

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-67992147-6799 www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(3s), 29–34 | 29

Reuse Attack Prevention Through Randomization Traversal Algorithm

with the Code Reduction Technique for Operating System Security

Prashant Johri1, Madhavi Dhingra2, Dilli Babu.M3, Bipin Sule4, Mr. Arvind Kumar Pandey5,

 Dr Ankita Vitthal Karale6

Submitted: 02/11/2022 Revised: 10/01/2023 Accepted: 30/01/2023

Abstract: Computer security is considered the important end system for the complete network improvement in the host. Despite of the

advancement in end-system security, the network is subjected to different malicious and network attacks in the larger network for the

constant threat to data protection for data privacy and integrity. Security risk management comprises of two issues in the security of the

larger network environment with the secured system environment. The code reuse attack is a severe threat in the computer network

environment due to alteration in the complete network. This paper proposed a Preorder Randomization Traversal Algorithm

(PreorderRTA) for the prevention of code reuse attacks. With the proposed PreorderRTA comprises randomized features for the

generation of the keys in the computer network. The developed model concentrated on code reuse attack detection and prevention. The

proposed PreorderRTA model achieves a higher detection rate for the rootkit, worms and Viruses in the system compared with the

existing technique. The proposed PreorderRTA achieves the detection rate of 99.34% while the existing approaches achieves below 90%.

Keywords: Computer Security, Randomization Traversal Algorithm, Preorder, Attack Reuse, detection rate.

1. Introduction

The continuing growth of Internet-connected devices will

drive malware authors to use either unpatched system or

software vulnerabilities as a way to point a full-blown

attack. All modern computer systems have a piece of most

important system software, entitled Operating System (OS)

or kernel which basically runs on top of the hardware that

assigns the necessary system resources and supervises the

execution of each application within the system [1]. The

OS as a whole consists of the kernel and may comprise

other relevant programs for providing necessary services

for each incoming request. More importantly, the kernel

which acts as a part of the OS is responsible for many

functions such as system calls, manage memory, and

interrupts, exceptions, etc, [2].

Analysis of malicious code attack risk enable defenders to

model attack reasoning and scenarios about the

relationship between dependencies between attack paths

[3]. By generating comprehensive models about different

attack scenarios, it is possible to design a specific

quantitative measurement technique for attack risks

coupled with a network settings. Then the outcome can be

later used to improve the security configuration of the

network. However, such a quantitative attack measurement

model technique considers several technical design

challenges [4]. First, the outcome of a quantitative

measurement model must have clear semantics which

could permit for the development of deterministic

algorithm for generating the expected results. Second, the

quantitative analysis of different security risks must be

able to generate useful conclusions even in the absence of

sensitive sampling security data. Finally, very large

networks are usually highly dynamic in nature. Generating

attack graphs are normally a well-known method which

can offer the expected information about attack scenarios

and its dependencies of a malicious executable [5].

Although there were many quantitative assessment models

exist to depict attack scenarios of a specific network, this

kind of static analysis suffers from several limitations to

handle current state of art on security [6].

1 Professor, Department of Computer Application, Galgotias

University, Greater Noida, Uttar Pradesh, India.

prashant.johri@galgotiasuniversity.edu.in,

0000-0001-8771-5700
2 Computer science and engineering, Amity University Madhya

Pradesh, Maharajpura Dang, Gwalior (MP)-474005, India.

madhavi.dhingra@gmail.com

0000-0002-9883-7620
3 Assistant professor, Department of Information Technology.

Panimalar Engineering College, Chennai, Tamil Nadu, India.

deenshadilli@gmail.com
4 Professor, Department of Computer Engineering, Vishwakarma

Institute of Information Technology, Pune, India.

 bipin.sule@vit.edu

0000-0003-1409-2156
5 Assistant Professor, School of Engg. &IT, ARKA JAIN University,

Jamshedpur, Jharkhand, India.

arvind.p@arkajainuniversity.ac.in

0000-0001-5294-0190
6 Associate professor, computer engineering, Sandip Institute of

Technology and Research Centre, Nashik, India.

ankita.karale9@gmail.com

mailto:prashant.johri@galgotiasuniversity.edu.in
mailto:madhavi.dhingra@gmail.com
mailto:deenshadilli@gmail.com
mailto:bipin.sule@vit.edu
mailto:arvind.p@arkajainuniversity.ac.in
mailto:ankita.karale9@gmail.com

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(3s), 29–34 | 30

An attack graph model offers only a partial interpretation

about attack scenarios of a network. The existing methods

lack of hard theoretical foundations. Existing design

approaches to quantify network attack graphs fail to

consider the dynamic nature of a networked environment

[7]. For larger networks, quantitative analysis of attack

graphs fall under NP-complete problem which is always

non-trivial. Dynamic analysis based defense mechanisms

have been developed to overcome these issues. Such

approach works by utilizing the execution flow of

legitimate applications to discover the presence of a

malware [8]. However, attacks such as mimicry and

shadow attack weaken the dynamic malware analyser.

Most OS kernels often enforce only a limited access

restriction on the application program permitted to carry

out its execution. As a result, malicious software program

which runs as a stand-alone process abuse system

resources for its execution. Once installed on the victim

computer, malicious executable can freely run to execute

privileges associated with the current user account running

the process [9]. This may lead to affect the entire network.

Therefore, securing both user-mode and kernel-mode of an

end-system is very important. Dynamic malware analysis

based user-mode malware detection techniques and anti-

malware detection tools have been studied and developed.

As advanced malware incorporate rootkit techniques to

evade detection, different algorithms have also been

developed to optimize the malware detection system. But

malware attacks that target kernel level compromise is an

issue. Hence, this paper focused on the randomized model

for the code reuse attack in the computer network security.

The proposed model is stated as PreorderRTA for the

computation of the constructed tree and pre order values.

2. Related Works

In [10] proposed a system named PAIDS (Proximity-

Assisted IDS) with the goal of identifying the new and fast

propagating worms. PAIDS has been trying to obtain

enhanced performance by working collaboratively with

existing anomaly-based IDS. Their approach assumes that

during the worm-propagation starting phase, the infected

victim hosts can be grouped based on IP address and DNS

used. In [11] proposed an outlier based intrusion detection

approach to detect cyber intrusions. A specific dataset was

taken to measure the presence of intrusions by using the

neighborhood outlier factor method. The use of limited

dataset and training model are the two weakness of this

approach.

In [12] presented an approach that monitors malicious

activities at the network to prevent known and first-hand

attacks using unsupervised neural networks. This real

hierarchical intrusion time solution uses Principal

Components Analysis neural nets to avoid the limitations

of sing lelevel structures. It relies on finding difference

among data attributes which are classified into

environmental attributes and indicator attributes. This

method detects anomalous if any deviation in the

predefined value of indicator attributes. However, it does

not consider environmental attributes in few cases. The

precision of this method precisely depends on its learning

phase. In [13] proposed a rough set theory and then a k-NN

classifier mechanism to determine network intrusions with

the intention of increasing detection rate of the system and

minimal false alarm rate.

In [14] aimed at constructing a model which produces

fuzzy association rules with reference to classifiers and use

them for detecting general network intrusions. The fuzzy

sets theory provides an effective way to categorize

different classes of normal and/or anomalous. A training

dataset that belongs to a particular type is validated by

using matching parameters produced by the proposed

approach. If the compatibility of a test sample falls the

predefined threshold, then it is considered as anomalous. In

[15] presented a network intrusion detection system that

rely on fuzzy rules to recognize the occurrence of specific

or general exceptional network patterns. However, training

instances play a vital role to decide the detection accuracy

of the system. The devoted to the development of network

intrusion detection system that uses genetic algorithms to

construct detection rules. A chromosome of individual

genes mapped to various aspects such as the root-user

attempt, type of service attempt to use, or logged in or not.

The author concludes that malware attacks that are

common can be traced easily compared to unusual

characteristics.

3. Randomized Recursive Traversal Algorithm for

the Code Reuse Attack

With the proposed model code reuse attack is prevented

using the PreorderRTA integrated with the Recursive

Traversal Algorithm. It is assumed that most malicious

malwares are developed by inheriting characteristics from

its previous version. For example, the various versions of

TDSS rootkit are: TDL1 which was designed to load and

run at the time of booting the operating system which was

designed with the intention of infecting system drivers.

TDL2 appears to be same as TDL1. However, it includes

different names with random string and also imports new

technique to avoid detection and removal. In order to

obtain control over the victim computer, TDL3 patches the

disk controller driver. Some features of TDL2 were

updated to make detection and removal more difficult. The

aim of TDL4 variant is the same as that of TDL3, but

patched master boot record to make infection of computers

with 64-bit processor. The overall flow diagram of the

PreorderRTA approach is given figure 1.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(3s), 29–34 | 31

Fig. 1: Flow chart of Preorder RTA

A directed edge (u,v) in E represents a function call of the

program, u→v. PreorderRTA attempts to discover the

malicious code attacks which integrate API detouring

technique to launch their illegal activities using an API call

graph approach. As API function call is a finite set of

sequence of invocations with ordered parameters and also

they communicate with the use of handles (Unique

identifier), PreorderRTA can identify all necessary

resources to construct an API call graph for a

corresponding function call as presented in figure 2.

Fig. 2: Randomized Traversal Algorithm

The proposed randomized PreorderRTA uses the

randomized code for the prevention of the code reuse

attack. The proposed PreorderRTA comprises of the two

graph call (GC) and Approach graph (AG). The

determination of the subgraph approximation is computed

as in equation (1)

𝑆𝑎 = 𝑃𝑎𝑟𝑎𝑚𝑎𝑥𝐺 . 𝑠𝑖𝑚(𝐺𝐶, 𝐴𝐺)

 (1)

𝑆𝑎 - Maximize {Simval(CG,MG) = 1} then CG is

isomorphic to MG.

where CG G and sim(CG,MG) represents the level of

matching between CG and MG.

Algorithm 1: PreorderRTA for the code reuse attack

prevention

/* Algorithm for Generating dependent graph API */

Begin

 Compute the all executable function calls

 Select the function from the API

 If

 Compute the API call in the

transversal algorithm

 {

 Compute the node ← name of the function;

Get parameters(name of the function);

attack.node ← recursive(analysis of pointer);

// Randomization function call

 Any point generate graph ();

}

End if

Store the attack database

End

The Preorder assignment for the Recursive Traversal

algorithm is presented. The proposed PreorderRTA

compute the features in the different malware in the

computer network security.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(3s), 29–34 | 32

Consider the item set number for the attack prevention as

𝐼 = {𝑥1, 𝑥2, … . . , 𝑥𝑛} fro the non empty subset 𝐼 in the

itemset. The computed randomized value with the

PreorderRTA compute the characteristics of the code reuse

attack denoted as 𝑇𝐼𝐷 = {𝑡1, 𝑡2, … . . , 𝑡𝑛} for every order as

𝑂 incorporates the itemset value those comprises of the 𝐼.

For the each randomized value in the attack 𝛼 count of

preorder value is computed with 𝛼 as 𝑇𝐼𝐷𝛼 support the 𝛼

set.

The itemset for the code reuse attack is evaluated based in

the items 𝛼 as presented in equation (2)

|𝛼| = |{𝑥𝑖/𝑥𝑖 ∈ 𝛼}| (2)

Definition 1: Frequent itemset in the code reuse attack

For every dataset data in the 𝛼 itemset depends on the
|𝑇𝐼𝐷𝛼|

|𝑇𝐼𝐷|
≥ 𝜎, in this 𝛼 in TID supports the

|𝑇𝐼𝐷𝛼|

|𝑇𝐼𝐷|
 with

computation of the threshold value as 0 ≤ 𝜎 ≤ 1.

It is assumed that proposed PreorderRTA evaluated with

the supp (𝛼) for the pattern itemset in the data. The pattern

in the data is computed as 𝛼 and 𝛼′ for the sub-pattern if

𝛼∁𝛼′ of 𝛼.

Definition 2: Frequent Pattern

The pattern of the frequent is closed only it has super

frequent pattern those are same set.

Lemma 1: F or itemsets 𝛼 and 𝛼′ if 𝛼∁𝛼′, 𝑡ℎ𝑒𝑛 𝑇𝐼𝐷𝛼 ∈

𝑇𝐼𝐷𝛼′

i.e., if a = {m,n,s} and 𝑎′ = {m, n, s, p, q}.let 𝑇𝐼𝐷𝛼= {tl,

t2,.... tio} then it may be TIDa’ ={ ti, t4, ts}.Hence a

smaller itemset have lot more chances of occurring in

transactions than a larger one.

From lemma 1, it can be known that for a pattern a, TIDa =

flpcaTIDp.

The important characteristics of prodigious pattern

computed in the PreorderRTA

1. The length of the code sequence are natural

2. The minimal number of variables are considered in

the database.

3. The generated randomized code is eliminated from

the pattern without any support set. The larger pattent

set are computed for its prominent size for the

observed robustness.

Today, a malware writer can develop a malware by

updating new features and techniques with its predecessor

rather than coding from scratch. This information can help

the defender to reduce the complexity of considering all

kinds of addiction while inquiry the approach graph. The

objective of the post-processing stage is to generate a

subgraph of the data graph by referring the approach

graph. The randomized code comprises of the edge graph

dependencies with the location of the recursive traversal

algorithm with the edge node as Call graph (CG) and

Approach Graph (AG). The proposed PreorderRTA is

simplified with the matching subgraph for the exact

identification of the code reuse attack. Through

randomization process the subgraph are computed for the

CG and AG matching to compute the similarity normalized

value as 0 and 1.

4. Experimental Setup

The evaluation results are obtained by conducting

simulation experiments for comparing the proposed

PreorderRTA method against existing methods using some

common parameters such as true positive, false positive,

detection rate, and accuracy rate. These parameters are

defined and calculated below.

True Positive (TP) occurs when a malware is correctly

detected as a malware.

False Positive (FP) occurs when a legitimate sample is

caught to be a malware.

Detection Rate 𝐷𝑅 =
𝑇𝑃

𝑇𝑃+𝐹𝑁

Accuracy Rate 𝐴𝑅 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁

False Positive Rate 𝐹𝑃𝑅 =
𝐹𝑃

𝑇𝑁+𝐹𝑃

• Receiver Operating Characteristic (ROC) curve – It is a

two dimensional graph used to visualize the performance

of the proposed approach by plotting TPR on the X axis

against FPR on the Y axis.

The proposed PreorderRTA model concentrated on the

computation of the accuracy and detection for the

conduction experiment to prevent code reuse attack. In the

table 1 presented the comparative examination of the

minimum and maximal similarity value for every

calculated attack values. The table 1 the average similarity

values are computed for the detection capability in the

every group compared with the proposed PreorderRTA

values.

Table 1: Comparison of Maximal and Minimal Value

Technique
Maximum

SV

Minimum

SV

Number of

malware

samples not

detected

Family:

Rootkits

[11] 87.74 31.28 3

[12] 92.68 40.56 1

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(3s), 29–34 | 33

[13] 97.73 58.62 2

Proposed

PreorderRTA
98.23 58.08 1

Family:

Worms

[11] 82.21 12.18 1

[12] 88.10 19.23 1

[13] 81.69 12.01 2

Proposed

PreorderRTA
92.08 42.34 0

Family:

Trojans

[11] 80.86 31.90 1

[12] 94.79 18.64 1

[13] 79.32 33.83 2

Proposed

PreorderRTA
90.29 43.56 0

Table 1 shows that the proposed Proposed PreorderRTA

method has achieved an average of 93.20 similarity value.

Among all, the [11] method failed to detect 8 malware

samples in total produces lowest performance. Whereas in

[12] method undetected only 6 malware samples. The [13]

method failed to detect an average of one malware sample

but Proposed PreorderRTA undetected only one malware

sample and surpasses the method proposed in [13].

Another important consideration of PreorderRTA approach

is to evaluate its effective against the detection rate benign

samples. The figure 3 provides the false positive rate

measured for the proposed PreorderRTA model.

Fig. 3: Comparison of False Positive Rate

The figure 4 provides the comparative analysis of the

proposed PreorderRTA model detection rate for the Trojan

and Worm. The rootkit group analysis stated that for the

worm and Trojan the detection rate is measured as 100%

and for the rootkit the detection rate is measured as

97.68%. The existing technique achieves the detection rate

of 97.59% for the dataset.

Fig. 4: Comparison of Detection Rate

Figure 4 shows the overall accuracy rate of Proposed

PreorderRTA approach and other existing techniques

against all 250 malware samples. The Proposed

PreorderRTA approach achieved the highest accuracy rate

of 98 % against all 50 rootkit malware samples, but

achieved an average of 100 % in the Trojans and worms

groups. In [13] the method has achieved next best result

than other comparable techniques with an average of

98.21% AR. Moreover, the methods proposed in [11] and

[12] have achieved an average accuracy rate of 95.09 %

and 96.53 % respectively.

Fig. 5: Comparison of Accuracy Rate

From the figure 5 above experimental results and

discussion, it is clear that Proposed PreorderRTA approach

outperforms than the rest of discussed existing approaches

in all aspects. A game-theoretic approach is also used to

ensure the optimization of resources consumed by the

PreorderRTA approach. The game theoretic model

dynamically selects a specific API targeted by stealthy

rootkit malware based on the expected attack scenario.

5. Conclusion

In the API environment the detection rate of the code is

discovered the API hook for the suspicious system with the

proposed PreorderRTA. The proposed model comprises of

the randomized model for the code reuse attack through

0

10

20

30

Fa
ls

e
p

o
si

ti
ve

 R
at

e

Methods

Rootkit Worms Viruses

85 90 95 100 105

[11]

[12]

[13]

PreorderRTA

Detection Rate

M
et

h
o

d
s

Viruses Worms Rootkit

85 90 95 100 105

[11]

[12]

[13]

PreorderRTA

Accuracy Rate

M
et

h
o

d
s

Viruses Worms Rootkit

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(3s), 29–34 | 34

call graph and mapping technique. With the proposed

PreorderRTA similarity rate is computed. The

experimental analysis stated that proposed PreorderRTA

achieves the higher detection rate of 98% - 100% those are

significantly higher than the existing model. The proposed

PreorderRTA model achieves the ~3% improved

performance than the existing model.

Reference

[1] Mishra, S., & Polychronakis, M. (2021, April).

SGXPecial: Specializing SGX Interfaces against Code

Reuse Attacks. In Proceedings of the 14th European

Workshop on Systems Security (pp. 48-54).

[2] Lin, K., Xia, H., Zhang, K., & Tu, B. (2021,

September). AddrArmor: An Address-based Runtime

Code-reuse Attack Mitigation for Shared Objects at

the Binary-level. In 2021 IEEE Intl Conf on Parallel

& Distributed Processing with Applications, Big Data

& Cloud Computing, Sustainable Computing &

Communications, Social Computing & Networking

(ISPA/BDCloud/SocialCom/SustainCom) (pp. 117-

124). IEEE.

[3] Wang, J., Zhang, Z., Ma, B., Yao, Y., & Ji, X. (2021,

May). Research on SSTI attack defense technology

based on instruction set randomization. In 2021 2nd

International Conference on Artificial Intelligence and

Information Systems (pp. 1-5).

[4] Nikolaev, R., Nadeem, H., Stone, C., & Ravindran, B.

(2022, February). Adelie: continuous address space

layout re-randomization for Linux drivers.

In Proceedings of the 27th ACM International

Conference on Architectural Support for

Programming Languages and Operating Systems (pp.

483-498).

[5] Potteiger, B., Cai, F., Zhang, Z., & Koutsoukos, X.

(2022). Data space randomization for securing cyber-

physical systems. International Journal of Information

Security, 21(3), 597-610.

[6] Schloegel, M., Blazytko, T., Basler, J., Hemmer, F., &

Holz, T. (2021, October). Towards Automating Code-

Reuse Attacks Using Synthesized Gadget Chains.

In European Symposium on Research in Computer

Security (pp. 218-239). Springer, Cham.

[7] Novković, B. (2021). A Taxonomy of Defenses

against Memory Corruption Attacks. In 2021 44th

International Convention on Information,

Communication and Electronic Technology

(MIPRO) (pp. 1196-1201). IEEE.

[8] Yoon, H., & Lee, M. (2022). SGXDump: A

Repeatable Code-Reuse Attack for Extracting SGX

Enclave Memory. Applied Sciences, 12(15), 7655.

[9] Shrivastava, R. K., Singh, S. P., Hasan, M. K., Islam,

S., Abdullah, S., & Aman, A. H. M. (2022). Securing

Internet of Things devices against code tampering

attacks using Return Oriented

Programming. Computer Communications, 193, 38-

46.

[10] Xu, S., & Wang, Y. (2022). Defending against Return-

Oriented Programming attacks based on return

instruction using static analysis and binary patch

techniques. Science of Computer Programming, 217,

102768.

[11] Ying, H., Zhou, H., Degani, A., & Sacks, R. (2022). A

two‐stage recursive ray tracing algorithm to

automatically identify external building objects in

building information models. Computer‐Aided Civil

and Infrastructure Engineering, 37(8), 991-1009.

[12] Huang, X., Yan, F., Zhang, L., & Wang, K. (2021).

Honeygadget: A deception based approach for

detecting code reuse attacks. Information Systems

Frontiers, 23(2), 269-283.

[13] Lee, S., Kang, H., Jang, J., & Kang, B. B. (2021).

Savior: Thwarting stack-based memory safety

violations by randomizing stack layout. IEEE

Transactions on Dependable and Secure Computing.

[14] Zuo, Z., Fang, Y., Huang, Q., Liao, Y., Wang, Y., &

Wang, C. (2021, October). Derivation and Formal

Proof of Binary Tree Depth Non-Recursive

Algorithm. In 2021 5th International Conference on

Communication and Information Systems (ICCIS) (pp.

191-196). IEEE.

[15] Zhang, C., Bonifati, A., Kapp, H., Haprian, V. I., &

Lozi, J. P. (2022). A Reachability Index for Recursive

Label-Concatenated Graph Queries. arXiv preprint

arXiv:2203.08606.

