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Abstract: Reverse transcription polymerase chain reaction (RT-PCR) is the gold standard for the diagnosis of COVID-19. Studies have 

proven that non-invasive techniques based on medical imaging can be used as an alternative to RT-PCR. The use of medical imag- ing 

technologies along with RT-PCR could improve the diagnosis and management of the disease. Even though several methods exist for 

diagnosing COVID-19 from X- ray images and CT scans, ultrasound image has not been explored much to diagnose the disease.   In this 

study, we built a deep learning model using ultrasound images for a fast and efficient disease diagnosis. Pre-trained Convolutional Neural 

Networks (CNN), trained on the ImageNet database has been utilized for feature extraction. The nature-inspired Manta Ray Foraging 

Optimization (MRFO) algorithm is applied for dimensionality reduction and K-Nearest-Neighbour (KNN) for classification. Model 

training has been performed using a publicly available POCUS dataset consisting of 2944 ultrasound images sampled from more than 200 

Lung Ultrasound (LUS) videos. Experimentations conducted in this study prove the efficiency of the model in the diagnosis of COVID-

19. The model achieved an accuracy of 99.4337% using MobilenetV2 as the pre-trained network. 

Keywords: CNN, COVID-19, K-Nearest-Neighbour, Manta Ray Foraging Optimization. 

1. Introduction 

Millions of lives have been inflicted due to several 

infectious diseases in the past decades. On December 31, 

2019, Wuhan City became a cynosure of unidentified 

pneumonia, which has shaken the world quickly. On 

January 7, 2020, the cause of pneumonia was identified and 

momentarily named as 2019-nCoV [1]. The disease has 

been engendered by a newly discovered virus called Severe 

Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-

2). Coronavirus belongs to a large family of viruses that 

could inflict diseases ranging from asymptotic symptoms to 

severe illness [2]. The disease can cause serious illness to 

people with underlying medical conditions and even lead to 

death. The death toll due to the pandemic has risen more 

than 53 lakhs up to the end of December 2021. The period 

of transmission of the virus since the appearance of 

symptoms is estimated to be within a week [3]. The death 

toll caused by the corona virus is greater than other influenza 

viruses. Mild symptoms include cough, fever, and headache, 

whereas severe symptoms are accompanied by shortness of 

breath, affecting the lungs. The virus transmission occurs 

through tiny droplets from the mouth or nose, which are 

spread when a person with COVID-19 coughs or exhales.  

Circulation of the virus among the population has increased 

the chances of virus mutations. Genetic variants of the virus 

increased the spread to a great extent [7]. RT- PCR test is 

widely accepted as the standard for confirmation of the 

disease. Resource and time constraints made early detection 

of the disease a big challenge. Clinical findings have proven 

that images obtained from Computed Tomography (CT), X-

rays, and, Ultrasound (US) modalities exhibit abnormal lung 

findings on infected patients. Chest X-rays exhibits 

multifocal, bilateral ground-glass opacity patterns and 

consolidations with peripheral and basal predominance in 

COVID-19 patients [8]. Ground glass opacities, vascular 

expansion, bilateral abnormalities, lower lobe involvement, 

and posterior predilection are the CT image findings 

observed in the cases of COVID-19 [9]. Radiological 

observations in ultrasound images are pulmonary 

consolidation, thickened pleural lines, and a small amount 

of pleural effusions observed on some patients [10]. Rapid 

spread of the virus has led manual examination of the 

radiographic im- ages, a cumbersome task for the medical 

professionals. Hence, there is a need for Computer-Aided-

Detection (CAD) techniques, which can assist radiologists 

in quickly diagnosing the disease. In this work, images 
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obtained from ultrasound diagnostic technique has been 

utilized for the construction of the proposed model. 

Compared to other image modalities, lung ultrasound shows 

more sensitivity in diagnosing the disease. Ultrasound 

images can be obtained bedside without the patient being 

exposed to harmful radiations. When lesion locations are 

adjacent to the pleura, lung ultrasounds are more likely to 

detect the lesions earlier than the chest radiographs. Usage 

of the Point-of-Care-Ultrasound (POCUS) technique 

reduces the exposure of the virus to the technicians and 

medical staff attending the case, which mitigates the spread 

of the virus.   

The literature provides substantial research works that use 

images obtained from CT and chest X-ray modalities for 

COVID-19 detection [11, 12, 13, 14, 15]. However, the 

techniques employing ultrasound images for disease 

prediction is very less. Born et al. [4] adopted transfer 

learning methodology for computer-aided diagnosis of 

COVID-19. POCUS dataset consisting of 64 video 

recordings were utilized for the model training. The model 

utilized pre-trained VGG-16 network as the backbone 

augmented with an additional five convolution layers. The 

model was trained for COVID- 19, Pneumonia and healthy 

classes. Muhammad and Hossain [16] constructed a CNN 

framework employing multi-layer fusion functionality to 

improve the screening efficiency of COVID-19. 

Experimental evaluation of the model was conducted using 

publicly available lung ultrasound images and video 

samples. Awasthi et al. [17] developed a MobileNet based 

light weight network named as Mini-COVIDNet that 

involves fine-tuning of MobileNet network, which is light 

in size utilizing US dataset. The work by Bagon et al. [18] 

involves fine-tuning of the image classification model for 

the diagnosis of COVID-19 using lung ultrasound images. 

The model utilized ICLUS dataset consisting of 277 videos 

of 35 patients. The above-mentioned works explored end- 

to-end networks for the diagnosis of COVID-19. The 

proposed study is one among a few works to distinguish 

between COVID-19, pneumonia and healthy patients from 

ultrasound images. 

The following are the contributions of the proposed work: 

1. The method employs a novel pipeline consisting of 

pre-trained convolutional neural networks, Manta ray 

Foraging Optimization Algorithm and K-Nearest 

Neighbour (KNN) classifier. 

2. To the extent of our knowledge no works have 

explored the combination of pre- trained CNN with an 

off-the shelf classifier for detecting the disease in lung 

ultrasound images. 

3. Performance evaluation of the proposed method has 

been conducted empirically using various pre-trained 

CNNs, feature selection techniques and classifiers. 

4. The results obtained using the proposed pipeline 

outperform that of the state-of- the-art techniques 

present in the literature.  

2. Materials and Methods 

2.1. Dataset 

The proposed method utilizes Point-Of-Care Ultrasound 

(POCUS) dataset [4, 5, 6] to evaluate the performance of the 

designed pipeline. The dataset is being updated regularly. 

At the time of performing experiments reported in this work, 

the dataset consists of more than 200 LUS videos and 59 

images captured from convex and linear probes. Only 

convex videos in the dataset have been utilised in the 

proposed model. For the image dataset creation, the LUS 

videos and images were merged. The images were extracted 

from the videos, at a frame rate of 3 Hz with a maximal 

range of 30 frames per video. The resulting dataset contain 

969 COVID-19, 714 Pneumonic and 1261 healthy 

ultrasound images [4] for evaluating the performance of the 

proposed pipeline. Figure 1 displays sample images from 

the dataset belonging to various categories  

 

Fig. 1.  Sample lung ultrasound images obtained from 

POCUS dataset [4, 5, 6]. The first, second and third row 

represent COVID-19, Pneumonia and normal images, 

respectively 

2.2. Methodology 

The proposed method employs three main stages, namely a 

feature extraction stage, a feature selection unit, and a 

classification phase that maps the feature set to the predictor 

variables. Figure 2 demonstrates the architecture of the 

proposed pipeline. The detailed description of the three 

stages is elaborated in the following sections. 

2.2.1. Feature Extraction 

The feature extraction process aims to represent the raw data 

to a more manageable set for further processing. Feature 

extraction from lung ultrasound images enables the 
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identification of nonlinearities, thereby identifying the 

abnormalities present in the lungs. Handcrafted feature 

extraction techniques commonly used to detect COVID-19 

from lung CT or X-ray images include discrete wavelet 

transform, Haralick texture features, and gray-level co-

occurrence matrix. In addition, to characterize textural 

information, the features are extracted using the fractional 

multichannel exponent moments, residual exemplar local 

binary pattern, two-dimensional curvelet transform, 

histogram of oriented gradients, dual-tree complex 

contourlet transform, local binary pattern, and multichannel 

fractional-order Legendre Fourier moments. Similarly, a 

substantial amount of research used CNN models to detect 

COVID-19 from lung CT or X-ray im- ages. The CNN 

models employing the architectures such as DenseNet-201, 

AlexNet, VGG19, VGG16, Inceptionv3, ResNet101, 

SqueezeNet, Xception, MobileNetv2 and GoogLeNet have 

been extensively used for feature learning and extraction to 

detect COVID-19 in lung CT or X-ray images. 

Fig. 2. Architecture of proposed framework 

Instead of designing an end-to-end architecture in the 

proposed CNN framework, we used CNN for feature 

extraction alone. Pre-trained networks trained on the 

Imagenet dataset [19], is used as the feature extractor. The 

11 pretrained neural networks were trained on Imagenet 

dataset [19] that consist of more than a million images to 

categorize images into 1000 classes. These pre-trained 

networks differ in the number of convolutional layers, input 

sizes and layer depth. The images are pre-processed to the 

dimension of the input layer corresponding to the pre-

trained network. From the large number of images present 

in Imagenet dataset, the individual network has learned rich 

feature representations.  

From each of the LUS training images 1000 features are 

extracted from the last fully connected layers of the pre-

trained networks. The output of the feature extraction unit is 

2D matrix of dimension n x 1000, where n is the number 

images supplied into the network. 

2.2.2. Feature Selection 

In the proposed model, a feature selection module has been 

integrated to designate the best features for the prediction 

variables in hand. The model uses MRFO algorithm [20] 

inspired by the foraging behaviours of Manta rays, the 

marine creatures. These creatures have large, flat, diamond-

formed bodies, which are distinguished by their triangular 

pectoral fins, and use innovative techniques while feeding. 

They nourish on plankton, the marine drifters that float 

along with the tides and the ocean currents. The algorithm 

mimics the marine creatures three foraging behaviours- 

chain foraging, cyclone foraging, and somersault foraging. 

2.2.3. Chain Foraging 

Manta Rays are known to feed in clusters exhibiting 

cooperative behaviour. They stack up themselves in long 

chains with each ray swimming above the one ahead. This 

behaviour is presumed to catch maximum plankton, which 

would have been escaped from the way of individual 

swimming. Consequently, they could feed on a large 

number of plankton with this cooperative behaviour. This 

chain foraging behaviour is utilized in MRFO [20]. In 

MRFO, manta rays can make observations on the position 

of plankton and swim towards it. Higher the number of 

plankton in a position, better is the position. Nevertheless, 

the best position is not known, the position with highest 

quantity of plankton, so far discovered is assumed to be the 

best solution. Manta rays stack up in line constructing a 

chain. Each of the manta rays follow the planktons as well 

as the one moving ahead of it except the rays at the head. 

Chain foraging can be mathematically represented as: 

 

 

 

where mj
d(t) represents the position of jth sample in  dth 

dimension at time t, v is a vector whose values lie in the 

range of [0,1], δ denotes the corresponding weight 

coefficient [20]. Each individuals updates the position by, 

the best position ahead of it at each iteration, thereby finding 

the best solution. 

2.2.4. Cyclone Foraging 

Manta ray discovers plankton blotches in ocean waters and 

assembles spirally towards the nourishment constructing a 

long chain. In cyclone foraging strategy, more than 

following the food spirally, manta rays follow the 

individuals ahead [20]. The cyclone foraging of manta rays 

can be mathematically represented as: 
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where δ depicts the weight constant, v1 represents a random 

vector in the range of [0,1] and T denotes the maximum 

number of iterations [20]. 

2.2.5. Somersault Foraging 

In somersault foraging, each individual initially fixes a 

location of nourishment as the pivot. After that, each manta 

ray swims back and forth from one location to another in the 

search space around the pivot and then take a somersault to 

another position [20]. The mathematical model for 

somersault foraging can be depicted as: 

𝑚𝑗
𝑑(𝑡 + 1) = 𝑚𝑗

𝑑(𝑡) + 𝑠. (𝑣2. 𝑚𝑏𝑒𝑠𝑡
𝑑 − 𝑣3. 𝑚𝑗

𝑑(𝑡)) , 𝑗 =

1, . . , 𝑁                          (5) 

where s is the somersault factor, v2 and v3 are random 

vectors that falls in the range of [0,1]. 

2.2.6. Classification 

In the classification phase of the model, the KNN classifier 

is utilized. KNN is a supervised learning classifier for 

solving classification and regression applications. KNN 

classifiers take the test instance and map the new instance to 

the most similar category [21]. Initially, an optimum 

number of k neighbours are assigned to the algorithm. The 

algorithm calculates the Euclidean distance of the test 

instance to elect the k neighbours and those with minimum 

distances are taken as the neighbours. From each of the 

elected neighbours, the data point count from each category 

is evaluated. The new test instance is assigned to the 

neighbour with the maximum data point count. The model 

is trained for three target classes namely Regular, 

Pneumonia and COVID-19. 

3. Results and Discussions 

This section discusses the results obtained in POCUS data 

set using the proposed pipeline. We evaluated Accuracy, 

F1-Score, Precision, Specificity, Sensitivity and Area Under 

Curve(AUC) metrics and compared them with other state-

of-the-art-techniques that use ultrasound images for disease 

prediction. The whole study is carried out on Intel core i5 

processor with 8GB RAM and a GPU support of 4GB. 

3.1. Parameter Setting 

The various parameters used in the proposed method are set 

empirically. The parameter setting for MRFO and KNN 

used in the proposed model is mentioned in the Table 1. The 

k value denotes the number of neighbours assigned for 

prediction by KNN. The optimum k value is obtained using 

the trial-and-error method. LL and UL denote the lower 

limit and the upper limit used in MRFO algorithm. 

Table 1.  Parameter setting for MRFO & KNN 

Parameters Value 

Number of iterations 100 

Number of Solutions 10 

LL,UL 0,1 

Somersault Factor 2 

Threshold 0.5 

k 5 

 

3.2. Classification Results 

The proposed framework was built with a pre-trained 

network held as the backbone of the model. Experimental 

analysis was performed using various pre-trained networks 

for evaluation. Model evaluation is conducted using the 

POCUS dataset of which 70% of the data has been used for 

training and the remaining data serves as the test dataset. 

The effectiveness of the proposed system is tested using 

various pre-trained models as given in Table 2. 

Analysis has been performed using InceptionResnetV2 [22], 

EfficientnetB0 [23], Xception [24], Darknet-53 [25], 

Resnet101 [26], VGG-19 [27], Densenet201 [28],Googlenet 

[29], Shufflenet [30], Squeezenet [31], InceptionV3 [32] 

and MobilenetV2 [33]. Among the various models tested, 

the performance of MobilenetV2 is slightly better than the 

remaining pre-trained networks. 

MobilenetV2 obtained the highest overall accuracy of 

99.4337%. Figure 3 represents the confusion matrix of 

MobilenetV2. Using MobilenetV2 as the backbone, 289 

images among the 290 COVID-19 LUS images in the test 

data were correctly classified. The model has achieved a per 

class Positive Prediction Value (PPV) of 1, 0.98 and 1 for 

COVID-19, Pneumonia and healthy classes, respectively. 

An overall PPV of 99.3333% is achieved by the network. 

The overall recall and F1-score rate of the model are 

99.6666% and 99.3333%, respectively. Figure 6 depicts the 

convergence plot of the network obtained while passing the 

feature set to the MRFO evolutionary algorithm. A stable 

fitness solution is obtained near to 50th iteration. 
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Table 2. Performance of various CNNs using MRFO and KNN 

Fig. 3: Confusion Matrix obtained with MobilenetV2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Pre-trained model Recall F1-Score PPV Accuracy 

MobilenetV2 99.6666 99.3333 99.3333 99.4337 

Resnet101 99.6666 99.3333 99.3333 99.3205 

Shufflenet 99.3333 99.0000 99.0000 99.2072 

Densenet201 99.3333 99.3333 99.0000 99.2072 

EfficientnetB0 99.3333 99.0000 98.6666 99.0940 

InceptionV3 99.3333 99.0000 99.0000 98.9807 

Xception 99.0000 98.6666 98.3333 98.8675 

InceptionResnetV2 98.6666 97.6666 98.6666 98.1880 

VGG19 98.6666 98.6666 98.3333 98.7542 

Googlenet 98.6666 98.6666 98.3333 98.7542 

Darknet-53 99.0000 98.6666 98.6666 98.7542 

Squeezenet 97.6666 97.6666 97.6666 98.0747 
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Fig.4.  Convergence Plot of MRFO using MobilenetV2 

3.3. Statistical analyzes of MRFO with other nature 

optimisation techniques 

The model performance has been statistically analyzed 

using various feature selection techniques. The choice of 

MRFO accounts for the fact that it outperforms other 

optimization techniques in terms of detection accuracy. For 

the selection of feature optimization techniques, 

experimental analysis was conducted using both filter and 

nature inspired optimization techniques. The nature 

inspired techniques namely, Butterfly Optimization 

Algorithm (BOA) [34] and Simulated Annealing (SA) [35], 

and filter selection techniques such as Relieff [36], Pearson 

Correlation Coefficient (PCC) [37], Neighbourhood 

Component Analysis (NCA) [38] and Term Variance 

feature selection techniques were adopted for comparison 

with the proposed model. The features were extracted using 

MobilenetV2 and then passed to these optimization 

techniques for feature selection. The selected features were 

passed into KNN classifier for model evaluation. Table 3 

depicts the performance comparison of MRFO with other 

feature optimisation techniques 

3.4. Statistical analysis of KNN with other classifiers 

The experimental evaluation of the model with various 

classifiers has been conducted using WEKA tool [39][40], 

an open-source tool for data mining analysis. The analysis 

had proven the model’s efficiency while using KNN as off-

the-shelf classifier. For performance analysis, features were 

extracted from light-weight MobilenetV2 architecture and 

passed to different classifiers. For performance analysis 

Bayesnet, SVM, Random Forest, Adaboost, Naive Bayes 

and Multi-Layer Perceptron (MLP) were considered. The 

lowest performance has been exhibited by Adaboost with a 

classification accuracy of 54.1336%. Even though, Random 

Forest and MLP achieved good results, their performance 

was significantly lower than that of KNN. Table 4 depicts 

the performance analysis of the model with different 

classifiers. 

3.5. Statistical analyzes of the proposed model with 

other state of art methods. 

Very few research works in literature have utilized lung 

ultrasound images for the diagnosis of COVID-19. Table 5 

shows the comparison of results with recent techniques 

employing ultrasound images for disease prediction. A 

quantitative analysis is not possible as each of the reported 

works use different amount of data for result analysis. 

Hence, a qualitative comparison is performed with these 

state-of-art research works. It is worth to note that our 

proposed model outperforms all other techniques and 

performed well in disease prediction. Table 5 shows 

performance comparison of the proposed model with other 

state-of-the-art methods. 

4. Conclusion 

The COVID-19 pandemic is spreading across the world 

very rapidly. Due to the increasing cases of victims, manual 

diagnosis of the disease has become a tedious task to the 

medical professionals. Therefore, fast and accurate 

diagnosis of the disease is beneficial for the control of the 

virus. 

This work concentrates on the computer-aided diagnosis of 

COVID-19 using lung ultrasound images of the victims. 
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The high sensitivity obtained shows the efficacy of the 

proposed technique in distinguishing COVID-19, 

Pneumonia and healthy classes using the images from the 

ultrasound scan. The experimental analysis illustrates the 

effectiveness of pre-trained CNN in combination with 

nature inspired algorithm and KNN for the diagnosis of 

COVID-19 in lung ultrasound images. The model can be 

extended to detect the severity of the infection in the near 

future. 

 

Table 3. Performance comparison of feature selection techniques 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Pre-trained model Selection Method Sensitivity F1-Score Precision Accuracy 

MobilenetV2 Proposed 99.6666 99.3333 99.3333 99.4337 

MobilenetV2 BOA 99.0000 98.6666 98.6666 98.9807 

MobilenetV2 SA 99.0000 98.6666 98.6666 98.9807 

MobilenetV2 Relieff 98.3333 98.0000 97.6666 98.0747 

MobilenetV2 TV 98.6666 98.3333 97.6666 98.4145 

MobilenetV2 PCC 98.3333 98.0000 97.6666 98.0747 

 

Table 4. Performance comparison of the proposed classifier with other classifiers integrated with MRFO. 

Pre-trained model Classifier Sensitivity F1-Score Precision Accuracy 

MobilenetV2 Proposed 99.6666 99.3333 99.3333 99.4337 

MobilenetV2 Bayesnet 81.1000 81.2000 81.7000 81.0875 

MobilenetV2 SVM 91.5000 91.5000 91.6000 91.5062 

MobilenetV2 Random Forest 95.4000 95.3000 95.4000 95.3567 

MobilenetV2 Adaboost 54.1000 48.0000 50.4000 54.1336 

MobilenetV2 Naive Bayes 80.6000 80.7000 80.9000 80.6342 

MobilenetV2 MLP 96.0000 96.0000 96.1000 96.0362 

 

Table 5. Model performance comparison with other state-of-the-art methods. 

Method Number of images Sensitivity F1-

Score 

Precisio

n 

Accurac

y 

Proposed 969 COVID-19 vs 714 pneumonia vs 1261 

Regular 

99.3000 99.600

0 

99.0000 99.4300 

Born et al. [4] 1204 COVID-19 vs 704 pneumonia vs 1326 

Regular 

96.0000 - - 89.0000 

Hossain et al. 

[16] 

(Videos)45 COVID-19 vs 23 Pneumonia vs 53 

Regular 

93.2000 - - 92.5000 

Aswathi et al. 

[17] 

678 COVID-19 vs 277 Pneumonia vs 182 

Regular 

- - - 83.2000 

Born et al. [41] 693 COVID-19 vs 377 Pneumonia vs 295 

Regula 

- - - 90.0000 
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