(17) as well as the constant c1 and c2 by function (18) 

and (19). 

𝑤 = 𝑤𝑚𝑎𝑥 −
𝑤𝑚𝑎𝑥 − 𝑤𝑚𝑖𝑛

𝑖𝑡𝑒𝑟𝑚𝑎𝑥
 × 𝑖𝑡𝑒𝑟                                       (17) 

𝑐1 = 𝑐1𝑚𝑎𝑥 −
𝑐1𝑚𝑎𝑥 − 𝑐1𝑚𝑖𝑛

𝑖𝑡𝑒𝑟𝑚𝑎𝑥
 × 𝑖𝑡𝑒𝑟                                    (18) 

𝑐2 = 𝑐2𝑚𝑎𝑥 −
𝑐2𝑚𝑎𝑥 − 𝑐2𝑚𝑖𝑛

𝑖𝑡𝑒𝑟𝑚𝑎𝑥
 × 𝑖𝑡𝑒𝑟                                     (19) 

 

 

F. Mutation Operator : 

The mutation operator is important to add diversity to the process 

and prevent the algorithm from falling to local minima because all 

particles are too similar from one generation to another, Goldberg 

(1989). Following the movement of particles in the evolutionary 

progression of (HPSO), a mutation operator is applied, which 

includes adding or deleting one manufacturing batch size from a 

specific variable in the particle as part of the evolutionary 

progression. The particles are chosen based on the probability of 

mutation (pm). When a mutation results in a poor particle, we revert 

to the particle that existed before to the mutation in this procedure. 

Maurya et al.(2019) 

 

 

G. Stopping criteria : 

Different conditions, such as completing the maximum amount of 

iterations or achieving marginal progress in the goal function, can 

be used as termination criteria. The following table summarizes the 

HPSO's pseudo-code: 

Procedures of HPSO 

Step 1: Initializing parameters of HPSO algorithm and set iter=0; 

Step 2: 

2.1: Define the parameters of FMOMPS problem; 

2.2: Generate some particles using eqn.(14) and initialize velocities 

of all particles; 

Step 3: iteration loop iter=iter+1 

Step 4:  

4.1: Evaluate each particle fitness value; 

4.2: Each particle velocity should be updated; 

4.3: Apply Mutation operator 

4.4: Update 𝑃𝑖
𝑛 and 𝑃𝑔; 

Step 5: Stopping Criterion Control; until a stopping criterion is 

satisfied, repeat steps 3-5. 

 

4. Industrial Case 

 

This section discusses a real-world problem involving the master 

production schedule. The textile plant in Mosul was founded in 

1956 as a medium-sized operation and now produces a diverse 

range of items, including fabrics, clothing, and towels. We develop 

a fuzzy master production schedule for a towels plant in this article. 

Towels Project is one of the investment projects, which came as a 

result of the development in meeting the needs of this change and 

to engage in market competition, production capacity of this project 

is nearly 144,000 towels annually. 

A. Calculate the MPS Parameters. 

To generate the MPS problem in the towels facility, the MPS 

settings in Table 1 must be used in conjunction with the towels 

facility. Before estimating availability, it is necessary to look at the 

production rates in Table 2. 

 

Table 1.  MPS's input parameters 

Parameters Value 

𝐾 5(T88,T89,T90,T91,T92) 

𝑅 4(DTL1,DTL2,EJTL1,EJTL2) 

P 6 weeks (3rd contain day off) 

𝐵𝑆𝑘𝑝 12 units are required for all goods and all time slots 

𝑈𝑅𝑟𝑝 Table 2. 

𝑂𝐻𝑘 Zero for all products 

𝑆𝑆𝑘𝑝 240 units are required for all goods and all time 

slots 

𝐴𝐶𝑟𝑝 40 hours/ resource 

𝑂𝐿𝑚𝑎𝑥 5  hours/ resource 
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B. Determine Gross Requirements : 

The production activity aims to provide the necessary products and 

services to consumers (Gross Requirements). Therefore, the 

demand forecasting process is the main guide of the productive 

activity in all projects. There is a wide variety of statistical methods 

developed to generate forecasts. The main drawback is that these 

methods are based on assumptions about data trends, generally 

having to use a different model for different demand behaviors. 

Ribas(2003). Prediction methods based on artificial neural 

networks (ANN) have contributed to improving the accuracy of 

forecasts in business situations Zhang(2003). They are methods that 

learn from the data, that is, they do not have predetermined 

equations based on assumptions about the behavior of the data. 

Therefore, BP artificial neural networks were used for predicting 

the MPS gross requirements  

 

 DLT1 DLT2 EJTL1 EJTL2 

T88 20 20 20 20 

T89 24 24 24 24 

T90 0 0 8 8 

T91 56 56 56 56 

T92 148 148 148 148 

                                                             

Table 2. The primary Production rates (unit/hour) 

For each product, we used weekly demand statistics. The sample 

data collection period was from 31 December 2014 to 1 January 

2020 and included a total of 261 observations. A multi-layer feed 

forward neural network with one hidden layer, one output node 

were used. The data were classified into two groups training and 

testing set for the purpose of conducting experiments to determine 

number of input nodes and number of hidden nodes for the network 

to choose the best construction for the network. The input nodes 

were chosen with a variation from 1-10 of the nodes while the 

hidden nodes varying from 2-10 with an increments of 2. So, a total 

of 50 neural network models were tested for each series of product 

demand before reaching the final structure of the neural network 

model. 

In this study, the Levenberg Marquardt algorithm that was designed 

to approach second-order training speed without calculate Hessian 

matrix has been used. It has been proved that this algorithm 

provides faster convergence of feed forward neural network with 

moderately sized. Zhang (2003). Table 3 illustrates the optimal 

neural network structure and the total requirements for each 

product. 

Table 3. The best ANN structures and gross requirements 

Prod. Str. 
Weeks 

1st 2nd 3rd 4th 5th 6th 

T88 5,6,1 1058 811 1146 790 1195 857 

T89 6,8,1 420 210 252 126 288 340 

T90 9,4,1 294 525 542 227 619 238 

T91 5,4,1 378 378 208 302 238 306 

T92 7,8,1 1260 181 1260 378 1440 1020 

 

 

C. Calculate Production Rates: 

To calculate production rates, the failures occurring for a period of 

three months in the period preceding the period of master 

production schedule are modelled using a probabilistic distribution. 

The simulation scenario entails the implementation of failures on 

workstations. Four failure controllers STO 1, STO 2, STO 3, and 

STO 4 are configured to initiate random failures in workstations 

DLT1, DLT2, EJTL1, and EJTL2. In this study, we apply the 

Geometric Process (GP) model with lognormal distribution to 

analyze four data sets, each one belongs to type of failure. The 

reason of using GP instead of renewal process is the mean time to 

failures MTTF is increasing with time and the mean time between 

failures MTBF is decreasing with time Lam (2007). By using Least 

squares method Yeh  and Chan (1998), we estimate the GP model 

parameter values for all failures. which are presented in Table 3. 

Table14 shows the availability values according to estimated 

parameters.  

 

Fail. Res. 
MTTF MTBF 

𝑎 𝜇 𝜎 𝑎 𝜇 𝜎 

STO_

1 
DLT1 0.971 1.34 0.35 1.039 38.76 12.1 

STO_

2 
DLT2 0.983 1.08 0.33 1.027 38.82 7.55 

STO_

3 

EJTL

1 
0.994 1.041 0.18 1.006 38.97 6.30 

STO_

4 

EJTL

2 
0.987 1.046 0.22 1.023 38.97 7.56 

Table 4.  The parameter values of GP model for all failures 

Res. Weeks 

1st 2nd 3rd 4th 5th 6th 

DLT1 96.658 96.433 96.192 95.937 95.664 95.375 

DLT2 97.293 97.175 97.053 96.925 96.792 96.653 

EJTL1 97.398 97.368 97.337 97.305 97.274 97.242 

EJTL2 97.386 97.294 97.198 97.098 96.996 96.890 

Table 5.  The availability values for resources 

 

D. Create Fuzzy Model : The FMOMPS model will be used for evaluation. Most 

significantly, the maximum and lower bounds for target level 
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should be set for all objectives. Table 6 contains the values of Z i1 

and Z i0. For practical solutions, it is recommended that the 

objective level must be reasonable. For overtime goal (a and b), the 

tolerable violation parameters are set to 5 and 4 hours, respectively. 

 

Objective 𝑍𝑖
1 𝑍𝑖

0 

Ending Inventory 𝑍1 3500 100 

Requirement not met 𝑍2 1200 0 

Inventory below safety stock 𝑍3 1000 50 

Overtime 𝑍4 5 9 

Table 6. The upper and lower bound of goal level

 

Equation 1 has been substituted with the parameter values. The 

following steps are taken to acquire a model of the fuzzy multi-

objective MPS problem: 

𝑚𝑎𝑥   0.25𝜇𝑧1(𝑥) + 0.25𝜇𝑧2(𝑥) + 0.25𝜇𝑧3(𝑥) + 0.25𝜇𝑧4(𝑥)     

𝑠. 𝑡.  

  𝜇𝑧1(𝑥) ≤
3500 − 𝑍1(𝑥)

3400
 

𝜇𝑧2(𝑥) ≤
1200 − 𝑍2(𝑥)

1200
 

𝜇𝑧3(𝑥) ≤
1000 − 𝑍3(𝑥)

950
 

𝜇𝑧4(𝑥) ≤ 1 −
5 − 𝑍4(𝑥)

5
 

𝜇𝑧4(𝑥) ≤ 1 −
𝑍4(𝑥) − 5

4
 

𝐶𝑈𝐻𝑟𝑝 − 𝐴𝐶𝑟𝑝 ≤ 5 

𝜇𝑧𝑖 ∈ [0,1];i=1,2,3,4 

𝑥𝑘𝑟𝑝 ≥ 0 ; 𝑘 = 1 … 5; 𝑟 = 1 … 4; 𝑝 = 1. . .6                         (20) 

 

E. Fuzzy Solution : 

Using the HPSO method to solve the FMOMPS model yields the 

following satisfaction and completion levels for the goals of the 

optimal solution. 

𝝁𝒛𝟏(𝒙) = 𝟎. 𝟕𝟒𝟐 , 𝝁𝒛𝟐(𝒙) = 𝟎. 𝟗𝟏𝟏 , 𝝁𝒛𝟑(𝒙) = 𝟎. 𝟖, 𝝁𝒛𝟒(𝒙) = 𝟏 

𝒁𝟏 = 𝟗𝟕𝟕 , 𝒁𝟐 = 𝟏𝟎𝟓. 𝟖 , 𝒁𝟑 = 𝟐𝟑𝟗. 𝟓, 𝒁𝟒 = 𝟎 

 

Table 7 shows the best solution of FMOMPS model. The value 

"zero" indicates that there are no items available for manufacture in 

the resource and time period specified. 

 

 

 

                                                               

Week 
Res.  

6th  5th  4th  3rd  2nd  1st  

372 480 144 480 312 384 DLT1 

T88 

120 516 264 372 168 432 DLT2 

324 60 168 240 156 300 EJTL1 

48 132 216 48 180 180 EJTL2 

864 1188 792 1140 816 1296 Total 

60 72 108 36 0 204 DLT1 

T89 

48 60 12 60 144 144 DLT2 

96 60 0 48 12 96 EJTL1 

132 84 24 60 108 204 EJTL2 

336 276 144 204 264 648 Total 

0 0 0 0 0 0 DLT1 

T90 

0 0 0 0 0 0 DLT2 

108 204 192 96 192 96 EJTL1 

180 192 168 156 168 108 EJTL2 

288 396 360 252 360 204 Total 

36 108 132 24 36 192 DLT1 

T91 

144 12 72 48 264 96 DLT2 

0 72 60 72 156 36 EJTL1 

132 24 60 60 48 168 EJTL2 

312 216 324 204 504 492 Total 

432 372 72 252 96 216 DLT1 

T92 

108 432 96 528 24 408 DLT2 

216 480 168 132 36 576 EJTL1 

276 132 60 348 24 300 EJTL2 

1032 1416 396 1260 180 1500 Total 

Table 7. The best MPS solution found 

 

5. Comparison Between HPSO And GA To tackle the identical MPS problem, Soares et al. and Supriyanto 

employed genetic algorithms, whereas Sadiq et al. used memetic 
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algorithms. To facilitate comparison, the outcome of Soares' study 

will be referred to as the non-fuzzy solution whilst the outcome of 

Supriyanto's study will be referred to as the fuzzy solution of GA. 

Sadiq et al(2020) alresult .'s will be referred to as the non-fuzzy 

solution, and we applied the same approach to obtain the fuzzy 

solution. Vieira et al. (2007), Soares and Vieira(2008)and 

Supriyanto(2011). The HPSO algorithm's parameters  are as 

follows: w max equals 1.4, w min equals 0.4, c 1max and c 2max 

equal 2.5, and c 1min and c 2min equal 1. The population size is 

500, and the maximum number of iterations is 600 without any 

modifications. 

 

Table 8 showed the comparison results between GA and HPSO for 

non-fuzzy and fuzzy solutions for the production scenario of 

Soares. 

 

Alg. Solution 𝐸𝐼 𝑅𝑁𝑀 𝐵𝑆𝑆 𝑂𝐶 

GA 
Fuzzy 4943 842 821 3 

Non Fuzzy 5228.5 985.7 585.7 4.33 

MA 
Fuzzy 4401.6 894.6 510.9 0 

Non Fuzzy 4428.5 942.8 528.5 0.3 

HPSO 
Fuzzy 4364.8 708.1 382.6 0 

Non Fuzzy 4428.5 942.8 528.5 0.3 

Table 8. The comparison among GA, MA and HPSO 

The non-fuzzy GA solution achieves high levels of all targets 

whereas the non-fuzzy HPSO method achieves lower levels of 

inventory, fewer unmet requirements, fewer inventory levels below 

safety stock, and fewer overtime hours Singh et al.(2020). 

In comparison to HPSO's fuzzy solution, GA's fuzzy solution 

achieves the highest levels of all objectives. It appears as though the 

GA is not prepared to distribute overtime adequately ("where and 

when" is not well-defined explicitly). Adding overtime to the right 

resources at the right moment can possibly lower inventory levels. 

It is also possible to answer questions such as when more capacity 

is needed, how much more space it will take up, and where it will 

be introduced, although HPSO is superior than MA in obtaining the 

ideal fuzzy solution. Mohmmad et al.(2018) 

 

6. Conclusions 

The optimization of master production schedule is extremely 

complex due to the fact that it works with conflicting objectives 

such as, maximizing the service levels, minimizing inventory 

levels, minimizing overtimes and minimizing inventory below 

safety stock. In addition, production characteristics such as capacity 

and quantity of resources, unstable demand, unsteady preparation 

times and a planning horizon composed of several periods with 

varying duration must also be considered. The research proposes a 

hybrid particle swarm optimization technique for solving MPS 

issues. The HPSO can solve efficiently the fuzzy model of MPS. It 

has  capability  to control and distribute additional capacities 

(overtimes) and the inventory levels can be minimized without 

influencing service level, especially in fuzzy solutions. 
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