
International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-67992147-6799 www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(1), 330–338 | 330

Machine Learning Approach for Malware Detection and Classification

Using Malware Analysis Framework

D Anil Kumar 1, Susant Kumar Das2

Submitted: 27/10/2022 Revised: 18/12/2022

Abstract: The world's digitalization is currently being threatened by the daily appearance of new and complicated viruses. As a result,

the conventional signature-based approaches for malware detection are practically rendered useless. Modern research studies have

demonstrated the effectiveness of machine-learning algorithms in terms of malware identification. In this study, we suggested a system

to identify and categorize various files (such as exe, pdf, PHP, etc.), and API calls as benign and harmful utilizing two-level classifiers,

namely Macro (for malware detection) and Micro (for classification of malware files as a Trojan, Spyware, Adware, etc.). One of the

most used data mining (DM) methods is classification. In this research, we describe a classification technique for DM for malware

discovery. On the basis of the characteristics and behaviors of each virus, we suggested many categorization approaches to identify

malware. The malware traits have been identified using a dynamic analysis technique. Our solution executes sample files in a virtual

environment using Cuckoo Sandbox to generate static and dynamic analysis reports. Additionally, utilizing the data produced by the

Cuckoo Sandbox, a unique feature selection, and extraction segment has been produced that operates based on static, behavioral, and

network analysis. Machine learning models are created utilizing the Weka Framework and training datasets. The experimental findings

utilizing the suggested framework demonstrate high rates of detection and classification using various Machine Learning Algorithms.

Keywords: Malware Detection; API-call; Static and dynamic analysis; malware classification; behavior-based analysis.

1. Introduction

One of the biggest hazards on the Internet today is

malicious software or malware. Users download many

kinds of computer applications on a massive scale from the

Internet. Online black markets are used by hackers to create

software that violates system security. This gives hackers a

significant incentive to alter and make harmful code more

sophisticated in an effort to create more uncertainty and

reduce their chances of being discovered by anti-virus

software. As a result, accessing the Internet is becoming

riskier and riskier as a result of growing dangers from

malware [1], which is distributed over the Internet in the

form of files and software.

Malware is a harmful application that is used to violate a

system's data availability, confidentiality, and integrity

policies. Malware comes in a variety of forms, including

viruses, Trojan horses, spyware, rootkits, trapdoors, etc.,

depending on how they pose dangers to the system. The

overall quantity of malware has increased dramatically

since 2008 and reached more than 583 million, in March

2020, according to AV-Test [2]. Finding these files before

they violate the system's security perimeter is crucial given

the increased incidence of malware. According to the

report, the malware detection system comprises the duties

of malware analysis [3].

1.1. Malware Detection

The use of signature-based and behavioral-based

approaches, two well-known detection methods, is made.

But signature-based methods are unable to identify Zero-

Day attacks. Additionally, it cannot identify sophisticated

new malware. On the other hand, it is highly challenging

to properly describe the whole variety of appropriate

behaviors that a system should show when employing

behavior-based methodologies. The majority of malware

detection systems typically employ static methods like

signature-based and anomaly-based methods of detection.

While some systems attempt to discover irregularities in

the code structure, others use signature matching to assess

whether a program is malicious. Static approaches

investigate malware programs without running them in

order to understand the code structure [4]. When doing

dynamic analysis, malware is run in a virtual environment

to track its network interactions and Windows API calls.

These observed API call data are utilized by dynamic

malicious program detection techniques to identify

harmful behavior. The function names, arguments, and

return values of an executable are contained in API-call

information. Through the use of the occurrence and

arrangement of API calls, dynamic approaches attempt to

derive distinguishing characteristics to identify malware

programs [5].

As per the Malware detection statistics by AV-Test

institute, there are more than 1 billion malware programs

out there spreading every year. Since 2013 it was spreading

1 & 2 Berhampur University, Odisha, India

 ORCID ID : 0000-0003-3998-226X

* Corresponding Author Email: anil.dodala@gmail.com

Accepted: 05/01/2023

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(1), 330–338 | 331

exponentially. Nearly 560,000 new malware pieces are

detected on a daily basis worldwide. As per the last

statistics, near about 17 million new malware are reported

on a monthly basis. As per Sonic Wall data, more than 3.2

billion malware in the 1st half of 2020. As per google

statistics, nearly 7% of new websites were affected every

year and each week it was reported that nearly 50 websites

contained malware. As per Symantec, around 20 million

IoT devices were malware affected and out of which 75%

were through routers. As per Statista China is the most

malware affected globally with 47% followed by Turkey

with 42% and Taiat with 39%. As per checkpoint, the

viruses are spread through .exe files and the malware is

generally delivered through emails.

Different mobile malware statistics have been proposed. A

few of them are listed below:

As per Kaspersky total number of mobile malware

surpassed 28 million during the 1st half of 2020. And

around 14 million are detected in each quarter every year.

Adware is one of the most common pieces of mobile

malware.

Because malware is becoming more prevalent in

technology, understanding how to guard against it is a

crucial component of malware detection using machine

learning techniques. In general, data mining techniques

identified a group of malware applications in the public

that included both harmful executable and innocuous

software packages [6]. Typically, there are two different

types of data mining algorithms based on supervised

learning and unsupervised learning techniques.

Classification algorithms are the supervised learning

techniques that are required for the exercise with the data

set [7]. The unsupervised learning techniques, known as

clustering algorithms, seek to analyze the organization of

data into several clusters [8].

1.2. Malware Analysis

This includes static, dynamic, and hybrid analyses. We

developed a malware analysis solution utilizing a machine

learning approach to distinguish between benign and

malicious files in response to the aforementioned

limitations of the existing techniques. In order to

effectively and efficiently identify and categorize malware,

we have suggested an intelligent malware analysis

methodology in this study.

Malware programs are often divided into categories

including worms, viruses, trojan horses, spyware, back

doors, and rootkits [9]. Using signature-based techniques

is the cornerstone of conventional and customary

approaches to malware identification. Researchers have

recently tried to propose more trustworthy methodologies

for malware identification with malware behavior after

being frustrated by outdated methods' failure to identify

malware or polymorphic dangerous files [10]. Static

analysis and dynamic analysis have both been used in the

process of identifying and locating the malware. Static

analysis, which may identify harmful code and place it in

one of the available collections depending on various

learning techniques, is a technique used in software

analyzing approaches. Static analysis uses binary codes to

identify harmful files and viruses. The biggest drawback of

static analysis is the absence of the program's source codes.

It is important to note that extracting binary codes is a

difficult and intricate task.

The dynamic analysis, in contrast, detects dangerous

scripts based on their runtime behavior [11]. Dynamic

analysis, which also refers to behavioral analysis and

observation of behavior and system operation, is the term

used to describe the examination of runtime code [12]. The

infected files need to be run on a virtual system via a

dynamic analysis process [13]. To manage the expanding

number and variety of malware, dynamic analysis can be

employed in conjunction with classification and clustering

techniques. The approaches for classifying malware aid in

the assignment of unidentified malware to known families.

Malware categorization is therefore employed to filter

unknown instances, which lowers analysis costs.

The following are some of this paper's contributions:

• Putting out a behavioral analysis detecting system.

• Introducing software that converts an XML file

containing a malware behavior executive history into a

WEKA input that is appropriate.

• Examining several categorization techniques using a

virus case study.

• Comparing the experimental findings from the WEKA

tool, such as the proportion of correctly classified

instances, and the accuracy optimistic ratio.

• To create a behavioral antivirus, the optimal

categorization approach based on critical malware

detection criteria is being tested.

The overall arrangement of this article is as follows:

Section 2 discusses some historical context and related

research in virus detection and data mining approaches.

The behavioral analysis of the malware is shown in Section

3. In this part, using a real-world case study, we provide a

novel method for deciphering malware behavior and

converting dangerous files into data mining files. The

classification and prediction methods used with the data

mining platform are also described in this section. Then,

using the WEKA tool, we apply some of the well-known

categorization techniques to our actual case study. Section

4 summarizes the assessment and experimental findings.

Section 5 brings the conversation and the work to a close.

2. Related Works

The background information and some associated efforts

for malware detection in data mining approaches are

covered in this part. First, we quickly go through data

mining methodology based on malware and other system

classification techniques. Researchers recently revealed

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(1), 330–338 | 332

various malware analysis methodologies. A data mining

technique was put out by Schultz et al. [14] to identify new

dangerous files during runtime execution. Their approach

was based on three distinct sorts of DLL calls, including

the binary's list of DLLs utilized, the list of DLL functions

used, and the number of various systems calls used inside

each DLL. Additionally, they use signature techniques to

check the byte ordering that was retrieved from an

executable file's hex-dump (a hexadecimal schema of

computer data). This method's primary structure is based

on the Naive-Bayes (NB) algorithm. The experimental

findings were compared using conventional signature-

based techniques.

Dynamic analysis approaches, which examine program

activities while running in a secure environment, have been

used in several research. By examining a large number of

malware mutation files, Jeffrey, N et al. technique [15]

suggests typical patterns of malware programs. Based on

the frequency of API calls, Amer et al [16] dynamic

malware detection technique is suggested. By tracking API

calls Zou et al. [17] examine the malware executables' API-

call rates and sequences. In order to identify malware

variations, Schofield et al. [18] provide an approach that

builds representations of malware behavior by mapping

API calls to colors. Function call patterns are used with a

Hidden Markov Model to categorize malware. Algorithms

for sequence alignment are combined with API call

sequences. In order to increase the effectiveness of the

detection algorithms, non-essential API functionalities are

removed. Text-mining methods are used on the API call

sequences to analyze the operation, location, and parameter

information of each API call to determine the behavior of

malware. Focusing on the examination of dangerous

dynamic libraries loaded by portable executable files,

Chaganti, R et al. Use both static and dynamic analysis,

with a multi-view feature fusion approach suggested and

also a hybrid technique suggested along in [19] to extract

common properties of malware instances. Using both static

and dynamic analysis, Zhu, et al. [20] hybrid approach

proposes extracting common aspects of malware instances.

They make use of dynamic-link libraries and API-called

functions. In order to spot malicious instances, Hasan, et

al. [21] analyze the frequency of system actions that

portable executables trigger.

It is used to conduct tasks automatically, examine files, and

gather thorough analytical data. These discoveries retrieve

API call traces, information on registry and file

modification, network traffic logs, and particular log data

of the malware's flow path within an isolated operating

system. Cuckoo Sandbox has been utilized by researchers

Sraw, J. S et al. [22] for malware investigation.

To extract elements like registry activity, API calls, and

imported libraries, another effort concentrated on the

memory pictures. Additionally, it evaluated the

effectiveness of several machine learning methods and

discovered that SVM (support vector machine)

outperformed the others. While leveraging supplied

arguments, Thakur et al. [23] built API calls with in-depth

analysis. They also attempted to categorize and evaluate a

big quantity of malware. They employed a mix of

characteristics in different studies to reach a high

categorization rate[24]. We go into further depth about our

suggested approach to malware analysis in the next section.

3. Malware Behavior Analysis

As seen in Table 1, we have considered malware datasets

for malware behavioral analysis techniques. It consists of

two malware datasets. This approach will use a suggested

program to transform an XML file containing the executive

history of malware action into a non-sparse matrix [25].

This app was created using the VB.Net programming

language. A screenshot of our proposed application's XML

converter to a non-sparse matrix. The amount of library file

calls targeted by malicious program and their volume are

two components of turning each XML file into an

appropriate WEKA input. For instance, in Box 1, the

malware has called the XML library file ntdll.dll 16 times,

ranging (0, 2). We next convert this matrix into the WEKA

input data set [26]. Some classification algorithms will

come before the training techniques. The new data set virus

will choose the classifications with the greatest

performance for the test platform. Finally, a behavioral

antiviral may be developed using this process [27]. We

employ 10540 rows of files for our experiment. For each

malware, the dataset has 57 attributes. Then, using our

recommended application, we transform this XML file into

a non-sparse matrix. Non-sparse matrix has two integers,

the first of which indicates the number of qualities and the

second of which indicates the significance of those

properties. This matrix's first row is displayed as follows.

(SystemSettings.DeviceEncryptionHandlers.dll|f226d169

22369a8ea24e8156db40a373|34404|240|8226|14|12|1024

00|62464|0|98176|4096|0|6442450944|4096|512|10|0|10|0|

10|0|180224|1024|202454|3|16736|262144|4096|1048576|

4096|0|16|6|4.60129473839|2.71413309005|6.381756727

95|27136.0|1536|102400|27197.3333333|1176|102000|38|

174|6|4|1|3.44737833601|3.44737833601|3.44737833601|

1076.0|1076|1076|256|16|1)

Where the ‘|’ indicate the separation of parameters of one

row of the file. The 1st part contains the name of the file,

the second is the Hash code, etc.

The decision-making history of the malicious program in

the WEKA platform is examined last. To execute malware

safely in computer systems and stop it from spreading,

some programs, including the SandBox tool and virtual

machine, may create a malware executive history [28]. The

XML file contains useful information, including calls to

system library files, file creation, search and change

operations, registry operations, information about primary

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(1), 330–338 | 333

processes, creation of mutexes (which allow multiple

programs thread for sharing a single resource), alterations

to virtual memory, email transmissions, registry

operations, and switch communications. The proposed

software reads and stores all the data in a non-sparse matrix

[29].

4. Malware Analysis Framework

We provide our suggested process for identifying and

categorizing a sample of a file in this section. The proposed

method-operational logic flow is shown in the flow graph

in Figure 1. Behavior monitoring, feature extraction, Data

collection, analysis, report handling, and detection and

classification are the first four steps of this process. The

following subsections offer a full discussion of these

phases.

Fig. 1. Flow of operation for malware classification

The Guests are the isolated environments where the

malware samples are really securely performed and studied

during the whole analysis process. Two subphases

comprise the analysis phase: i) Sandbox configuration and

(ii) Sandbox configuration. The following is a detailed

discussion of these subphases:

4.1. Sandbox Configuration

Configuring Cuckoo Sandbox [30] is crucial if you want to

obtain malware behavior reports and make sure malware

samples operate correctly, including all of their

capabilities. In the real world, many malware samples take

use of various flaws that may exist in certain software

products. As a result, it's crucial to include a variety of

services in the virtual machines that the sandbox creates.

VirtualBox serves as the hypervisor for the virtual

machines utilized by Cuckoo. One Intel Core i5 2.13 GHz

CPU and 8 GB of RAM, and an internet connection make

up a virtual machine's specifications. Adobe PDF reader,

Python, and Windows 10 (64-bit) are the installed

programs on the virtual system.

4.2. Malware analysis lab set up

A malware analysis environment was developed. In the

guest machine's starting menu, the required Cuckoo agent

is installed. The host computer has the Cuckoo host

installed. Cuckoo's host configuration is set up in

accordance with the virtual machine that will be utilized to

run the sample. While the NAT adapter is used to connect

the Cuckoo guest (XP virtual machine) to the internet,

Virtual Box only Adapter (Vboxnet0) is used to connect

the virtual machine and Cuckoo host. A snapshot is kept of

the virtual machine's initial state, which is a malware-free

and unharmed condition. The Python script cuckoo.py

(cuckoo host) is run with root privileges to begin analysis

on any file. Once the Cuckoo host is started, we may send

files to a virtual computer for examination in accordance

with Cuckoo parameters. Cuckoo Sandbox executes the

virtual machine's files in a clean state when a sample is

given, monitors every activity taking place in the virtual

environment, and creates a report for each sample [31-32].

The web interface and API Calls may both be used to get

the Analyzed Report "AR". To create Macro and Micro

datasets, the Report Handler is used to retrieve the AR, as

mentioned in the next part.

5. Experimental Results and Discussion

We used the WEKA tool in this part to put our strategy into

practice. For the categorization techniques, we utilize a PC

with an Intel Core i5 2.13 GHz CPU and 8 GB of RAM.

Several classification techniques, including K-Neighbor,

XGB, Random Forest, and Light GBM approach, were

used for this investigation. We compared how well various

categorization techniques performed in two malware data

sets.

For the suggested classification techniques, Table 1 details

the analysis of statistical Data Sets 1 and 2. The elements

that make up the classification techniques include

Correctly Classified Instances and Incorrectly Classified

Instances. Through this comparison, we are able to

demonstrate that the regression classification algorithm

detects malware the best. As an illustration, the 5281

malicious programs and 5259 benign programs.

In our datasets, a total of 10540 samples out of which there

are 5281 harmful samples and 5259 benign samples. Using

a daily downloading routine, the Mal share website is used

to download the infected samples [27]. Then, using

VirusTotal [30], each sample is verified and stored

according to its date. To be included in our dataset, the

sample must have the support of five antivirus engines. As

previously mentioned, malware samples of the same sort

have comparable characteristics and actions. It is difficult

to determine the malware type's ground-truth label, as

different anti-virus providers may assign several detection

labels (types) to the same scanned sample.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(1), 330–338 | 334

TABLE 1: Dataset description

Sample Type
No. of

samples
%

Malicious

Adware 135 1.28083491

Backdoor 132 1.25237192

Hack Tool 13 0.12333966

PUP 21 0.19924099

Ransom 221 2.09677419

Riskware 7 0.06641366

Spyware 241 2.28652751

Trojan 4302 40.8159393

Virus 74 0.70208729

Worm 135 1.28083491

Benign

APIMDS 142 1.34724858

CNET 153 1.4516129

CYGWIN 2864 27.1726755

DLL files 568 5.38899431

File Hippo 27 0.25616698

Portable

applications
263 2.49525617

WINDOWS

10
996 9.44971537

Windows

executable
246 2.33396584

Total 10540 -

Researchers thus start investigating other malware sample

tagging methods. For instance, in [23], Thakur, D et al. use

the open-source, automated program AVClass to identify

the type of malware from a sample, in addition to a

confidence level that was determined by using the level of

anti-virus application from VirusTotal and the engine-level

agreement. The ground-truth labeling is outside the

purview of this research, but for our malicious dataset, each

sample's malware type is identified according to data

provided by the Malware- bytes engine in VirusTotal.

Based on VirusTotal data, the age of our harmful samples

is in the range of April 2020 and June 2021. Table 2 lists

the different malware categories and the number of

samples for each category.

The benign samples come from a total of eight sources. We

downloaded the APIMDS dataset after installing a new

copy of Windows 10 and extracting from

c:windowssystem32 directory's, the Windows executables

and DLL files. (1) In order to test legal downloading, we

used free websites. (2) From the file Hippo website, we

downloaded the top 43 programs and the top 300 portable

Windows apps(3) We extracted the two folders, CYGWIN

and WINDOWS 10 benign samples, from the benign

dataset from downloaded files. Windows executable files

are included in both directories and were copied from the

required author sources. Using VirusTotal, each and every

benign sample from the eight sources has been confirmed.

Table 1 lists the no of trials from each safe source (1)

Among the four algorithms, the MLP and MLR outperform

the SVR and SLR in slope stability prediction. The MLP

has an accuracy parameter, Kappa value, and AUC of

90.89%, 0.799, and 0.908, which are considered to be

excellent predictions result.

Researchers thus start investigating other malware sample

tagging methods. For instance, in [23], Thakur, D et al. use

the open-source, automated program AVClass to identify

the type of malware from a sample, in addition to a

confidence level that was determined by using the level of

anti-virus application from VirusTotal and the engine-level

agreement. The ground-truth labeling is outside the

purview of this research, but for our malicious dataset, each

sample's malware type is identified according to data

provided by the Malware- bytes engine in VirusTotal.

Based on VirusTotal data, the age of our harmful samples

is in the range of April 2020 and June 2021. Table 2 lists

the different malware categories and the number of

samples for each category.

The benign samples come from a total of eight sources. We

downloaded the APIMDS dataset after installing a new

copy of Windows 10 and extracting from

c:windowssystem32 directory's, the Windows executables

and DLL files. (1) In order to test legal downloading, we

used free websites. (2) From the file Hippo website, we

downloaded the top 43 programs and the top 300 portable

Windows apps(3) We extracted the two folders, CYGWIN

and WINDOWS 10 benign samples, from the benign

dataset from downloaded files. Windows executable files

are included in both directories and were copied from the

required author sources. Using VirusTotal, each and every

benign sample from the eight sources has been confirmed.

Table 1 lists the no of trials from each safe source.

5.1. Method Evaluation

In this part, we assess the effectiveness of our suggested

approaches for distinguishing malware from harmless

samples and then categorizing them into the appropriate

classifications. For training and testing, the benign dataset

is divided into 4207 (80 percent) and 1052 (20 percent)

samples, respectively. In addition to this, the training and

testing datasets are separated for each malware-type

dataset where each sample set contains 80% and 20% of

the samples, respectively, to ensure a fair evaluation. As a

result, we have a total of 1056 malware samples for testing

and 4225 malware samples for training purposes.

Fig. 2. Experimental Result of different Classifiers

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(1), 330–338 | 335

Fig. 3. Ensemble-Based Voting Classifier

5.2. Detection of Malicious Behavior

In this series of studies, we test how well Methods 1 and 2

distinguish harmful samples from benign ones. To achieve

that, in method 1, On the malicious and benign training

datasets (4225 and 4207, respectively), we have trained our

models using four distinct machine-learning approaches as

mentioned above in Table 2. Using the aforementioned

machine-learning techniques, we perform 10-fold cross-

validation on the datasets to avoid overfitting where the

total dataset was divided into 10 parts and the same model

was run ten times for the same dataset with a different set

of test sets. The 1056 and 1052 harmful and benign testing

datasets, respectively, are tested using the models.

However, in method 2 we have used three different

ensemble techniques on the above-mentioned datasets. The

different ensemble techniques used were (XGB+ Random

Forest Classifier), Light GBM+ Random Forest Classifier

and XGB+ Light GBM Classifier. In each of the cases, the

accuracy and other statistical criteria are analyzed. The

effectiveness of the suggested techniques is assessed using

the conventional machine learning performance criteria

listed below:

• TP (True Positive): It is the % of datasets that are

actually positive and also predicted as positive.

• FP (False Positives): These are the % of data samples

that are actually negative but wrongly predicted as a

positive sample.

• TN (True Negatives): % of samples that were expected

to be negative and turned out to be negative

• FN (False Negatives): % of samples that were expected

to be positive but turned out to be negative.

• Recall: The proportion of positive results that were

really expected to be positive, or the TP rate (also known

as sensitivity)

• Precision: The percentage of favorable predictions that

actually materialize

• Accuracy: The ratio of samples accurately predicted

(TP+NP) to all samples collected for testing (TP + TN +

FP + FN)

• F-Measure: It is the measure of harmonic mean Recall

and precision.

Here we have considered two sets of malware, one as

malicious and the other as benign. Hence positive refers to

actual malicious or benign malware type and negative

refers to not a malware type sample.

TABLE 2: EXPERIMENTAL RESULT OF DIFFERENT

CLASSIFIERS

Classifiers Dataset

Precision Recall

F1

score Accuracy

Kneighbors

Classifier

Malicious 0.98 0.97 0.98 0.967742

Benign 0.94 0.96 0.95 0.972231

XGB

Classifier

Malicious 0.98 0.99 0.98 0.978178

Benign 0.98 0.95 0.97 0.981105

Random

Forest

Malicious 0.98 0.99 0.99 0.981973

Benign 0.98 0.96 0.97 0.979932

Light GBM

Classifier

Malicious 0.99 0.99 0.99 0.982314

Benign 0.98 0.97 0.97 0.980115

Performance results for Methods 1 and 2 are shown in

Table 2 and Table 3 respectively. According to Table 2,

utilizing Method 1, XGBoost outperforms the other three

machine learning algorithms in terms of accuracy for

benign datasets with scoring 98.1105 and Light GBM

outperforms the other three machine learning algorithms in

terms of accuracy for Malicious datasets scoring 98.2314.

The detail of method 1 is shown in figure 2. According to

Table 3, utilizing Method 2, XGB+ Light GBM Classifier

outperforms the other three machine learning algorithms in

terms of accuracy for benign datasets scoring 98.4325, and

Light GBM+ Random Forest Classifier outperforms the

other three machine learning algorithms in terms of

accuracy for Malicious datasets with scoring 98.5312.

Method 2 scoring 98.4325. As a result, we carry out more

Light GBM+ Random forest trials employing 10-fold

cross-validation. The evaluation details are shown in figure

3. The performance outcomes of Methods 1 and 2 are then

assessed in terms of various parameters.

TABLE 3: RESULT OF ENSEMBLE-BASED VOTING

CLASSIFIER

Classifiers Dataset

Precision Recall

F1

score Accuracy

XGB+

Random

forest

Classifier

Malicious 0.98 0.99 0.99 0.981205

Benign 0.98 0.97 0.97 0.982305

Light

GBM+

Random

forest

Classifier

Malicious 0.98 0.99 0.99 0.985312

Benign 0.98 0.96 0.97 0.981201

XGB+

Light

GBM

Classifier

Malicious 0.98 0.99 0.99 0.982114

Benign 0.98 0.97 0.97 0.984325

5.3. Performance of the Methods and Misclassifications

In this part, we computed the performance of Methods 1

and 2 and explain when Method 2 might perform better

than Method 1. As previously said, all approaches

accomplish the same goal; the tokenization methods are

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(1), 330–338 | 336

what really set them apart from one another. While Method

2 regards each AP call's argument as a unique feature,

Method 1 interprets the complete collection of arguments

for each API call as a single token. If the sample has called

a few API calls but many arguments have been provided

for each API call, Method 2 performs better than Method 1

since the many arguments for each call can make up for the

few total API calls. Table 3 demonstrates that this finding

is correct. It is evident that Method 2 outperforms Method

1 marginally in terms of malware detection. The causes of

the misclassifications in our suggested techniques are then

discussed.

5.4. Classification of Malware Types

The purpose of this collection of experiments is to assess

how well Methods 1 and 2 perform in categorizing

malware samples into their appropriate classes. The

malicious samples are divided into their categories using

the same features that were used to divide the samples into

harmful and benign classifications. Our harmful samples

fit into one of ten malware categories, as was already

explained (Table 1). Each malware-type dataset is divided

into training and testing datasets, which each include 80%

and 20% of the samples, respectively, in order to provide a

thorough validation and ensure that the machine learning

modules are taught using a suitable number of samples

from each sort. As a result, we have 2108 samples for

testing and 8432 pieces of malware and benign code for

training. The same five machine-learning techniques are

employed to train models using the training dataset. Tables

2 and 3 respectively present the performance results for

Methods 1 and 2. Utilizing Method 1, XGBoost

outperforms the other three machine learning algorithms in

terms of accuracy for benign datasets with a score of

98.1105, and Light GBM outperforms the other three

machine learning algorithms in terms of accuracy for

malicious datasets with a score of 98.2314, as shown in

Table 2. Table 3 shows that using Method 2, the XGB+

Light GBM Classifier outperforms the other three machine

learning algorithms in terms of accuracy for benign

datasets with a score of 98.4325, and the Light GBM+

Random Forest Classifier outperforms the other three

machine learning algorithms in terms of accuracy for

malicious datasets with a score of 98.5312. The Score of

98.4325 for method 2. We do more Light GBM+ Random

forest experiments using 10-fold cross-validation as a

result. Next, numerous factors are responsible for giving

different kind of accuracy of the models that were used in

Methods 1 and 2.

(2) All of the study's parameters are vulnerable to slope

failure, therefore determining slope stability using a single

metric is useless. The variable δ is perhaps the most

profound aspect to MLR model and MLP models, while

slope geometry attributes are also critical. It should also be

highlighted that neither of the supervised learning

techniques is suitable for all kinds of slope scenarios, and

none was sufficient to address the existing problem.

6. State-of-the-art of the different models

Here in this section, we contrast our strategies with those

of previous works that take API parameters into account.

Our comparison takes into account (i) Detection accuracy

(ii) Necessary API data, including determining and the

limitations include the frequency counter for a specific API

request, recognizing API sequence trends, and more. The

API parameters have been utilized in the research listed

below to create malware detection and/or type

categorization models. Both [10] and [11] employ pattern

recognition algorithms to identify a shared sequence of API

calls and parameters, as was mentioned in Section 2.

However, by removing and/or introducing certain API

calls. A pattern may be changed. In contrast, [1, 5, 6]

employ malware detection methods based on the frequency

of API calls. In [24], the distinction between benign and

malicious samples was made using the frequency metric of

calling particular API calls and their parameters. For

malware identification, Yong et al. employed frequent item

sets of API calls and their parameters in [14]. Statistics

pertaining about and their parameters include the

frequency, mean, and size of parameter arguments that

were proposed by Hasan, H et al. [21] utilized to identify

harmful software activity. By the removal of and/or adding

API calls and by changing the frequency counter values,

malware developers can easily get around the

aforementioned frequency-based techniques.

Compared to the previous research, our methodologies are

distinct. i) As a result of the fact that we don't rely on the

sequence or pattern of the API calls, nor do we consider

their individual methods are resistant to malware mutation

and obfuscation tactics (such as changing the order of API

calls or repeatedly using certain API calls and/or

arguments). Instead, our approaches solely take into

account the frequency of API calls and the values of such

requests. (ii) Our method does not consider statistical traits

like mean, frequency, or the size of the API parameters.

(iii) Because our approaches employ unique feature

generation functions to improve the retrieved API-based

characteristics for improved processing, domain

knowledge of the complicated arguments is not necessary.

(iv) None of the current methods have investigated the

potential for using each API call's parameter element

independently, as demonstrated in Method 2.

These benefits enable our method to overcome the scaling

challenge posed by the high memory consumption and

computational complexity associated with the use of high

dimensional feature space. Table 3 provides a comparison

of our strategy with the comparable research stated

previously. As seen in Tables 2 and 3, our suggested

approaches have outperformed the most recent methods.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(1), 330–338 | 337

7. Conclusion and Future Work

This research presented a novel classification-based data

mining method for identifying malware behavior. First, our

proposed application is used to transform a malware

behavior executive history XML file into a non-sparse

matrix. The WEKA input data set was then translated from

this matrix. We used the WEKA tool to apply the suggested

procedures to an actual case study data set to demonstrate

performance effectiveness. We have performed two

operations in method 1 and method 2 on the same data sets.

Classification techniques including K- neighbor, Random

Forest, and Light GBM algorithms in method 1 and also a

few ensemble techniques were used in method 2 for the

same datasets. For classifying malware detection, the

regression classification approach performed best.

Additionally, we used the ensemble classification approach

to examine the same data set. The evaluation's findings

showed how useful the suggested data mining and

ensemble method were more effective in finding malware.

With reference to figure 2 and figure 3 and by paying

attention to the experimental findings, classifying

behavioral characteristics of malware can be an easy way

to create behavioral antivirus. A genuine behavioral

antiviral platform based on categorization via an ensemble

algorithm will be developed and examined in the next

work.

All authors have equally contributed to this research work.

Conflicts of interest

The authors declare no conflicts of interest.

References

[1] Kumar, R., Alenezi, M., Ansari, M. T. J., Gupta, B. K.,

Agrawal, A., & Khan, R. A. , “Evaluating the impact of

malware analysis techniques for securing web

applications through a decision-making framework under

fuzzy environment”. Int. J. Intell. Eng. Syst, 13(6), 94-

109, 2020

[2] Balaji, K. M., & Subbulakshmi, T., “Malware Analysis

Using Classification and Clustering Algorithms”,

International Journal of e-Collaboration (IJeC),18(1), 1-

26,2022

[3] Akhtar, M. S., & Feng, T., “Malware Analysis and

Detection Using Machine Learning Algorithms”,

Symmetry, 14(11), 2304, 2022.

[4] Hadiprakoso, R. B., Kabetta, H., & Buana, I. K. S,

“Hybrid-based malware analysis for effective and

efficiency android malware detection”. In 2020

International Conference on Informatics, Multimedia,

Cyber and Information System (ICIMCIS), (pp. 8-12).

IEEE,2020.

[5] Hwang, C., Hwang, J., Kwak, J., & Lee, T., “Platform-

independent malware analysis applicable to windows and

Linux environments”, Electronics, 9(5), 793,2020.

[6] Bermejo Higuera, J., Abad Aramburu, C., Bermejo

Higuera, J. R., Sicilia Urban, M. A., & Sicilia Montalvo,

J. A., “ Systematic approach to malware analysis

(SAMA)”, Applied Sciences, 10(4), 1360,2020.

[7] Mehtab, A., Shahid, W. B., Yaqoob, T., Amjad, M. F.,

Abbas, H., Afzal, H., & Saqib, M. N., “AdDroid: rule-

based machine learning framework for android malware

analysis. Mobile Networks and Applications”, 25(1),

180-192,2020.

[8] Akhtar, M. S., & Feng, T., “Malware Analysis and

Detection Using Machine Learning Algorithms”,

Symmetry, 14(11), 2304,2022.

[9] S Aboaoja, F. A., Zainal, A., Ghaleb, F. A., Al-rimy, B.

A. S., Eisa, T.A. E., & Elnour, A. A. H., “Malware

Detection Issues, Challenges, and Future Directions: A

Survey”, Applied Sciences, 12(17), 8482,2022.

[10] Smith, M. R., Johnson, N. T., Ingram, J. B., Carbajal, A.

J., Haus, B. I., Domschot, E., .& Kegelmeyer, W. P,

“Mind the gap: On bridging the semantic gap between

machine learning and malware analysis”, In Proceedings

of the 13th ACM Workshop on Artificial Intelligence and

Security, (pp. 49-60),2020.

[11] de Vicente Mohino, J. J., Bermejo-Higuera, J., Bermejo

Higuera, J. R., Sicilia, J. A., Sánchez Rubio, M., &

Martínez Herraiz, J. J. “MMALE a methodology for

malware analysis in linux environments”,2021.

[12] Pereberina, A., Kostyushko, A., & Tormasov, A., “An

approach to dynamic malware analysis based on system

and application code split”, Journal of Computer

Virology and Hacking Techniques,1-11,2022.

[13] Almomani, I., Ahmed, M., & El-Shafai, W., “Android

malware analysis in a nutshell”, PloS one,17(7),

e0270647,2022.

[14] McDole, A., Gupta, M., Abdelsalam, M., Mittal, S.,

Alazab, M., “Deep Learning Techniques for Behavioral

Malware Analysis in Cloud IaaS”, In: Stamp, M., Alazab,

M., Shalaginov, A. (eds) Malware Analysis Using

Artificial Intelligence and Deep Learning. Springer,

Cham, (pp. 269-285), 2021

[15] Jeffrey, N., Tan, Q., & Villar, J. R., “Anomaly Detection

of Security Threats to Cyber-Physical Systems: A Study”,

In International Workshop on Soft Computing Models in

Industrial and Environmental Applications,(pp. 3-12).

Springer, Cham,2023

[16] Amer, E., Zelinka, I., & El-Sappagh, S., “A multi-

perspective malware detection approach through

behavioral fusion of API call sequence”, Computers &

Security,110, 102449,2021

[17] Zou, D., Wu, Y., Yang, S., Chauhan, A., Yang, W.,

Zhong, J., ... & Jin, H., “IntDroid: Android malware

detection based on API intimacy analysis”, ACM

Transactions on Software Engineering and Methodology

(TOSEM), 30(3), 1-32,2021

[18] Schofield, M., Alicioglu, G., Binaco, R., Turner, P.,

Thatcher, C., Lam, A., & Sun, B, “Convolutional neural

network for malware classification based on API call

sequence”, In Proceedings of the 8th International

Conference on Artificial Intelligence and Applications,

(AIAP 2021),2021

[19] Chaganti, R., Ravi, V., & Pham, T. D, “A multi-view

feature fusion approach for effective malware

classification using Deep Learning”, Journal of

Information Security and Applications, 72, 103402,2023

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(1), 330–338 | 338

[20] Zhu, H. J., Gu, W., Wang, L. M., Xu, Z. C., & Sheng, V.

S., “Android malware detection based on multi-head

squeeze-and-excitation residual network”, Expert

Systems with Applications, 212, 118705,2023

[21] Hasan, H., Ladani, B. T., & Zamani, B., “MEGDroid: A

model-driven event generation framework for dynamic

android malware analysis”, Information and Software

Technology, 135, 106569,2021

[22] Sraw, J. S., & Kumar, K., “Using static and dynamic

malware features to perform malware ascription”, ECS

Transactions, 107(1), 3187,2022.

[23] Thakur, D., Singh, J., Dhiman, G., Shabaz, M., & Gera,

T., “Identifying major research areas and minor research

themes of android malware analysis and detection field

using LSA”, Complexity,2021

[24] Al-Dwairi, M., Shatnawi, A. S., Al-Khaleel, O., & Al-

Duwairi, B., “Ransomware-Resilient Self-Healing XML

Documents. Future Internet”, 14(4), 115,2022.

[25] Rafiq, H., Aslam, N., Ahmed, U., & Lin, J. C. W.,

“Mitigating Malicious Adversaries Evasion Attacks in

Industrial Internet of Things”, IEEE Transactions on

Industrial Informatics, 2022

[26] Lebbie, M., Prabhu, S. R., & Agrawal, A. K.,

“Comparative Analysis of Dynamic Malware Analysis

Tools. In Proceedings of the International Conference on

Paradigms of Communication”, Computing and Data

Sciences, (pp. 359-368). Springer, Singapore,2022

[27] Kartel, A., Novikova, E., & Volosiuk, A., “Analysis of

visualization techniques for malware detection”, In 2020

IEEE Conference of Russian Young Researchers in

Electrical and Electronic Engineering (EIConRus) (pp.

337-340), 2020

[28] Liu, S., Feng, P., Wang, S., Sun, K., & Cao, J.,

“Enhancing malware analysis sandboxes with emulated

user behavior”, 2022, Computers & Security, 115,

102613,2020

[29] Yadav, C. S., Singh, J., Yadav, A., Pattanayak, H. S.,

Kumar, R., Khan, A. A., ... & Alharby, S., “Malware

Analysis in IoT & Android Systems with Defensive

Mechanism”, Electronics, 11(15), 2354,2022.

[30] Lebbie, M., Prabhu, S. R., & Agrawal, A. K.,

“Comparative Analysis of Dynamic Malware Analysis

Tools”, In Proceedings of the International Conference on

Paradigms of Communication, Computing and Data

Sciences, (pp. 359-368), Springer, Singapore,2022.

[31] Palša, J., Ádám, N., Hurtuk, J., Chovancová, E., Madoš,

B., Chovanec, M., & Kocan, S., “MLMD—A Malware-

Detecting Antivirus Tool Based on the XGBoost Machine

Learning Algorithm, Applied Sciences, 12(13),

6672,2022

[32] Louk, M. H. L., & Tama, B. A., “Tree-Based Classifier

Ensembles for PE Malware Analysis: A Performance

Revisit”, Algorithms, 15(9), 332,2022

Biography

Mr. D Anil Kumar completed his M.Tech

degree in Computer Science from Berhampur

University Odisha in the year 2009 Currenly

pursuing Ph.D from Berhampur University,

Odisha. He has 18+ teaching experience

worked as a different organizations as an Assistant Professor He

has published no. of international journal and Conference papers.

His research area is Cyber Security, Data Ware Housing and Data

Mining Computer Organization and Architecture.

 Dr. Susanta Kumar Das joined the Dept. of

Computer Science in 1993. He has teaching

experience of 23 years in the department. He

has attended no. of national & international

conferences. To his credit, he has served as

H.O.D for 2 years in the department. At present

he is the coordinator of M.Tech(S.F) course & as coordinator of

spoken tutorial project conducted by IIT Bombay & funded by

MHRD, Govt of India. Fourteen no. of scholars are awarded Ph.D

under his guidance. One D.Sc degree is awarded in Computer

Science under his guidance. He has been felicitated award of

honour by Dept. of Mathematics, Maharshi Dayanand University

Rohtak, Haryana in the international conference on History &

Development of Mathematical Science & Symposium on

Nonlinear Analysis. His research are in Software Engineering &

Network Security. .

