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Abstract: Computer security is considered the important end system for the complete network improvement in the host. Despite of the 

advancement in end-system security, the network is subjected to different malicious and network attacks in the larger network for the 

constant threat to data protection for data privacy and integrity. Security risk management comprises of two issues in the security of the 

larger network environment with the secured system environment. The code reuse attack is a severe threat in the computer network 

environment due to alteration in the complete network. This paper proposed a Preorder Randomization Traversal Algorithm 

(PreorderRTA) for the prevention of code reuse attacks. With the proposed PreorderRTA comprises randomized features for the 

generation of the keys in the computer network. The developed model concentrated on code reuse attack detection and prevention. The 

proposed PreorderRTA model achieves a higher detection rate for the rootkit, worms and Viruses in the system compared with the 

existing technique. The proposed PreorderRTA achieves the detection rate of 99.34% while the existing approaches achieves below 90%.  

Keywords: Computer Security, Randomization Traversal Algorithm, Preorder, Attack Reuse, detection rate. 

1. Introduction 

The continuing growth of Internet-connected devices will 

drive malware authors to use either unpatched system or 

software vulnerabilities as a way to point a full-blown 

attack. All modern computer systems have a piece of most 

important system software, entitled Operating System (OS) 

or kernel which basically runs on top of the hardware that 

assigns the necessary system resources and supervises the 

execution of each application within the system [1]. The 

OS as a whole consists of the kernel and may comprise 

other relevant programs for providing necessary services 

for each incoming request. More importantly, the kernel 

which acts as a part of the OS is responsible for many 

functions such as system calls, manage memory, and 

interrupts, exceptions, etc, [2]. 

Analysis of malicious code attack risk enable defenders to 

model attack reasoning and scenarios about the 

relationship between dependencies between attack paths 

[3]. By generating comprehensive models about different 

attack scenarios, it is possible to design a specific 

quantitative measurement technique for attack risks 

coupled with a network settings. Then the outcome can be 

later used to improve the security configuration of the 

network. However, such a quantitative attack measurement 

model technique considers several technical design 

challenges [4]. First, the outcome of a quantitative 

measurement model must have clear semantics which 

could permit for the development of deterministic 

algorithm for generating the expected results. Second, the 

quantitative analysis of different security risks must be 

able to generate useful conclusions even in the absence of 

sensitive sampling security data. Finally, very large 

networks are usually highly dynamic in nature. Generating 

attack graphs are normally a well-known method which 

can offer the expected information about attack scenarios 

and its dependencies of a malicious executable [5]. 

Although there were many quantitative assessment models 

exist to depict attack scenarios of a specific network, this 

kind of static analysis suffers from several limitations to 

handle current state of art on security [6]. 
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An attack graph model offers only a partial interpretation 

about attack scenarios of a network. The existing methods 

lack of hard theoretical foundations. Existing design 

approaches to quantify network attack graphs fail to 

consider the dynamic nature of a networked environment 

[7]. For larger networks, quantitative analysis of attack 

graphs fall under NP-complete problem which is always 

non-trivial. Dynamic analysis based defense mechanisms 

have been developed to overcome these issues. Such 

approach works by utilizing the execution flow of 

legitimate applications to discover the presence of a 

malware [8]. However, attacks such as mimicry and 

shadow attack weaken the dynamic malware analyser. 

Most OS kernels often enforce only a limited access 

restriction on the application program permitted to carry 

out its execution. As a result, malicious software program 

which runs as a stand-alone process abuse system 

resources for its execution. Once installed on the victim 

computer, malicious executable can freely run to execute 

privileges associated with the current user account running 

the process [9]. This may lead to affect the entire network. 

Therefore, securing both user-mode and kernel-mode of an 

end-system is very important. Dynamic malware analysis 

based user-mode malware detection techniques and anti-

malware detection tools have been studied and developed. 

As advanced malware incorporate rootkit techniques to 

evade detection, different algorithms have also been 

developed to optimize the malware detection system. But 

malware attacks that target kernel level compromise is an 

issue. Hence, this paper focused on the randomized model 

for the code reuse attack in the computer network security. 

The proposed model is stated as PreorderRTA for the 

computation of the constructed tree and pre order values.  

2. Related Works 

In [10] proposed a system named PAIDS (Proximity-

Assisted IDS) with the goal of identifying the new and fast 

propagating worms. PAIDS has been trying to obtain 

enhanced performance by working collaboratively with 

existing anomaly-based IDS. Their approach assumes that 

during the worm-propagation starting phase, the infected 

victim hosts can be grouped based on IP address and DNS 

used. In [11] proposed an outlier based intrusion detection 

approach to detect cyber intrusions. A specific dataset was 

taken to measure the presence of intrusions by using the 

neighborhood outlier factor method. The use of limited 

dataset and training model are the two weakness of this 

approach.  

In [12] presented an approach that monitors malicious 

activities at the network to prevent known and first-hand 

attacks using unsupervised neural networks. This real 

hierarchical intrusion time solution uses Principal 

Components Analysis neural nets to avoid the limitations 

of sing lelevel structures. It relies on finding difference 

among data attributes which are classified into 

environmental attributes and indicator attributes. This 

method detects anomalous if any deviation in the 

predefined value of indicator attributes. However, it does 

not consider environmental attributes in few cases. The 

precision of this method precisely depends on its learning 

phase. In [13] proposed a rough set theory and then a k-NN 

classifier mechanism to determine network intrusions with 

the intention of increasing detection rate of the system and 

minimal false alarm rate. 

In [14] aimed at constructing a model which produces 

fuzzy association rules with reference to classifiers and use 

them for detecting general network intrusions. The fuzzy 

sets theory provides an effective way to categorize 

different classes of normal and/or anomalous. A training 

dataset that belongs to a particular type is validated by 

using matching parameters produced by the proposed 

approach. If the compatibility of a test sample falls the 

predefined threshold, then it is considered as anomalous. In 

[15] presented a network intrusion detection system that 

rely on fuzzy rules to recognize the occurrence of specific 

or general exceptional network patterns. However, training 

instances play a vital role to decide the detection accuracy 

of the system. The devoted to the development of network 

intrusion detection system that uses genetic algorithms to 

construct detection rules. A chromosome of individual 

genes mapped to various aspects such as the root-user 

attempt, type of service attempt to use, or logged in or not. 

The author concludes that malware attacks that are 

common can be traced easily compared to unusual 

characteristics. 

3. Randomized Recursive Traversal Algorithm for 

the Code Reuse Attack  

With the proposed model code reuse attack is prevented 

using the PreorderRTA integrated with the Recursive 

Traversal Algorithm. It is assumed that most malicious 

malwares are developed by inheriting characteristics from 

its previous version. For example, the various versions of 

TDSS rootkit are: TDL1 which was designed to load and 

run at the time of booting the operating system which was 

designed with the intention of infecting system drivers. 

TDL2 appears to be same as TDL1. However, it includes 

different names with random string and also imports new 

technique to avoid detection and removal. In order to 

obtain control over the victim computer, TDL3 patches the 

disk controller driver. Some features of TDL2 were 

updated to make detection and removal more difficult. The 

aim of TDL4 variant is the same as that of TDL3, but 

patched master boot record to make infection of computers 

with 64-bit processor. The overall flow diagram of the 

PreorderRTA approach is given figure 1. 
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Fig. 1: Flow chart of Preorder RTA 

A directed edge (u,v) in E represents a function call of the 

program, u→v. PreorderRTA attempts to discover the 

malicious code attacks which integrate API detouring 

technique to launch their illegal activities using an API call 

graph approach. As API function call is a finite set of 

sequence of invocations with ordered parameters and also 

they communicate with the use of handles (Unique 

identifier), PreorderRTA can identify all necessary 

resources to construct an API call graph for a 

corresponding function call as presented in figure 2. 

 

Fig. 2: Randomized Traversal Algorithm 

The proposed randomized PreorderRTA uses the 

randomized code for the prevention of the code reuse 

attack. The proposed PreorderRTA comprises of the two 

graph call (GC) and Approach graph (AG). The 

determination of the subgraph approximation is computed 

as in equation (1) 

𝑆𝑎 =  𝑃𝑎𝑟𝑎𝑚𝑎𝑥𝐺 . 𝑠𝑖𝑚(𝐺𝐶, 𝐴𝐺)                                        

 (1) 

𝑆𝑎   - Maximize {Simval(CG,MG) = 1} then CG is 

isomorphic to MG. 

where CG G and sim(CG,MG) represents the level of 

matching between CG and MG. 

Algorithm 1: PreorderRTA for the code reuse attack 

prevention 

/* Algorithm for Generating dependent graph API */ 

Begin 

              Compute the all executable function calls  

                     Select the function from the API 

                       If  

                               Compute the API call in the 

transversal algorithm 

       { 

 Compute the node ← name of the function; 

Get parameters(name of the function); 

attack.node ← recursive(analysis of pointer); 

// Randomization function call 

  Any point generate graph (); 

} 

End if 

Store the attack database  

End 

 

The Preorder assignment for the Recursive Traversal 

algorithm is presented. The proposed PreorderRTA 

compute the features in the different malware in the 

computer network security.  
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Consider the item set number for the attack prevention as 

𝐼 =  {𝑥1, 𝑥2, … . . , 𝑥𝑛} fro the non empty subset 𝐼 in the 

itemset. The computed randomized value with the 

PreorderRTA compute the characteristics of the code reuse 

attack denoted as 𝑇𝐼𝐷 =  {𝑡1, 𝑡2, … . . , 𝑡𝑛} for every order as 

𝑂 incorporates the itemset value those comprises of the 𝐼. 

For the each randomized value in the attack 𝛼 count of 

preorder value is computed with 𝛼 as 𝑇𝐼𝐷𝛼  support the 𝛼 

set.  

The itemset for the code reuse attack is evaluated based in 

the items 𝛼 as presented in equation (2) 

|𝛼| =  |{𝑥𝑖/𝑥𝑖 ∈ 𝛼}|                                                      (2) 

Definition 1: Frequent itemset in the code reuse attack 

For every dataset data in the 𝛼 itemset depends on the 
|𝑇𝐼𝐷𝛼|

|𝑇𝐼𝐷|
≥ 𝜎, in this 𝛼 in TID supports the 

|𝑇𝐼𝐷𝛼|

|𝑇𝐼𝐷|
  with 

computation of the threshold value as 0 ≤ 𝜎 ≤ 1. 

It is assumed that proposed PreorderRTA evaluated with 

the supp (𝛼) for the pattern itemset in the data. The pattern 

in the data is computed as 𝛼 and 𝛼′ for the sub-pattern if 

𝛼∁𝛼′ of  𝛼.  

Definition 2: Frequent Pattern 

The pattern of the frequent is closed only it has super 

frequent pattern those are same set.  

Lemma 1: F or itemsets 𝛼 and 𝛼′ if 𝛼∁𝛼′, 𝑡ℎ𝑒𝑛 𝑇𝐼𝐷𝛼 ∈

𝑇𝐼𝐷𝛼′ 

i.e., if a = {m,n,s} and 𝑎′ = {m, n, s, p, q}.let 𝑇𝐼𝐷𝛼= {tl, 

t2,.... tio} then it may be TIDa’ ={ ti, t4, ts}.Hence a 

smaller itemset have lot more chances of occurring in 

transactions than a larger one. 

From lemma 1, it can be known that for a pattern a, TIDa = 

flpcaTIDp. 

The important characteristics of prodigious pattern 

computed in the PreorderRTA 

1. The length of the code sequence are natural 

2. The minimal number of variables are considered in 

the database. 

3. The generated randomized code is eliminated from 

the pattern without any support set. The larger pattent 

set are computed for its prominent size for the 

observed robustness. 

Today, a malware writer can develop a malware by 

updating new features and techniques with its predecessor 

rather than coding from scratch. This information can help 

the defender to reduce the complexity of considering all 

kinds of addiction while inquiry the approach graph. The 

objective of the post-processing stage is to generate a 

subgraph of the data graph by referring the approach 

graph. The randomized code comprises of the edge graph 

dependencies with the location of the recursive traversal 

algorithm with the edge node as Call graph (CG) and 

Approach Graph (AG). The proposed PreorderRTA is 

simplified with the matching subgraph for the exact 

identification of the code reuse attack. Through 

randomization process the subgraph are computed for the 

CG and AG matching to compute the similarity normalized 

value as 0 and 1. 

4. Experimental Setup 

The evaluation results are obtained by conducting 

simulation experiments for comparing the proposed 

PreorderRTA method against existing methods using some 

common parameters such as true positive, false positive, 

detection rate, and accuracy rate. These parameters are 

defined and calculated below. 

True Positive (TP) occurs when a malware is correctly 

detected as a malware. 

False Positive (FP) occurs when a legitimate sample is 

caught to be a malware. 

Detection Rate 𝐷𝑅 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
 

Accuracy Rate 𝐴𝑅 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 

False Positive Rate 𝐹𝑃𝑅 =  
𝐹𝑃

𝑇𝑁+𝐹𝑃
 

• Receiver Operating Characteristic (ROC) curve – It is a 

two dimensional graph used to visualize the performance 

of the proposed approach by plotting TPR on the X axis 

against FPR on the Y axis. 

The proposed PreorderRTA model concentrated on the 

computation of the accuracy and detection for the 

conduction experiment to prevent code reuse attack. In the 

table 1 presented the comparative examination of the 

minimum and maximal similarity value for every 

calculated attack values. The table 1 the average similarity 

values are computed for the detection capability in the 

every group compared with the proposed PreorderRTA 

values.  

Table 1: Comparison of Maximal and Minimal Value 

Technique 
Maximum 

SV 

Minimum 

SV 

Number of 

malware 

samples not 

detected 

Family: 

Rootkits 
   

[11] 87.74 31.28 3 

[12] 92.68 40.56 1 
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[13] 97.73 58.62 2 

Proposed 

PreorderRTA 
98.23 58.08 1 

    

Family: 

Worms 
   

[11] 82.21 12.18 1 

[12] 88.10 19.23 1 

[13] 81.69 12.01 2 

Proposed 

PreorderRTA 
92.08 42.34 0 

Family: 

Trojans 
   

[11] 80.86 31.90 1 

[12] 94.79 18.64 1 

[13] 79.32 33.83 2 

Proposed 

PreorderRTA 
90.29 43.56 0 

Table 1 shows that the proposed Proposed PreorderRTA 

method has achieved an average of 93.20 similarity value. 

Among all, the [11] method failed to detect 8 malware 

samples in total produces lowest performance. Whereas in 

[12] method undetected only 6 malware samples. The [13] 

method failed to detect an average of one malware sample 

but Proposed PreorderRTA undetected only one malware 

sample and surpasses the method proposed in [13]. 

Another important consideration of PreorderRTA approach 

is to evaluate its effective against the detection rate benign 

samples. The figure 3 provides the false positive rate 

measured for the proposed PreorderRTA model.  

 

Fig. 3: Comparison of False Positive Rate 

The figure 4 provides the comparative analysis of the 

proposed PreorderRTA model detection rate for the Trojan 

and Worm. The rootkit group analysis stated that for the 

worm and Trojan the detection rate is measured as 100% 

and for the rootkit the detection rate is measured as 

97.68%. The existing technique achieves the detection rate 

of 97.59% for the dataset.  

 

Fig. 4: Comparison of Detection Rate 

Figure 4 shows the overall accuracy rate of Proposed 

PreorderRTA approach and other existing techniques 

against all 250 malware samples. The Proposed 

PreorderRTA approach achieved the highest accuracy rate 

of 98 % against all 50 rootkit malware samples, but 

achieved an average of 100 % in the Trojans and worms 

groups. In [13] the method has achieved next best result 

than other comparable techniques with an average of 

98.21% AR. Moreover, the methods proposed in [11] and 

[12] have achieved an average accuracy rate of 95.09 % 

and 96.53 % respectively. 

 

Fig. 5: Comparison of Accuracy Rate 

From the figure 5 above experimental results and 

discussion, it is clear that Proposed PreorderRTA approach 

outperforms than the rest of discussed existing approaches 

in all aspects. A game-theoretic approach is also used to 

ensure the optimization of resources consumed by the 

PreorderRTA approach. The game theoretic model 

dynamically selects a specific API targeted by stealthy 

rootkit malware based on the expected attack scenario. 

5. Conclusion 

In the API environment the detection rate of the code is 

discovered the API hook for the suspicious system with the 

proposed PreorderRTA. The proposed model comprises of 

the randomized model for the code reuse attack through 
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call graph and mapping technique. With the proposed 

PreorderRTA similarity rate is computed. The 

experimental analysis stated that proposed PreorderRTA 

achieves the higher detection rate of 98% - 100% those are 

significantly higher than the existing model. The proposed 

PreorderRTA model achieves the ~3% improved 

performance than the existing model.  
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