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Abstract: The world's digitalization is currently being threatened by the daily appearance of new and complicated viruses. As a result, 

the conventional signature-based approaches for malware detection are practically rendered useless. Modern research studies have 

demonstrated the effectiveness of machine-learning algorithms in terms of malware identification. In this study, we suggested a system 

to identify and categorize various files (such as exe, pdf, PHP, etc.), and API calls as benign and harmful utilizing two-level classifiers, 

namely Macro (for malware detection) and Micro (for classification of malware files as a Trojan, Spyware, Adware, etc.). One of the 

most used data mining (DM) methods is classification. In this research, we describe a classification technique for DM for malware 

discovery. On the basis of the characteristics and behaviors of each virus, we suggested many categorization approaches to identify 

malware. The malware traits have been identified using a dynamic analysis technique. Our solution executes sample files in a virtual 

environment using Cuckoo Sandbox to generate static and dynamic analysis reports. Additionally, utilizing the data produced by the 

Cuckoo Sandbox, a unique feature selection, and extraction segment has been produced that operates based on static, behavioral, and 

network analysis. Machine learning models are created utilizing the Weka Framework and training datasets. The experimental findings 

utilizing the suggested framework demonstrate high rates of detection and classification using various Machine Learning Algorithms. 

Keywords: Malware Detection; API-call; Static and dynamic analysis; malware classification; behavior-based analysis. 

1. Introduction

One of the biggest hazards on the Internet today is 

malicious software or malware. Users download many 

kinds of computer applications on a massive scale from the 

Internet. Online black markets are used by hackers to create 

software that violates system security. This gives hackers a 

significant incentive to alter and make harmful code more 

sophisticated in an effort to create more uncertainty and 

reduce their chances of being discovered by anti-virus 

software. As a result, accessing the Internet is becoming 

riskier and riskier as a result of growing dangers from 

malware [1], which is distributed over the Internet in the 

form of files and software. 

Malware is a harmful application that is used to violate a 

system's data availability, confidentiality, and integrity 

policies. Malware comes in a variety of forms, including 

viruses, Trojan horses, spyware, rootkits, trapdoors, etc., 

depending on how they pose dangers to the system. The 

overall quantity of malware has increased dramatically 

since 2008 and reached more than 583 million, in March 

2020, according to AV-Test [2]. Finding these files before 

they violate the system's security perimeter is crucial given 

the increased incidence of malware. According to the 

report, the malware detection system comprises the duties 

of malware analysis [3]. 

1.1. Malware Detection 

The use of signature-based and behavioral-based 

approaches, two well-known detection methods, is made. 

But signature-based methods are unable to identify Zero-

Day attacks. Additionally, it cannot identify sophisticated 

new malware. On the other hand, it is highly challenging 

to properly describe the whole variety of appropriate 

behaviors that a system should show when employing 

behavior-based methodologies. The majority of malware 

detection systems typically employ static methods like 

signature-based and anomaly-based methods of detection. 

While some systems attempt to discover irregularities in 

the code structure, others use signature matching to assess 

whether a program is malicious. Static approaches 

investigate malware programs without running them in 

order to understand the code structure [4]. When doing 

dynamic analysis, malware is run in a virtual environment 

to track its network interactions and Windows API calls. 

These observed API call data are utilized by dynamic 

malicious program detection techniques to identify 

harmful behavior. The function names, arguments, and 

return values of an executable are contained in API-call 

information. Through the use of the occurrence and 

arrangement of API calls, dynamic approaches attempt to 

derive distinguishing characteristics to identify malware 

programs [5]. 

As per the Malware detection statistics by AV-Test 

institute, there are more than 1 billion malware programs 

out there spreading every year. Since 2013 it was spreading 
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exponentially.  Nearly 560,000 new malware pieces are 

detected on a daily basis worldwide. As per the last 

statistics, near about 17 million new malware are reported 

on a monthly basis. As per Sonic Wall data, more than 3.2 

billion malware in the 1st half of 2020. As per google 

statistics, nearly 7% of new websites were affected every 

year and each week it was reported that nearly 50 websites 

contained malware. As per Symantec, around 20 million 

IoT devices were malware affected and out of which 75% 

were through routers. As per Statista China is the most 

malware affected globally with 47% followed by Turkey 

with 42% and Taiat with 39%. As per checkpoint, the 

viruses are spread through .exe files and the malware is 

generally delivered through emails. 

Different mobile malware statistics have been proposed. A 

few of them are listed below: 

As per Kaspersky total number of mobile malware 

surpassed 28 million during the 1st half of 2020. And 

around 14 million are detected in each quarter every year. 

Adware is one of the most common pieces of mobile 

malware.  

Because malware is becoming more prevalent in 

technology, understanding how to guard against it is a 

crucial component of malware detection using machine 

learning techniques. In general, data mining techniques 

identified a group of malware applications in the public 

that included both harmful executable and innocuous 

software packages [6]. Typically, there are two different 

types of data mining algorithms based on supervised 

learning and unsupervised learning techniques. 

Classification algorithms are the supervised learning 

techniques that are required for the exercise with the data 

set [7]. The unsupervised learning techniques, known as 

clustering algorithms, seek to analyze the organization of 

data into several clusters [8]. 

1.2. Malware Analysis 

This includes static, dynamic, and hybrid analyses. We 

developed a malware analysis solution utilizing a machine 

learning approach to distinguish between benign and 

malicious files in response to the aforementioned 

limitations of the existing techniques. In order to 

effectively and efficiently identify and categorize malware, 

we have suggested an intelligent malware analysis 

methodology in this study. 

Malware programs are often divided into categories 

including worms, viruses, trojan horses, spyware, back 

doors, and rootkits [9]. Using signature-based techniques 

is the cornerstone of conventional and customary 

approaches to malware identification. Researchers have 

recently tried to propose more trustworthy methodologies 

for malware identification with malware behavior after 

being frustrated by outdated methods' failure to identify 

malware or polymorphic dangerous files [10]. Static 

analysis and dynamic analysis have both been used in the 

process of identifying and locating the malware. Static 

analysis, which may identify harmful code and place it in 

one of the available collections depending on various 

learning techniques, is a technique used in software 

analyzing approaches. Static analysis uses binary codes to 

identify harmful files and viruses. The biggest drawback of 

static analysis is the absence of the program's source codes. 

It is important to note that extracting binary codes is a 

difficult and intricate task.  

The dynamic analysis, in contrast, detects dangerous 

scripts based on their runtime behavior [11]. Dynamic 

analysis, which also refers to behavioral analysis and 

observation of behavior and system operation, is the term 

used to describe the examination of runtime code [12]. The 

infected files need to be run on a virtual system via a 

dynamic analysis process [13]. To manage the expanding 

number and variety of malware, dynamic analysis can be 

employed in conjunction with classification and clustering 

techniques. The approaches for classifying malware aid in 

the assignment of unidentified malware to known families. 

Malware categorization is therefore employed to filter 

unknown instances, which lowers analysis costs. 

The following are some of this paper's contributions: 

• Putting out a behavioral analysis detecting system. 

• Introducing software that converts an XML file 

containing a malware behavior executive history into a 

WEKA input that is appropriate. 

• Examining several categorization techniques using a 

virus case study. 

• Comparing the experimental findings from the WEKA 

tool, such as the proportion of correctly classified 

instances, and the accuracy optimistic ratio. 

• To create a behavioral antivirus, the optimal 

categorization approach based on critical malware 

detection criteria is being tested. 

The overall arrangement of this article is as follows: 

Section 2 discusses some historical context and related 

research in virus detection and data mining approaches. 

The behavioral analysis of the malware is shown in Section 

3. In this part, using a real-world case study, we provide a 

novel method for deciphering malware behavior and 

converting dangerous files into data mining files. The 

classification and prediction methods used with the data 

mining platform are also described in this section. Then, 

using the WEKA tool, we apply some of the well-known 

categorization techniques to our actual case study. Section 

4 summarizes the assessment and experimental findings. 

Section 5 brings the conversation and the work to a close. 

2. Related Works 

The background information and some associated efforts 

for malware detection in data mining approaches are 

covered in this part. First, we quickly go through data 

mining methodology based on malware and other system 

classification techniques. Researchers recently revealed 
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various malware analysis methodologies. A data mining 

technique was put out by Schultz et al. [14] to identify new 

dangerous files during runtime execution. Their approach 

was based on three distinct sorts of DLL calls, including 

the binary's list of DLLs utilized, the list of DLL functions 

used, and the number of various systems calls used inside 

each DLL. Additionally, they use signature techniques to 

check the byte ordering that was retrieved from an 

executable file's hex-dump (a hexadecimal schema of 

computer data). This method's primary structure is based 

on the Naive-Bayes (NB) algorithm. The experimental 

findings were compared using conventional signature-

based techniques.  

Dynamic analysis approaches, which examine program 

activities while running in a secure environment, have been 

used in several research. By examining a large number of 

malware mutation files, Jeffrey, N et al. technique [15] 

suggests typical patterns of malware programs. Based on 

the frequency of API calls, Amer et al [16] dynamic 

malware detection technique is suggested. By tracking API 

calls Zou et al. [17] examine the malware executables' API-

call rates and sequences. In order to identify malware 

variations, Schofield et al. [18] provide an approach that 

builds representations of malware behavior by mapping 

API calls to colors. Function call patterns are used with a 

Hidden Markov Model to categorize malware. Algorithms 

for sequence alignment are combined with API call 

sequences. In order to increase the effectiveness of the 

detection algorithms, non-essential API functionalities are 

removed. Text-mining methods are used on the API call 

sequences to analyze the operation, location, and parameter 

information of each API call to determine the behavior of 

malware. Focusing on the examination of dangerous 

dynamic libraries loaded by portable executable files, 

Chaganti, R et al. Use both static and dynamic analysis, 

with a multi-view feature fusion approach suggested and 

also a hybrid technique suggested along in [19] to extract 

common properties of malware instances. Using both static 

and dynamic analysis, Zhu, et al. [20] hybrid approach 

proposes extracting common aspects of malware instances. 

They make use of dynamic-link libraries and API-called 

functions. In order to spot malicious instances, Hasan, et 

al. [21] analyze the frequency of system actions that 

portable executables trigger. 

It is used to conduct tasks automatically, examine files, and 

gather thorough analytical data. These discoveries retrieve 

API call traces, information on registry and file 

modification, network traffic logs, and particular log data 

of the malware's flow path within an isolated operating 

system. Cuckoo Sandbox has been utilized by researchers 

Sraw, J. S et al. [22] for malware investigation. 

To extract elements like registry activity, API calls, and 

imported libraries, another effort concentrated on the 

memory pictures. Additionally, it evaluated the 

effectiveness of several machine learning methods and 

discovered that SVM (support vector machine) 

outperformed the others. While leveraging supplied 

arguments, Thakur et al. [23] built API calls with in-depth 

analysis. They also attempted to categorize and evaluate a 

big quantity of malware. They employed a mix of 

characteristics in different studies to reach a high 

categorization rate[24]. We go into further depth about our 

suggested approach to malware analysis in the next section. 

3. Malware Behavior Analysis 

As seen in Table 1, we have considered malware datasets 

for malware behavioral analysis techniques. It consists of 

two malware datasets. This approach will use a suggested 

program to transform an XML file containing the executive 

history of malware action into a non-sparse matrix [25]. 

This app was created using the VB.Net programming 

language. A screenshot of our proposed application's XML 

converter to a non-sparse matrix. The amount of library file 

calls targeted by malicious program and their volume are 

two components of turning each XML file into an 

appropriate WEKA input. For instance, in Box 1, the 

malware has called the XML library file ntdll.dll 16 times, 

ranging (0, 2). We next convert this matrix into the WEKA 

input data set [26]. Some classification algorithms will 

come before the training techniques. The new data set virus 

will choose the classifications with the greatest 

performance for the test platform. Finally, a behavioral 

antiviral may be developed using this process [27]. We 

employ 10540 rows of files for our experiment. For each 

malware, the dataset has 57 attributes. Then, using our 

recommended application, we transform this XML file into 

a non-sparse matrix. Non-sparse matrix has two integers, 

the first of which indicates the number of qualities and the 

second of which indicates the significance of those 

properties. This matrix's first row is displayed as follows. 

(SystemSettings.DeviceEncryptionHandlers.dll|f226d169

22369a8ea24e8156db40a373|34404|240|8226|14|12|1024

00|62464|0|98176|4096|0|6442450944|4096|512|10|0|10|0|

10|0|180224|1024|202454|3|16736|262144|4096|1048576|

4096|0|16|6|4.60129473839|2.71413309005|6.381756727

95|27136.0|1536|102400|27197.3333333|1176|102000|38|

174|6|4|1|3.44737833601|3.44737833601|3.44737833601|

1076.0|1076|1076|256|16|1) 

Where the ‘|’ indicate the separation of parameters of one 

row of the file. The 1st part contains the name of the file, 

the second is the Hash code, etc.  

The decision-making history of the malicious program in 

the WEKA platform is examined last. To execute malware 

safely in computer systems and stop it from spreading, 

some programs, including the SandBox tool and virtual 

machine, may create a malware executive history [28]. The 

XML file contains useful information, including calls to 

system library files, file creation, search and change 

operations, registry operations, information about primary 
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processes, creation of mutexes (which allow multiple 

programs thread for sharing a single resource), alterations 

to virtual memory, email transmissions, registry 

operations, and switch communications. The proposed 

software reads and stores all the data in a non-sparse matrix 

[29]. 

4. Malware Analysis Framework 

We provide our suggested process for identifying and 

categorizing a sample of a file in this section. The proposed 

method-operational logic flow is shown in the flow graph 

in Figure 1. Behavior monitoring, feature extraction, Data 

collection, analysis, report handling, and detection and 

classification are the first four steps of this process. The 

following subsections offer a full discussion of these 

phases. 

 
Fig. 1. Flow of operation for malware classification 

 

The Guests are the isolated environments where the 

malware samples are really securely performed and studied 

during the whole analysis process. Two subphases 

comprise the analysis phase: i) Sandbox configuration and 

(ii) Sandbox configuration. The following is a detailed 

discussion of these subphases:    

4.1. Sandbox Configuration  

Configuring Cuckoo Sandbox [30] is crucial if you want to 

obtain malware behavior reports and make sure malware 

samples operate correctly, including all of their 

capabilities. In the real world, many malware samples take 

use of various flaws that may exist in certain software 

products. As a result, it's crucial to include a variety of 

services in the virtual machines that the sandbox creates. 

VirtualBox serves as the hypervisor for the virtual 

machines utilized by Cuckoo. One Intel Core i5 2.13 GHz 

CPU and 8 GB of RAM, and an internet connection make 

up a virtual machine's specifications. Adobe PDF reader, 

Python, and Windows 10 (64-bit) are the installed 

programs on the virtual system. 

4.2. Malware analysis lab set up  

A malware analysis environment was developed. In the 

guest machine's starting menu, the required Cuckoo agent 

is installed. The host computer has the Cuckoo host 

installed. Cuckoo's host configuration is set up in 

accordance with the virtual machine that will be utilized to 

run the sample. While the NAT adapter is used to connect 

the Cuckoo guest (XP virtual machine) to the internet, 

Virtual Box only Adapter (Vboxnet0) is used to connect 

the virtual machine and Cuckoo host. A snapshot is kept of 

the virtual machine's initial state, which is a malware-free 

and unharmed condition. The Python script cuckoo.py 

(cuckoo host) is run with root privileges to begin analysis 

on any file. Once the Cuckoo host is started, we may send 

files to a virtual computer for examination in accordance 

with Cuckoo parameters. Cuckoo Sandbox executes the 

virtual machine's files in a clean state when a sample is 

given, monitors every activity taking place in the virtual 

environment, and creates a report for each sample [31-32]. 

The web interface and API Calls may both be used to get 

the Analyzed Report "AR". To create Macro and Micro 

datasets, the Report Handler is used to retrieve the AR, as 

mentioned in the next part. 

5.  Experimental Results and Discussion 

We used the WEKA tool in this part to put our strategy into 

practice. For the categorization techniques, we utilize a PC 

with an Intel Core i5 2.13 GHz CPU and 8 GB of RAM. 

Several classification techniques, including K-Neighbor, 

XGB, Random Forest, and Light GBM approach, were 

used for this investigation. We compared how well various 

categorization techniques performed in two malware data 

sets. 

For the suggested classification techniques, Table 1 details 

the analysis of statistical Data Sets 1 and 2. The elements 

that make up the classification techniques include 

Correctly Classified Instances and Incorrectly Classified 

Instances. Through this comparison, we are able to 

demonstrate that the regression classification algorithm 

detects malware the best. As an illustration, the 5281 

malicious programs and 5259 benign programs. 

In our datasets, a total of 10540 samples out of which there 

are 5281 harmful samples and 5259 benign samples. Using 

a daily downloading routine, the Mal share website is used 

to download the infected samples [27]. Then, using 

VirusTotal [30], each sample is verified and stored 

according to its date. To be included in our dataset, the 

sample must have the support of five antivirus engines. As 

previously mentioned, malware samples of the same sort 

have comparable characteristics and actions. It is difficult 

to determine the malware type's ground-truth label, as 

different anti-virus providers may assign several detection 

labels (types) to the same scanned sample. 
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TABLE 1: Dataset description 

Sample Type 
No. of 

samples 
% 

 

 

 

Malicious 

 

 

 

 

  

Adware 135 1.28083491 

Backdoor 132 1.25237192 

Hack Tool 13 0.12333966 

PUP 21 0.19924099 

Ransom 221 2.09677419 

Riskware 7 0.06641366 

Spyware 241 2.28652751 

Trojan 4302 40.8159393 

Virus 74 0.70208729 

Worm 135 1.28083491 

 

 

Benign 

 

 

 

  

APIMDS 142 1.34724858 

CNET 153 1.4516129 

CYGWIN 2864 27.1726755 

DLL files 568 5.38899431 

File Hippo 27 0.25616698 

Portable 

applications 
263 2.49525617 

WINDOWS 

10 
996 9.44971537 

Windows 

executable 
246 2.33396584 

Total 10540 - 

Researchers thus start investigating other malware sample 

tagging methods. For instance, in [23], Thakur, D et al. use 

the open-source, automated program AVClass to identify 

the type of malware from a sample, in addition to a 

confidence level that was determined by using the level of 

anti-virus application from VirusTotal and the engine-level 

agreement. The ground-truth labeling is outside the 

purview of this research, but for our malicious dataset, each 

sample's malware type is identified according to data 

provided by the Malware- bytes engine in VirusTotal. 

Based on VirusTotal data, the age of our harmful samples 

is in the range of April 2020 and June 2021. Table 2 lists 

the different malware categories and the number of 

samples for each category.  

The benign samples come from a total of eight sources. We 

downloaded the APIMDS dataset after installing a new 

copy of Windows 10 and extracting from 

c:windowssystem32 directory's, the Windows executables 

and DLL files. (1) In order to test legal downloading, we 

used free websites. (2) From the file Hippo website, we 

downloaded the top 43 programs and the top 300 portable 

Windows apps(3) We extracted the two folders, CYGWIN 

and WINDOWS 10 benign samples, from the benign 

dataset from downloaded files. Windows executable files 

are included in both directories and were copied from the 

required author sources. Using VirusTotal, each and every 

benign sample from the eight sources has been confirmed. 

Table 1 lists the no of trials from each safe source (1) 

Among the four algorithms, the MLP and MLR outperform 

the SVR and SLR in slope stability prediction. The MLP 

has an accuracy parameter, Kappa value, and AUC of 

90.89%, 0.799, and 0.908, which are considered to be 

excellent predictions result.  

Researchers thus start investigating other malware sample 

tagging methods. For instance, in [23], Thakur, D et al. use 

the open-source, automated program AVClass to identify 

the type of malware from a sample, in addition to a 

confidence level that was determined by using the level of 

anti-virus application from VirusTotal and the engine-level 

agreement. The ground-truth labeling is outside the 

purview of this research, but for our malicious dataset, each 

sample's malware type is identified according to data 

provided by the Malware- bytes engine in VirusTotal. 

Based on VirusTotal data, the age of our harmful samples 

is in the range of April 2020 and June 2021. Table 2 lists 

the different malware categories and the number of 

samples for each category.  

The benign samples come from a total of eight sources. We 

downloaded the APIMDS dataset after installing a new 

copy of Windows 10 and extracting from 

c:windowssystem32 directory's, the Windows executables 

and DLL files. (1) In order to test legal downloading, we 

used free websites. (2) From the file Hippo website, we 

downloaded the top 43 programs and the top 300 portable 

Windows apps(3) We extracted the two folders, CYGWIN 

and WINDOWS 10 benign samples, from the benign 

dataset from downloaded files. Windows executable files 

are included in both directories and were copied from the 

required author sources. Using VirusTotal, each and every 

benign sample from the eight sources has been confirmed. 

Table 1 lists the no of trials from each safe source.  

5.1. Method Evaluation  

In this part, we assess the effectiveness of our suggested 

approaches for distinguishing malware from harmless 

samples and then categorizing them into the appropriate 

classifications. For training and testing, the benign dataset 

is divided into 4207 (80 percent) and 1052 (20 percent) 

samples, respectively. In addition to this, the training and 

testing datasets are separated for each malware-type 

dataset where each sample set contains 80% and 20% of 

the samples, respectively, to ensure a fair evaluation. As a 

result, we have a total of 1056 malware samples for testing 

and 4225 malware samples for training purposes. 

 

 
Fig. 2. Experimental Result of different Classifiers 
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Fig. 3. Ensemble-Based Voting Classifier 

 

5.2. Detection of Malicious Behavior  

In this series of studies, we test how well Methods 1 and 2 

distinguish harmful samples from benign ones. To achieve 

that, in method 1, On the malicious and benign training 

datasets (4225 and 4207, respectively), we have trained our 

models using four distinct machine-learning approaches as 

mentioned above in Table 2. Using the aforementioned 

machine-learning techniques, we perform 10-fold cross-

validation on the datasets to avoid overfitting where the 

total dataset was divided into 10 parts and the same model 

was run ten times for the same dataset with a different set 

of test sets. The 1056 and 1052 harmful and benign testing 

datasets, respectively, are tested using the models. 

However, in method 2 we have used three different 

ensemble techniques on the above-mentioned datasets. The 

different ensemble techniques used were (XGB+ Random 

Forest Classifier), Light GBM+ Random Forest Classifier 

and XGB+ Light GBM Classifier.  In each of the cases, the 

accuracy and other statistical criteria are analyzed. The 

effectiveness of the suggested techniques is assessed using 

the conventional machine learning performance criteria 

listed below: 

• TP (True Positive):  It is the % of datasets that are 

actually positive and also predicted as positive. 

• FP (False Positives): These are the % of data samples 

that are actually negative but wrongly predicted as a 

positive sample. 

• TN (True Negatives): % of samples that were expected 

to be negative and turned out to be negative 

• FN (False Negatives): % of samples that were expected 

to be positive but turned out to be negative. 

• Recall: The proportion of positive results that were 

really expected to be positive, or the TP rate (also known 

as sensitivity) 

• Precision: The percentage of favorable predictions that 

actually materialize 

• Accuracy: The ratio of samples accurately predicted 

(TP+NP) to all samples collected for testing (TP + TN + 

FP + FN) 

• F-Measure: It is the measure of harmonic mean Recall 

and precision. 

Here we have considered two sets of malware, one as 

malicious and the other as benign. Hence positive refers to 

actual malicious or benign malware type and negative 

refers to not a malware type sample. 

TABLE 2: EXPERIMENTAL RESULT OF DIFFERENT 

CLASSIFIERS 

Classifiers Dataset 

 

Precision     Recall 

F1 

score Accuracy 

Kneighbors 

Classifier 

Malicious 0.98 0.97 0.98 0.967742 

Benign 0.94 0.96 0.95 0.972231 

XGB 

Classifier 

Malicious 0.98 0.99 0.98 0.978178 

Benign 0.98 0.95 0.97 0.981105 

Random 

Forest 

Malicious 0.98 0.99 0.99 0.981973 

Benign 0.98 0.96 0.97 0.979932 

Light GBM 

Classifier 

Malicious 0.99 0.99 0.99 0.982314 

Benign 0.98 0.97 0.97 0.980115 

 

Performance results for Methods 1 and 2 are shown in 

Table 2 and Table 3 respectively. According to Table 2, 

utilizing Method 1, XGBoost outperforms the other three 

machine learning algorithms in terms of accuracy for 

benign datasets with scoring 98.1105 and Light GBM 

outperforms the other three machine learning algorithms in 

terms of accuracy for Malicious datasets scoring 98.2314. 

The detail of method 1 is shown in figure 2.  According to 

Table 3, utilizing Method 2, XGB+ Light GBM Classifier 

outperforms the other three machine learning algorithms in 

terms of accuracy for benign datasets scoring 98.4325, and 

Light GBM+ Random Forest Classifier outperforms the 

other three machine learning algorithms in terms of 

accuracy for Malicious datasets with scoring 98.5312.  

Method 2 scoring 98.4325. As a result, we carry out more 

Light GBM+ Random forest trials employing 10-fold 

cross-validation. The evaluation details are shown in figure 

3.  The performance outcomes of Methods 1 and 2 are then 

assessed in terms of various parameters. 

TABLE 3: RESULT OF ENSEMBLE-BASED VOTING 

CLASSIFIER 

Classifiers Dataset 

 

Precision     Recall 

F1 

score Accuracy 

XGB+ 

Random 

forest 

Classifier 

Malicious 0.98 0.99 0.99 0.981205 

Benign 0.98 0.97 0.97 0.982305 

Light 

GBM+ 

Random 

forest 

Classifier 

Malicious 0.98 0.99 0.99 0.985312 

Benign 0.98 0.96 0.97 0.981201 

XGB+ 

Light 

GBM 

Classifier 

Malicious 0.98 0.99 0.99 0.982114 

Benign 0.98 0.97 0.97 0.984325 

5.3. Performance of the Methods and Misclassifications   

In this part, we computed the performance of Methods 1 

and 2 and explain when Method 2 might perform better 

than Method 1. As previously said, all approaches 

accomplish the same goal; the tokenization methods are 
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what really set them apart from one another. While Method 

2 regards each AP call's argument as a unique feature, 

Method 1 interprets the complete collection of arguments 

for each API call as a single token. If the sample has called 

a few API calls but many arguments have been provided 

for each API call, Method 2 performs better than Method 1 

since the many arguments for each call can make up for the 

few total API calls. Table 3 demonstrates that this finding 

is correct. It is evident that Method 2 outperforms Method 

1 marginally in terms of malware detection. The causes of 

the misclassifications in our suggested techniques are then 

discussed. 

5.4. Classification of Malware Types    

The purpose of this collection of experiments is to assess 

how well Methods 1 and 2 perform in categorizing 

malware samples into their appropriate classes. The 

malicious samples are divided into their categories using 

the same features that were used to divide the samples into 

harmful and benign classifications. Our harmful samples 

fit into one of ten malware categories, as was already 

explained (Table 1). Each malware-type dataset is divided 

into training and testing datasets, which each include 80% 

and 20% of the samples, respectively, in order to provide a 

thorough validation and ensure that the machine learning 

modules are taught using a suitable number of samples 

from each sort. As a result, we have 2108 samples for 

testing and 8432 pieces of malware and benign code for 

training. The same five machine-learning techniques are 

employed to train models using the training dataset. Tables 

2 and 3 respectively present the performance results for 

Methods 1 and 2. Utilizing Method 1, XGBoost 

outperforms the other three machine learning algorithms in 

terms of accuracy for benign datasets with a score of 

98.1105, and Light GBM outperforms the other three 

machine learning algorithms in terms of accuracy for 

malicious datasets with a score of 98.2314, as shown in 

Table 2. Table 3 shows that using Method 2, the XGB+ 

Light GBM Classifier outperforms the other three machine 

learning algorithms in terms of accuracy for benign 

datasets with a score of 98.4325, and the Light GBM+ 

Random Forest Classifier outperforms the other three 

machine learning algorithms in terms of accuracy for 

malicious datasets with a score of 98.5312. The Score of 

98.4325 for method 2. We do more Light GBM+ Random 

forest experiments using 10-fold cross-validation as a 

result. Next, numerous factors are responsible for giving 

different kind of accuracy of the models that were used in 

Methods 1 and 2. 

(2) All of the study's parameters are vulnerable to slope 

failure, therefore determining slope stability using a single 

metric is useless. The variable δ is perhaps the most 

profound aspect to MLR model and MLP models, while 

slope geometry attributes are also critical. It should also be 

highlighted that neither of the supervised learning 

techniques is suitable for all kinds of slope scenarios, and 

none was sufficient to address the existing problem. 

6. State-of-the-art of the different models 

Here in this section, we contrast our strategies with those 

of previous works that take API parameters into account. 

Our comparison takes into account (i) Detection accuracy 

(ii) Necessary API data, including determining and the 

limitations include the frequency counter for a specific API 

request, recognizing API sequence trends, and more. The 

API parameters have been utilized in the research listed 

below to create malware detection and/or type 

categorization models. Both [10] and [11] employ pattern 

recognition algorithms to identify a shared sequence of API 

calls and parameters, as was mentioned in Section 2. 

However, by removing and/or introducing certain API 

calls. A pattern may be changed. In contrast, [1, 5, 6] 

employ malware detection methods based on the frequency 

of API calls. In [24], the distinction between benign and 

malicious samples was made using the frequency metric of 

calling particular API calls and their parameters. For 

malware identification, Yong et al. employed frequent item 

sets of API calls and their parameters in [14]. Statistics 

pertaining about and their parameters include the 

frequency, mean, and size of parameter arguments that 

were proposed by Hasan, H et al. [21] utilized to identify 

harmful software activity. By the removal of and/or adding 

API calls and by changing the frequency counter values, 

malware developers can easily get around the 

aforementioned frequency-based techniques.  

Compared to the previous research, our methodologies are 

distinct. i) As a result of the fact that we don't rely on the 

sequence or pattern of the API calls, nor do we consider 

their individual methods are resistant to malware mutation 

and obfuscation tactics (such as changing the order of API 

calls or repeatedly using certain API calls and/or 

arguments). Instead, our approaches solely take into 

account the frequency of API calls and the values of such 

requests. (ii) Our method does not consider statistical traits 

like mean, frequency, or the size of the API parameters. 

(iii) Because our approaches employ unique feature 

generation functions to improve the retrieved API-based 

characteristics for improved processing, domain 

knowledge of the complicated arguments is not necessary. 

(iv) None of the current methods have investigated the 

potential for using each API call's parameter element 

independently, as demonstrated in Method 2.  

These benefits enable our method to overcome the scaling 

challenge posed by the high memory consumption and 

computational complexity associated with the use of high 

dimensional feature space. Table 3 provides a comparison 

of our strategy with the comparable research stated 

previously. As seen in Tables 2 and 3, our suggested 

approaches have outperformed the most recent methods. 
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7. Conclusion and Future Work 

This research presented a novel classification-based data 

mining method for identifying malware behavior. First, our 

proposed application is used to transform a malware 

behavior executive history XML file into a non-sparse 

matrix. The WEKA input data set was then translated from 

this matrix. We used the WEKA tool to apply the suggested 

procedures to an actual case study data set to demonstrate 

performance effectiveness. We have performed two 

operations in method 1 and method 2 on the same data sets. 

Classification techniques including K- neighbor, Random 

Forest, and Light GBM algorithms in method 1 and also a 

few ensemble techniques were used in method 2 for the 

same datasets. For classifying malware detection, the 

regression classification approach performed best.  

Additionally, we used the ensemble classification approach 

to examine the same data set. The evaluation's findings 

showed how useful the suggested data mining and 

ensemble method were more effective in finding malware. 

With reference to figure 2 and figure 3 and by paying 

attention to the experimental findings, classifying 

behavioral characteristics of malware can be an easy way 

to create behavioral antivirus. A genuine behavioral 

antiviral platform based on categorization via an ensemble 

algorithm will be developed and examined in the next 

work. 
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