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Abstract: Cloud services are generally seen as a promising technique developed to achieve the highest computation service needs. 

However, such high-performing level of computing services can lead to the highest level of failure rates owing to a wide range of 

components and host servers which are filled with intensive job scheduling problems. Therefore, failure which occurs in one component 

or sub-system will lead to the unavailability of the computation services for the system. In this research, we suggest a new effective 

model called adapting fault-tolerant model (AFTM) which aimed to examine the optimization of job scheduling problem in computing 

infrastructure based on Particle Swarm Optimization (PSO), Apache Sparka and Ant Colony Optimization (ACO). The proposed 

approach covers the implementation and analysis of virtualizations with the job task selection to health monitoring for fault diagnoses 

based on Apache Spark. The objective is to find the cost trade-off between the allocated memory and CPU execution time required by 

virtualization services created by the end-users. The evaluation of the empirical performance of the proposed approach results 

outperforms PSO algorithms and traditional Genetic Algorithm (GA) in terms of the allocated memory and the time of CPU execution.  

Keywords: Fault-tolerance, Job Scheduling, Cloud services, Apache Spark. 

1. Introduction 

Cloud computing is a model which allows the end-users to 

access the distributed virtual machines and shares available 

resources in infrastructure as a service (IaaS) as well as job 

scheduling techniques [1], tolerance techniques, and 

virtualization technologies. There are two technique 

approaches for adopting the fault-tolerance: reactive and 

proactive fault-tolerance techniques. The difference 

between the two techniques lies in the fact that the 

proactive fault-tolerance techniques are expecting and 

predicting (fault is expected before occurrence) [2], while 

the techniques of reactive fault-tolerance are interacting 

and responding (fault is handled after occurrence). 

Therefore, based on the present status of cloud service 

network [3], the adaptive technique of fault-tolerance 

travels between the two techniques. Concerning cloud 

computing and virtualization, it can be easy to run swarm 

intelligence algorithms such as ACO and PSO simulation 

on multiple VM nodes. Cloud service infrastructures use 

the technique for fault-tolerance to tolerably form the 

faults. In this new method, the function of operating and 

management such as job scheduling aims at presenting 

cost-effective and high-performing services demanded by 

VMs and implemented by physical resource machines 

(host server) at certain times. This can efficiently solve the 

job scheduling problem by reducing the total execution 

time without any failure. As replication refers to 

duplication, different jobs are duplicated and implemented 

on various resources to reach effective implementation and 

desired outcomes. The tools that are used in this work are 

Hadoop and Apache Spark replication for implementing 

replication [4][5]. The job of scheduling problem in 

virtualization aims to assign various job tasks to VM nodes 

found at the network boundary. Host server 

machines/virtualization are more specifically distributed to 

various tasks of given jobs marking the services demanded 

by end-users so the CPU execution time, and the 

distributed memory requested by all jobs are reduced. 

In this study, a new model called adapting fault-tolerant 

model (AFTM) is proposed. The focus of this study is on 

the implementation and analysis of the adaptive fault-

tolerance through the job scheduling problem for the 

request resource services in infrastructure as a service 

(IaaS).  The job scheduling problem governs the best job of 

various tasks implemented at the minimum level of cloud 

resources (e.g., less memory) in the shortest time of CPU 

_______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________ 

1 Sadoon Hussein , Department of Physic, College of Science, University     

    of  Mosul, Mosul, IRAQ 

     ORCID ID :  0000-0002-4629-7466 
2 Al-Hakam Ayad , Department of  Arabic Language ,College of Arts,           

    Tikrit University, IRAQ 

    ORCID ID :  0000-0003-0107-3028 
3 Nadia M. Mohammed, Department of Software, College of Computer     

     Science and  Mathematics, University of  Mosul, Mosul, IRAQ 
4 Redhwan M. A. Saad, 4Department of Electrical Engineering, Faculty of    
    Engineering, Ibb University, Ibb 70270,YEMEN 
5 Department of Computer Engineering, Faculty of Engineering, Cairo    

     University, Giza 12613, EGYPT 

    ORCID ID :  0000-0001-7241-9327 

Correspondence Author Email; sadosbio113@uomosul.edu.iq 

 

 
 
 

 
 

 

mailto:sadosbio113@uomosul.edu.iq


International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(2), 74–81 |  75 

execution based on PSO, ACO, Hadoop, and Apache 

Spark platforms. As a result, the tasks of the end-users 

achieve request with quicker implementation time of one’s 

job tasks at the minimum cost with fault-tolerance. The 

algorithms of the job scheduling should have a new 

technique of the fault-tolerance ability, which means 

executing combined job scheduling in despite of failure in 

a host server or VMs arbitrary. There are many studies 

conducted to overcome the fault based on the fault-

tolerance. 

2. Related Works 

Much research has been conducted on the fault-tolerance 

in cloud computing services. Cloud service infrastructure 

has presented problems pertaining real-time computing 

services. For example, Kalanirinika GR, et al. [2] 

suggested an approach of reactive fault-tolerance to 

facilitate exploit check pointing to accept the liability. 

Another study conducted by Egwutuoha I.P. et al. [6] in 

which a fault-tolerance (FT) technique was proposed for 

managing faults proactively in HPC systems. The objective 

of the study was to shorten the implementation case of the 

barricade chronometer in the occurrence of responsibility 

and enlarge a standard FT algorithm. For creating and 

managing cloud fault-tolerance, Jhawar et al. [7] found an 

advanced system level modular perspective and suggested 

all-inclusive complicated approach to share application 

details with developers and users on implementation of the 

fault-tolerance technology by adapting a devoted service 

layer. In the same vein, Hwang et al. [8] proposed a model 

targeting failure detection service through notification and 

scalable framework for allowing grid failures using 

simulation as to evaluate parameter. 

 Due to the dynamicity and heterogeneity of cloud resource 

availability, the fault-tolerance intelligent algorithm-based 

job scheduling techniques in cloud computing services 

were found significant in order to avoid job failure [9, 10]. 

In [11], the MTCT technique is presented, which is 

minimum-based time and cost trade-off for multipurpose 

workflow scheduling, to assist fault retrieval in the cloud. 

To evaluate this method, simulations are used to test its 

strength using four different real-life scientific workflow 

scenarios. The results display that fault retrieval has a 

significant effect on the criteria of performance and the 

MTCT algorithm is treasured for real-life workflow 

systems when both optimization goals are considered. 

A job scheduling method in cloud services is introduced by 

Kumar and Aramudhan in [12], using hybridization of BA 

method with a gravity scheduling algorithm that takes into 

consideration the scheduling checks and the trust model. 

Depending on the reliability level, jobs are mapped to 

resources. The hybrid algorithm has been tested and it 

intelligently minimizes the time period and the number of 

failed operations compared to GVSA. However, the BA is 

known for its weak local research in solving complex 

problems. 

NSGA-II is an intelligent technique that presents a 

security-driven solution for scheduling failure probability 

[13]. The Pareto dominance relationship is used to provide 

a set of non-dominant optimal solutions. This technique is 

integrated with GA which is evidenced by a number of 

experimental results. The average response time results are 

closely related to makespan results. However, the general 

trend seems to be more challenging to explain. The 

corresponding results display the usefulness of the 

provided method and GA for both medium and small 

planning jobs. However, the empirical results did not solve 

large and large-scale scheduling job in the cloud. 

It has been found that the schemes of PSO are nature-

inspired population extraction techniques. The social 

features of flock of birds and fish are simulated by the 

algorithms. The scheme attempts to develop resolutions 

based on the measure of quality called the fitness function 

by initializing a set of randomly distributed particles called 

potential solutions [14]. An improved PSO for managing 

the scheduling job of VMs in a cloud computing 

environment is presented by Yuan et al. [15]; they 

proposed a VM scheduling scheme which takes into 

consideration the calculation power of the processing 

fundamentals and also takes into account the calculation 

the system density. 

The resources currently available in the cloud should be 

used for each scheduling point so that hobs failure can be 

avoided due to essential machine failure or overload. 

Modern dynamic scheduling methods do not take into 

account the fault-tolerance parameters or they are used to a 

certain degree at different levels of scheduling. 

3. System Model 

In this study, the suggested cloud service infrastructure 

consists of "M" local VMs of jobs service located in the 

IaaS of the virtualization as shown in Fig. 1. 

Hypothetically, the system is composed of administrator 

VMs who takes over job scheduling after getting all given 

job parameters (i.e. a set of tasks). Each job is provided by 

an end-user using a service order form to be operated in the 

cloud-computing infrastructure. 
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Fig 1.Architecture System of Cloud Provider Service and 

Jobs Scheduling 

The fault state in cloud service is a popular issue as well 

job scheduling as shown in Fig. 2. To guarantee job 

scheduling, a new method of algorithm called AFTM was 

proposed and done by the administrator VMs to figure out 

the ideal request which is implemented via virtualization 

VMs. Thus, the virtualization VMs can ensure the 

performance of the memory of the scheduled services and 

CPU. The model process was described by outlining the 

stages or steps of operating a scheduled service as 

illustrated in Fig. 2. 

First, an end-user makes a service request to a job 

scheduling machine found at the VM of the virtualization of 

this cloud services infrastructure (stage 1). Next, the job 

generation of this request as service scheduling is sent by 

job scheduling machine (stage 2). Then, the VM sends data 

with parameters of the request to the host server machine 

which is far-off from the end-user (stage 3). The job is, 

then, decomposed by the host server machine into a set of 

tasks (stage 4). For finding an optimal job scheduling, the 

AFTM is implemented (stage 5). Next, each VMs gets its 

allocated task (stage 6). The task is implemented at the 

level of these VMs (stage 7). Each VMs results are sent to 

the host server (stage 8). The result is prepared by the host 

server based on the partial given results from the VMs 

(stage 9) to the end-users receives the final result as a 

service response (stage 10). 

 

 

Jobs scheduling
Virtualization/VMs 

scheduling
Host server

2: Job generation

(Service scheduling)
3: Sending data of job tasks

4: Sending data of job into tasks

5: AFTM Model execution
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7: Execution of 
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9: Combining of tasks results

10: Sending of job  response

Users-end

1: Job request

 
Fig 2. A Host Server System Model and Jobs Scheduling 

of Virtualization 

4. Problem Formulation 

The job scheduling problem formula in the virtualization 

infrastructure  is explained in this section. The job is 

defined as an operation that is similar to a service request 

created by the end-users of computers. Then, a series of 'n' 

jobs is scheduled and implemented by the infrastructure of 

virtualization. The Jobs are distinguished as follows: 

𝐽𝑜𝑏_𝑡𝑎𝑠𝑘𝑠 = {𝐽𝑡1, 𝐽𝑡2, ⋯ , 𝐽𝑡𝑖, ⋯ , 𝐽𝑡𝑛} 

Each Job task 'ti' within 'n' jobs can be divided into a set of 

's' tasks, where (1≤ i ≤n). Every task 't' within 's' tasks 

where (1≤ t ≤s) is distributed to one VM 'j' within 'k' VMs 

where (1≤ j ≤k) to be implemented, such as: 

𝐽𝑜𝑏𝑡𝑖𝑇𝑎𝑠𝑘𝑠

= {𝐽𝑇𝑎𝑠𝑘𝑡𝑖1
𝑎 , 𝐽𝑇𝑎𝑠𝑘𝑡𝑖2

𝑏 , ⋯ , 𝐽𝑇𝑎𝑠𝑘𝑡𝑖𝑡
𝑗

, ⋯ , 𝐽𝑇𝑎𝑠𝑘𝑡𝑖𝑠
𝑘 }   

For example, tasks of job 'ti': 

𝐽𝑜𝑏𝑡𝑖𝑇𝑎𝑠𝑘𝑠 = {𝐽𝑇𝑎𝑠𝑘𝑡𝑖1
3 , 𝐽𝑇𝑎𝑠𝑘𝑡𝑖2

5 }                       

are carried out as follows: first task (JTaskti1
3) is performed 

in VM3 and second task (JTaskti2
5) is performed in VM5. 

Consequently, each VMs VMj can perform a set of disjoint 

subset of the spoiled jobs set. For its allocated jobs, VMj 

assurances the performance of its tasks as the following: 

𝑉𝑀𝑗𝑇𝑎𝑠𝑘𝑠 =

{𝐽𝑇𝑎𝑠𝑘𝑎𝑥
𝑗

, 𝐽𝑇𝑎𝑠𝑘𝑏𝑦
𝑗

, ⋯ , 𝐽𝑇𝑎𝑠𝑘𝑖𝑡
𝑗

, ⋯ , 𝐽𝑇𝑎𝑠𝑘𝑛𝑠
𝑗

}        

Combining these general divided groups are a complete set 

of jobs. For instance, tasks are allocated to the VMs VMj 

after scheduling as the following: 

𝑉𝑀𝑗𝑇𝑎𝑠𝑘𝑠 = {𝐽𝑇𝑎𝑠𝑘23
𝑗

,  𝐽𝑇𝑎𝑠𝑘61
𝑗

}                 

Then, VMj carries out 3rd job task 2 and 1st job task 6. Side 

by side, the overall time of CPU execution allocated to 

VMj of all 's' tasks will be: 
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𝐶𝑃𝑈_𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛_𝑡𝑖𝑚𝑒(𝑉𝑀𝑗𝑇𝑎𝑠𝑘𝑠)

= 𝑠𝑢𝑚1≤𝑘≥𝑠   
(𝐽𝑇𝑎𝑠𝑘𝑖𝑡

𝑗
. 𝑠𝑡𝑎𝑟𝑡𝑇𝑖𝑚𝑒

+  𝐽𝑇𝑎𝑠𝑘𝑖𝑡
𝑗

. 𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑛𝑇𝑖𝑚𝑒) , 𝑖

∈ 𝑗𝑜𝑏𝑠 𝑜𝑓 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 𝑡𝑎𝑠𝑘𝑠                        (1) 

where 𝐽𝑇𝑎𝑠𝑘𝑖𝑡
𝑗

.StartTime symbolizes the initial point of 

task 't' of a job 'i' is performed on VMj and 

 𝐽𝑇𝑎𝑠𝑘𝑖𝑡
𝑗

.ExeTime symbolizes the time of CPU execution 

at VMj of task 't'. In addition, the assigned memory to task 

't' allocated to VMj is computed using the following 

formula: 

𝑀𝑒𝑚𝑜𝑟𝑦(𝑉𝑀𝑗𝑇𝑎𝑠𝑘𝑠

= 𝑚𝑎𝑥 1≤𝑡≥𝑟   (𝐽𝑇𝑎𝑠𝑘𝑖𝑡
𝑗

. 𝐴𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑𝑀𝑒𝑚𝑜𝑟𝑦) , 𝑖

∈ 𝑗𝑜𝑏𝑠 𝑜𝑓 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 𝑡𝑎𝑠𝑘𝑠                                                           (2) 

Consequently, the scheduling of job task in the 

infrastructure of cloud computing can be calculated using 

the following formula:  

𝑉𝑀𝑇𝑎𝑠𝑘𝑠 =

{𝑉𝑀1𝑇𝑎𝑘𝑠, 𝑉𝑀2𝑇𝑎𝑘𝑠, ⋯ , 𝑉𝑀𝑘𝑇𝑎𝑘𝑠}, 𝑤ℎ𝑒𝑟𝑒: 𝑉𝑀1𝑇𝑎𝑘𝑠 =

{𝐽𝑇𝑎𝑠𝑘𝑎𝑥
𝑗

, 𝐽𝑇𝑎𝑠𝑘𝑏𝑦
𝑗

, ⋯ , 𝐽𝑇𝑎𝑠𝑘𝑖𝑡
𝑗

, ⋯ , 𝐽𝑇𝑎𝑠𝑘𝑛𝑠
𝑗

},as described 

above. 

5. Cost Function 

The cost function is used to evaluate the performance of 

the expected result (VMTasks). As a minimized function, 

the cost function is used to gauge the optimization of the 

two objectives mentioned above. Allocated memory size 

and CPU implementation time are formulated as following: 

𝐶𝑜𝑠𝑡𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝑉𝑀𝑇𝑎𝑠𝑘𝑠)

= 𝑀𝑖𝑛 [∑ (𝐶𝑜𝑠𝑡
𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝐽𝑇𝑎𝑠𝑘𝑖𝑘

𝑗
,𝑉𝑀𝑗)

)

𝑗=1

𝑚

] 

, 𝑤ℎ𝑒𝑟𝑒, 𝐶𝑜𝑠𝑡
𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝐽𝑇𝑎𝑠𝑘𝑖𝑘

𝑗
,𝑉𝑀𝑗)

= 𝑤1 . 𝐶𝑃𝑈𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛
𝑇𝑖𝑚𝑒(𝑉𝑀𝑗𝑇𝑎𝑠𝑘𝑠)

+ 𝑤2. 𝑀𝑒𝑚𝑜𝑟𝑦(𝑉𝑀𝑗𝑇𝑎𝑠𝑘𝑠)                                          (3) 

Where, w1 and w2 are used to stress the significance of 

both assessed objectives, allocated memory and CPU 

execution time, as a fixed weight factors. In other words, 

the preference of the decision maker using PSO and ACS 

in this work is reflected by the selection of the weights of 

the multi-objective optimal approaches. The general 

parameter values and PSO parameter are shown in Tables 

1 and 2. 

 

 

 

 

Table 1. General Parameter Values 

Parameter value 

VM numbers 20 

Number of tasks [20 100] 

Processing rate [50,500] MIPS 

Bandwidth 
10,100,512,1024 

Mbps 

 

Table 2. Pso Parameter 

Parameter value 

W 1 or 0.99 

c1 0.5 

c2 0.5 

r1 0.5 

r2 0.5 

Max iteration 200 

6. Swarm Intelligence Algorithm (SIA) 

SIA is built on the combined performance of self-ordered 

systems. Standard swarm intelligence systems comprise 

ACO, PSO, Stochastic Diffusion Search, and the Artificial 

Bee Colony (ABC) [16], [17]. 

6.1. Practical Swarm Optimization (PSO) 

PSO is, to some extent, a new randomly optimized 

technique that mimics the bird flocking swarm behavior. 

According to PSO, an individual in the swarm, named a 

particle, embodies a prospective solution. Every particle 

has a fitness value and a velocity; it learns the experiences 

of the swarm to exploration for the global optima [18]. 

Traditional PSO can be represented in Fig. 3. 

 

 

Fig 3. Flow Chart of Standard PSO Algorithm [19] 

6.2. Ant Colony Optimization (ACO) 

The ACO is a potential technique used for handling 

computational issues. This technique attempts to minimize 
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optimal paths through graphs [20] as shown in Algorithm 

1. The environment is used as a tool for Ant 

communication. By the aid of the deposited pheromone, an 

altercation of information occurs, such as the status of their 

“work”. Owing to the information tradeoff has a local 

scope, the location of ants are perceived by left the 

pheromones. 

 

Algorithm 1:  ACO Algorithm 

1. Initialization:  

The heuristic information, the pheromone trails, and the 

restrictions are configured. 

2. Iterative Loop:  

     The starting job can be determined by a colony of 

ants. 

     Create a complete schedule for each ant.  

3. Repeat:  

    Selecting the next processing job, using the 

following:  

     State transition rule.  

     Local updating rule.  

Until a complete schedule is built, use the following: 

     Local search process.  

     Global updating rule.  

4. Termination:  

     If the interactions number is reach to the maximum, 

       Then STOP.  

            Else go to STEP No.2.    

7. Apache Spark Technology 

Like MapReduce, Spark is a distributed calculating 

framework although it scores elastic allocated dataset that 

gives a richer model than MapReduce. To support graph 

calculation algorithms  and complex data mining, Spark 

permits iterations of data in memory algorithms [21]. It 

also presents simple programming interface (API’s) for 

several analytical algorithms that includes graph 

processing, machine learning, SQL Queries, and real-time 

data streaming. The interface enables the developer of 

application to simply use the storage resources, memory, 

and CPU through a cluster of servers for processing 

complex and large datasets. The Spark Streaming is 

characterized by having some advantages: 

(a) reaches the second delay and runs on 100+ nodes, (b) 

memory-based implementation engine, with effective and 

fault-tolerant attributes, (c) interactive queries and 

integration of Spark's batch, and (d) Up to 10 times faster 

than Hadoop MapReduce [22][23]. 

Apache Spark is seen as a simple construction with two 

nodes only (Worker and Master) which runs with a cluster 

manager such as Spark or Hadoop, as shown in Fig. 4. 

 

Fig 4.Apache Spark architecture 

The batch is processed by the Spark program through 

operating the interfaces provided by Resilient Distributed 

Datasets (RDDs) [24]) such as reduction, map, and filter. 

With regard to the Spark streaming, the process of the 

DStream (RDD sequence signifying the data flow), which 

presents the interfaces, are similar to those provided by 

RDD. 

8. Experimental Environment Setting 

In the experimental part of the study, a number of 

simulation tests  are conducted based on different 

computing resource infrastructures. Virtualizations are 

diverse with regard to their storage capacity and processing 

capability [25]. To assess the usefulness of the model 

regarding scheduling the job tasks, each VM has its own 

operational ability characterized by the rate capacity of 

CPU clock of the VM (measured in GHz) as well as its 

own storage capacity characterized by available memory 

(measured in GBytes). Table 3 shows the availability of 

the memory size of the CPU clock rate and each one of the 

20 simulated VMs. For example, VM No. 1 provides 1.25 

GHz as rate of CPU clock requires implementing one job 

instruction, 1.0 GBytes of available memory. 

In this study, 5 jobs are given to be performed: 5, 10, 15 or 

20 VM. Every job is composed of 5 tasks which are further 

composed of a number of instructions and requires space 

on a memory as shown in Table 4. 

9. Performance Evaluation 

In this work, the performance evaluation is carried out to 

assess the potency of the AFTM to job scheduling in 

virtualization VMs. To reach this aim, the AFTM 

framework is executed in Java based Hadoop and Apache 

Spark platforms. For experimental purposes, the suggested 

model's programs are implemented adopting Java coding 

and Scale. All programs can be run with different number 

of nodes by Apache Spark clusters. The setting of the 
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experiment used 5 VM nodes (VM1, VM2, VM3, VM4 and 

VM5). On Hadoop2.0, all cluster nodes have the same 

configuration that comprises CPU (3.9 GHz), 500 GB 

storage, and 32 GB RAM, as shown in Fig. 5 

 

 

 

 

 

 

Table3. Available Memory Size of VM Nodes and CPU  Clock Rate

 

Table4. Parameters of Every Task of a Job. 

 

Fig 5. Apache Spark’s Cluster Architecture Experiment 

 

Apache Spark cluster is formed by a local server machine 

service. To assess our proposed model, two evaluation 

metrics of performance are used as the following: 

A. CPU execution time is defined as the period between 

the beginning and the end of a given task 

implemented on VMs. We presume that for each 

instruction, it is necessary to have one clock cycle to 

be executed. The CPU execution time can be 

computed as the following: 

Time of CPU execution = instructions number of a 

task (i.e., clock cycles for a task) /clock rate. 

B. Distributed size of memory is defined as the quantity 

of memory (i.e., the main storage unit) of a VM, 

devoted to the given task execution. 

With reference to metrics above, the results obtained by 

AFTM are compared with those ones obtained by genetic 

algorithm and the traditional PSO. 

10. Results Analysis for Simulation Experiment 

Fig6 and Fig7 show the results of AFTM, PSO, and GA 

executions of 5 jobs which consist of 5 tasks. For cases (5, 

10, 15, and 20 VM nodes in the infrastructure of cloud 

computing).   Fig. 6 shows the CPU execution time yielded 

after implementing all job tasks by various VM nodes.This 

demonstrate that more models can  bring about lowered 

implementation time for various simulation tests. The 

distributed memory with all job tasks after being 

scheduled with more AFTM, PSO, and GA are illustrated 

in Fig. 7. Furthermore, the smallest size of memory as in 

the case of 20 VM nodes is allocated by AFTM 

 

Fig 6. Job Execution Time after AFTM, PSO and GA 

Scheduling with Apache Spark 

VMj Measure 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

Rate of CPU 

clock 
GHz 1.07 1.02 0.77 1.01 0.93 1.67 0.92 0.70 1.21 1.70 0.77 1.11 1.00 0.50 1.65 0.73 0.93 1.00 1.25 1.00 

Size of 

available 

Memory  

GBytes 1.01 0.78 1.65 1.50 1.44 1.0 1.12 0.19 1.0 1.42 1.21 1.12 1.20 0.81 1.12 1.42 1.23 1.50 1.00 0.9 
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Fig 7.Allocated Memory by Jobs after AFTM, PSO and 

GA Scheduling with Apache Spark 

As shown in Fig.8, the multi-objective job-scheduling 

problem is represented by the cost function in which 

AFTM outperforms PSO and GA for all tests. AFTM-

Hadoop can give minimum cost services out of the 

allocated memory by taking into consideration 

transformation and crossover operations with the 

reiterative times growing in three algorithms. Compared 

with AFTM, GA, and PSO that consider local, and global 

scope of the solution space, and also add a random 

sampling so that the AFTM-Hadoop has a stronger global 

optimization capability based on Apache Spark. 

Fig 8.Cost Function of AFTM, PSO and GA VMs 

Scheduling Problem with Apache Spark 

11. Conclusion 

This study aimed at investigating the concept of fault 

management with the optimization of the job-scheduling 

problem in the calculating infrastructure. Based on the 

Apache Spark and swarm intelligence algorithms, a new 

effective method called adapting fault-tolerant model 

(AFTM) was proposed for job scheduling in the cloud 

computing environment. For reducing the resource cost, 

the performance was analyzed. The suggested model 

covers the implementation of virtualizations with the job 

task selection to health monitoring for fault diagnoses with 

Apache Spark. The objective was to find an optimized cost 

tradeoff between CPU execution time required by 

virtualization services and the allocated memory. 
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