

 International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-67992147-6799 www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(2), 74–81 | 74

Adaptive Fault-Tolerance During Job Scheduling in Cloud Services

Based on Swarm Intelligence and Apache Spark

Sadoon Hussain Abdullah*1, Al-Hakam Ayad2, Nadia M. Mohammed3, Redhwan M. A. Saad4,5

Submitted: 12/11/2022 Accepted: 13/02/2023

Abstract: Cloud services are generally seen as a promising technique developed to achieve the highest computation service needs.

However, such high-performing level of computing services can lead to the highest level of failure rates owing to a wide range of

components and host servers which are filled with intensive job scheduling problems. Therefore, failure which occurs in one component

or sub-system will lead to the unavailability of the computation services for the system. In this research, we suggest a new effective

model called adapting fault-tolerant model (AFTM) which aimed to examine the optimization of job scheduling problem in computing

infrastructure based on Particle Swarm Optimization (PSO), Apache Sparka and Ant Colony Optimization (ACO). The proposed

approach covers the implementation and analysis of virtualizations with the job task selection to health monitoring for fault diagnoses

based on Apache Spark. The objective is to find the cost trade-off between the allocated memory and CPU execution time required by

virtualization services created by the end-users. The evaluation of the empirical performance of the proposed approach results

outperforms PSO algorithms and traditional Genetic Algorithm (GA) in terms of the allocated memory and the time of CPU execution.

Keywords: Fault-tolerance, Job Scheduling, Cloud services, Apache Spark.

1. Introduction

Cloud computing is a model which allows the end-users to

access the distributed virtual machines and shares available

resources in infrastructure as a service (IaaS) as well as job

scheduling techniques [1], tolerance techniques, and

virtualization technologies. There are two technique

approaches for adopting the fault-tolerance: reactive and

proactive fault-tolerance techniques. The difference

between the two techniques lies in the fact that the

proactive fault-tolerance techniques are expecting and

predicting (fault is expected before occurrence) [2], while

the techniques of reactive fault-tolerance are interacting

and responding (fault is handled after occurrence).

Therefore, based on the present status of cloud service

network [3], the adaptive technique of fault-tolerance

travels between the two techniques. Concerning cloud

computing and virtualization, it can be easy to run swarm

intelligence algorithms such as ACO and PSO simulation

on multiple VM nodes. Cloud service infrastructures use

the technique for fault-tolerance to tolerably form the

faults. In this new method, the function of operating and

management such as job scheduling aims at presenting

cost-effective and high-performing services demanded by

VMs and implemented by physical resource machines

(host server) at certain times. This can efficiently solve the

job scheduling problem by reducing the total execution

time without any failure. As replication refers to

duplication, different jobs are duplicated and implemented

on various resources to reach effective implementation and

desired outcomes. The tools that are used in this work are

Hadoop and Apache Spark replication for implementing

replication [4][5]. The job of scheduling problem in

virtualization aims to assign various job tasks to VM nodes

found at the network boundary. Host server

machines/virtualization are more specifically distributed to

various tasks of given jobs marking the services demanded

by end-users so the CPU execution time, and the

distributed memory requested by all jobs are reduced.

In this study, a new model called adapting fault-tolerant

model (AFTM) is proposed. The focus of this study is on

the implementation and analysis of the adaptive fault-

tolerance through the job scheduling problem for the

request resource services in infrastructure as a service

(IaaS). The job scheduling problem governs the best job of

various tasks implemented at the minimum level of cloud

resources (e.g., less memory) in the shortest time of CPU

1 Sadoon Hussein , Department of Physic, College of Science, University

 of Mosul, Mosul, IRAQ

 ORCID ID : 0000-0002-4629-7466
2 Al-Hakam Ayad , Department of Arabic Language ,College of Arts,

 Tikrit University, IRAQ

 ORCID ID : 0000-0003-0107-3028
3 Nadia M. Mohammed, Department of Software, College of Computer

 Science and Mathematics, University of Mosul, Mosul, IRAQ
4 Redhwan M. A. Saad, 4Department of Electrical Engineering, Faculty of
 Engineering, Ibb University, Ibb 70270,YEMEN
5 Department of Computer Engineering, Faculty of Engineering, Cairo

 University, Giza 12613, EGYPT

 ORCID ID : 0000-0001-7241-9327

Correspondence Author Email; sadosbio113@uomosul.edu.iq

mailto:sadosbio113@uomosul.edu.iq

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(2), 74–81 | 75

execution based on PSO, ACO, Hadoop, and Apache

Spark platforms. As a result, the tasks of the end-users

achieve request with quicker implementation time of one’s

job tasks at the minimum cost with fault-tolerance. The

algorithms of the job scheduling should have a new

technique of the fault-tolerance ability, which means

executing combined job scheduling in despite of failure in

a host server or VMs arbitrary. There are many studies

conducted to overcome the fault based on the fault-

tolerance.

2. Related Works

Much research has been conducted on the fault-tolerance

in cloud computing services. Cloud service infrastructure

has presented problems pertaining real-time computing

services. For example, Kalanirinika GR, et al. [2]

suggested an approach of reactive fault-tolerance to

facilitate exploit check pointing to accept the liability.

Another study conducted by Egwutuoha I.P. et al. [6] in

which a fault-tolerance (FT) technique was proposed for

managing faults proactively in HPC systems. The objective

of the study was to shorten the implementation case of the

barricade chronometer in the occurrence of responsibility

and enlarge a standard FT algorithm. For creating and

managing cloud fault-tolerance, Jhawar et al. [7] found an

advanced system level modular perspective and suggested

all-inclusive complicated approach to share application

details with developers and users on implementation of the

fault-tolerance technology by adapting a devoted service

layer. In the same vein, Hwang et al. [8] proposed a model

targeting failure detection service through notification and

scalable framework for allowing grid failures using

simulation as to evaluate parameter.

 Due to the dynamicity and heterogeneity of cloud resource

availability, the fault-tolerance intelligent algorithm-based

job scheduling techniques in cloud computing services

were found significant in order to avoid job failure [9, 10].

In [11], the MTCT technique is presented, which is

minimum-based time and cost trade-off for multipurpose

workflow scheduling, to assist fault retrieval in the cloud.

To evaluate this method, simulations are used to test its

strength using four different real-life scientific workflow

scenarios. The results display that fault retrieval has a

significant effect on the criteria of performance and the

MTCT algorithm is treasured for real-life workflow

systems when both optimization goals are considered.

A job scheduling method in cloud services is introduced by

Kumar and Aramudhan in [12], using hybridization of BA

method with a gravity scheduling algorithm that takes into

consideration the scheduling checks and the trust model.

Depending on the reliability level, jobs are mapped to

resources. The hybrid algorithm has been tested and it

intelligently minimizes the time period and the number of

failed operations compared to GVSA. However, the BA is

known for its weak local research in solving complex

problems.

NSGA-II is an intelligent technique that presents a

security-driven solution for scheduling failure probability

[13]. The Pareto dominance relationship is used to provide

a set of non-dominant optimal solutions. This technique is

integrated with GA which is evidenced by a number of

experimental results. The average response time results are

closely related to makespan results. However, the general

trend seems to be more challenging to explain. The

corresponding results display the usefulness of the

provided method and GA for both medium and small

planning jobs. However, the empirical results did not solve

large and large-scale scheduling job in the cloud.

It has been found that the schemes of PSO are nature-

inspired population extraction techniques. The social

features of flock of birds and fish are simulated by the

algorithms. The scheme attempts to develop resolutions

based on the measure of quality called the fitness function

by initializing a set of randomly distributed particles called

potential solutions [14]. An improved PSO for managing

the scheduling job of VMs in a cloud computing

environment is presented by Yuan et al. [15]; they

proposed a VM scheduling scheme which takes into

consideration the calculation power of the processing

fundamentals and also takes into account the calculation

the system density.

The resources currently available in the cloud should be

used for each scheduling point so that hobs failure can be

avoided due to essential machine failure or overload.

Modern dynamic scheduling methods do not take into

account the fault-tolerance parameters or they are used to a

certain degree at different levels of scheduling.

3. System Model

In this study, the suggested cloud service infrastructure

consists of "M" local VMs of jobs service located in the

IaaS of the virtualization as shown in Fig. 1.

Hypothetically, the system is composed of administrator

VMs who takes over job scheduling after getting all given

job parameters (i.e. a set of tasks). Each job is provided by

an end-user using a service order form to be operated in the

cloud-computing infrastructure.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(2), 74–81 | 76

VIRTUALIZATION

Server Storage NETWORK

User 1 User 2 User t

Internet(WAN)/LAN

Tasks

of end-users

Job1

Jobs scheduling

Job2 Job3 Jobj
Jobs

of tasks

Physical resources

of VMs

Local VMs

of jobs

C
lo

u
d
 c

o
m

p
u
tin

g
 p

ro
v
id

e
r se

rv
ic

e
s

Fig 1.Architecture System of Cloud Provider Service and

Jobs Scheduling

The fault state in cloud service is a popular issue as well

job scheduling as shown in Fig. 2. To guarantee job

scheduling, a new method of algorithm called AFTM was

proposed and done by the administrator VMs to figure out

the ideal request which is implemented via virtualization

VMs. Thus, the virtualization VMs can ensure the

performance of the memory of the scheduled services and

CPU. The model process was described by outlining the

stages or steps of operating a scheduled service as

illustrated in Fig. 2.

First, an end-user makes a service request to a job

scheduling machine found at the VM of the virtualization of

this cloud services infrastructure (stage 1). Next, the job

generation of this request as service scheduling is sent by

job scheduling machine (stage 2). Then, the VM sends data

with parameters of the request to the host server machine

which is far-off from the end-user (stage 3). The job is,

then, decomposed by the host server machine into a set of

tasks (stage 4). For finding an optimal job scheduling, the

AFTM is implemented (stage 5). Next, each VMs gets its

allocated task (stage 6). The task is implemented at the

level of these VMs (stage 7). Each VMs results are sent to

the host server (stage 8). The result is prepared by the host

server based on the partial given results from the VMs

(stage 9) to the end-users receives the final result as a

service response (stage 10).

Jobs scheduling
Virtualization/VMs

scheduling
Host server

2: Job generation

(Service scheduling)
3: Sending data of job tasks

4: Sending data of job into tasks

5: AFTM Model execution

6: Tasks sending

8: Sending of tasks results

7: Execution of

tasks

9: Combining of tasks results

10: Sending of job response

Users-end

1: Job request

Fig 2. A Host Server System Model and Jobs Scheduling

of Virtualization

4. Problem Formulation

The job scheduling problem formula in the virtualization

infrastructure is explained in this section. The job is

defined as an operation that is similar to a service request

created by the end-users of computers. Then, a series of 'n'

jobs is scheduled and implemented by the infrastructure of

virtualization. The Jobs are distinguished as follows:

𝐽𝑜𝑏_𝑡𝑎𝑠𝑘𝑠 = {𝐽𝑡1, 𝐽𝑡2, ⋯ , 𝐽𝑡𝑖, ⋯ , 𝐽𝑡𝑛}

Each Job task 'ti' within 'n' jobs can be divided into a set of

's' tasks, where (1≤ i ≤n). Every task 't' within 's' tasks

where (1≤ t ≤s) is distributed to one VM 'j' within 'k' VMs

where (1≤ j ≤k) to be implemented, such as:

𝐽𝑜𝑏𝑡𝑖𝑇𝑎𝑠𝑘𝑠

= {𝐽𝑇𝑎𝑠𝑘𝑡𝑖1
𝑎 , 𝐽𝑇𝑎𝑠𝑘𝑡𝑖2

𝑏 , ⋯ , 𝐽𝑇𝑎𝑠𝑘𝑡𝑖𝑡
𝑗

, ⋯ , 𝐽𝑇𝑎𝑠𝑘𝑡𝑖𝑠
𝑘 }

For example, tasks of job 'ti':

𝐽𝑜𝑏𝑡𝑖𝑇𝑎𝑠𝑘𝑠 = {𝐽𝑇𝑎𝑠𝑘𝑡𝑖1
3 , 𝐽𝑇𝑎𝑠𝑘𝑡𝑖2

5 }

are carried out as follows: first task (JTaskti1
3) is performed

in VM3 and second task (JTaskti2
5) is performed in VM5.

Consequently, each VMs VMj can perform a set of disjoint

subset of the spoiled jobs set. For its allocated jobs, VMj

assurances the performance of its tasks as the following:

𝑉𝑀𝑗𝑇𝑎𝑠𝑘𝑠 =

{𝐽𝑇𝑎𝑠𝑘𝑎𝑥
𝑗

, 𝐽𝑇𝑎𝑠𝑘𝑏𝑦
𝑗

, ⋯ , 𝐽𝑇𝑎𝑠𝑘𝑖𝑡
𝑗

, ⋯ , 𝐽𝑇𝑎𝑠𝑘𝑛𝑠
𝑗

}

Combining these general divided groups are a complete set

of jobs. For instance, tasks are allocated to the VMs VMj

after scheduling as the following:

𝑉𝑀𝑗𝑇𝑎𝑠𝑘𝑠 = {𝐽𝑇𝑎𝑠𝑘23
𝑗

, 𝐽𝑇𝑎𝑠𝑘61
𝑗

}

Then, VMj carries out 3rd job task 2 and 1st job task 6. Side

by side, the overall time of CPU execution allocated to

VMj of all 's' tasks will be:

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(2), 74–81 | 77

𝐶𝑃𝑈_𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛_𝑡𝑖𝑚𝑒(𝑉𝑀𝑗𝑇𝑎𝑠𝑘𝑠)

= 𝑠𝑢𝑚1≤𝑘≥𝑠
(𝐽𝑇𝑎𝑠𝑘𝑖𝑡

𝑗
. 𝑠𝑡𝑎𝑟𝑡𝑇𝑖𝑚𝑒

+ 𝐽𝑇𝑎𝑠𝑘𝑖𝑡
𝑗

. 𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑛𝑇𝑖𝑚𝑒) , 𝑖

∈ 𝑗𝑜𝑏𝑠 𝑜𝑓 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 𝑡𝑎𝑠𝑘𝑠 (1)

where 𝐽𝑇𝑎𝑠𝑘𝑖𝑡
𝑗

.StartTime symbolizes the initial point of

task 't' of a job 'i' is performed on VMj and

 𝐽𝑇𝑎𝑠𝑘𝑖𝑡
𝑗

.ExeTime symbolizes the time of CPU execution

at VMj of task 't'. In addition, the assigned memory to task

't' allocated to VMj is computed using the following

formula:

𝑀𝑒𝑚𝑜𝑟𝑦(𝑉𝑀𝑗𝑇𝑎𝑠𝑘𝑠

= 𝑚𝑎𝑥 1≤𝑡≥𝑟 (𝐽𝑇𝑎𝑠𝑘𝑖𝑡
𝑗

. 𝐴𝑙𝑙𝑜𝑐𝑎𝑡𝑒𝑑𝑀𝑒𝑚𝑜𝑟𝑦) , 𝑖

∈ 𝑗𝑜𝑏𝑠 𝑜𝑓 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 𝑡𝑎𝑠𝑘𝑠 (2)

Consequently, the scheduling of job task in the

infrastructure of cloud computing can be calculated using

the following formula:

𝑉𝑀𝑇𝑎𝑠𝑘𝑠 =

{𝑉𝑀1𝑇𝑎𝑘𝑠, 𝑉𝑀2𝑇𝑎𝑘𝑠, ⋯ , 𝑉𝑀𝑘𝑇𝑎𝑘𝑠}, 𝑤ℎ𝑒𝑟𝑒: 𝑉𝑀1𝑇𝑎𝑘𝑠 =

{𝐽𝑇𝑎𝑠𝑘𝑎𝑥
𝑗

, 𝐽𝑇𝑎𝑠𝑘𝑏𝑦
𝑗

, ⋯ , 𝐽𝑇𝑎𝑠𝑘𝑖𝑡
𝑗

, ⋯ , 𝐽𝑇𝑎𝑠𝑘𝑛𝑠
𝑗

},as described

above.

5. Cost Function

The cost function is used to evaluate the performance of

the expected result (VMTasks). As a minimized function,

the cost function is used to gauge the optimization of the

two objectives mentioned above. Allocated memory size

and CPU implementation time are formulated as following:

𝐶𝑜𝑠𝑡𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝑉𝑀𝑇𝑎𝑠𝑘𝑠)

= 𝑀𝑖𝑛 [∑ (𝐶𝑜𝑠𝑡
𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝐽𝑇𝑎𝑠𝑘𝑖𝑘

𝑗
,𝑉𝑀𝑗)

)

𝑗=1

𝑚

]

, 𝑤ℎ𝑒𝑟𝑒, 𝐶𝑜𝑠𝑡
𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝐽𝑇𝑎𝑠𝑘𝑖𝑘

𝑗
,𝑉𝑀𝑗)

= 𝑤1 . 𝐶𝑃𝑈𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛
𝑇𝑖𝑚𝑒(𝑉𝑀𝑗𝑇𝑎𝑠𝑘𝑠)

+ 𝑤2. 𝑀𝑒𝑚𝑜𝑟𝑦(𝑉𝑀𝑗𝑇𝑎𝑠𝑘𝑠) (3)

Where, w1 and w2 are used to stress the significance of

both assessed objectives, allocated memory and CPU

execution time, as a fixed weight factors. In other words,

the preference of the decision maker using PSO and ACS

in this work is reflected by the selection of the weights of

the multi-objective optimal approaches. The general

parameter values and PSO parameter are shown in Tables

1 and 2.

Table 1. General Parameter Values

Parameter value

VM numbers 20

Number of tasks [20 100]

Processing rate [50,500] MIPS

Bandwidth
10,100,512,1024

Mbps

Table 2. Pso Parameter

Parameter value

W 1 or 0.99

c1 0.5

c2 0.5

r1 0.5

r2 0.5

Max iteration 200

6. Swarm Intelligence Algorithm (SIA)

SIA is built on the combined performance of self-ordered

systems. Standard swarm intelligence systems comprise

ACO, PSO, Stochastic Diffusion Search, and the Artificial

Bee Colony (ABC) [16], [17].

6.1. Practical Swarm Optimization (PSO)

PSO is, to some extent, a new randomly optimized

technique that mimics the bird flocking swarm behavior.

According to PSO, an individual in the swarm, named a

particle, embodies a prospective solution. Every particle

has a fitness value and a velocity; it learns the experiences

of the swarm to exploration for the global optima [18].

Traditional PSO can be represented in Fig. 3.

Fig 3. Flow Chart of Standard PSO Algorithm [19]

6.2. Ant Colony Optimization (ACO)

The ACO is a potential technique used for handling

computational issues. This technique attempts to minimize

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(2), 74–81 | 78

optimal paths through graphs [20] as shown in Algorithm

1. The environment is used as a tool for Ant

communication. By the aid of the deposited pheromone, an

altercation of information occurs, such as the status of their

“work”. Owing to the information tradeoff has a local

scope, the location of ants are perceived by left the

pheromones.

Algorithm 1: ACO Algorithm

1. Initialization:

The heuristic information, the pheromone trails, and the

restrictions are configured.

2. Iterative Loop:

 The starting job can be determined by a colony of

ants.

 Create a complete schedule for each ant.

3. Repeat:

 Selecting the next processing job, using the

following:

 State transition rule.

 Local updating rule.

Until a complete schedule is built, use the following:

 Local search process.

 Global updating rule.

4. Termination:

 If the interactions number is reach to the maximum,

 Then STOP.

 Else go to STEP No.2.

7. Apache Spark Technology

Like MapReduce, Spark is a distributed calculating

framework although it scores elastic allocated dataset that

gives a richer model than MapReduce. To support graph

calculation algorithms and complex data mining, Spark

permits iterations of data in memory algorithms [21]. It

also presents simple programming interface (API’s) for

several analytical algorithms that includes graph

processing, machine learning, SQL Queries, and real-time

data streaming. The interface enables the developer of

application to simply use the storage resources, memory,

and CPU through a cluster of servers for processing

complex and large datasets. The Spark Streaming is

characterized by having some advantages:

(a) reaches the second delay and runs on 100+ nodes, (b)

memory-based implementation engine, with effective and

fault-tolerant attributes, (c) interactive queries and

integration of Spark's batch, and (d) Up to 10 times faster

than Hadoop MapReduce [22][23].

Apache Spark is seen as a simple construction with two

nodes only (Worker and Master) which runs with a cluster

manager such as Spark or Hadoop, as shown in Fig. 4.

Fig 4.Apache Spark architecture

The batch is processed by the Spark program through

operating the interfaces provided by Resilient Distributed

Datasets (RDDs) [24]) such as reduction, map, and filter.

With regard to the Spark streaming, the process of the

DStream (RDD sequence signifying the data flow), which

presents the interfaces, are similar to those provided by

RDD.

8. Experimental Environment Setting

In the experimental part of the study, a number of

simulation tests are conducted based on different

computing resource infrastructures. Virtualizations are

diverse with regard to their storage capacity and processing

capability [25]. To assess the usefulness of the model

regarding scheduling the job tasks, each VM has its own

operational ability characterized by the rate capacity of

CPU clock of the VM (measured in GHz) as well as its

own storage capacity characterized by available memory

(measured in GBytes). Table 3 shows the availability of

the memory size of the CPU clock rate and each one of the

20 simulated VMs. For example, VM No. 1 provides 1.25

GHz as rate of CPU clock requires implementing one job

instruction, 1.0 GBytes of available memory.

In this study, 5 jobs are given to be performed: 5, 10, 15 or

20 VM. Every job is composed of 5 tasks which are further

composed of a number of instructions and requires space

on a memory as shown in Table 4.

9. Performance Evaluation

In this work, the performance evaluation is carried out to

assess the potency of the AFTM to job scheduling in

virtualization VMs. To reach this aim, the AFTM

framework is executed in Java based Hadoop and Apache

Spark platforms. For experimental purposes, the suggested

model's programs are implemented adopting Java coding

and Scale. All programs can be run with different number

of nodes by Apache Spark clusters. The setting of the

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(2), 74–81 | 79

experiment used 5 VM nodes (VM1, VM2, VM3, VM4 and

VM5). On Hadoop2.0, all cluster nodes have the same

configuration that comprises CPU (3.9 GHz), 500 GB

storage, and 32 GB RAM, as shown in Fig. 5

Table3. Available Memory Size of VM Nodes and CPU Clock Rate

Table4. Parameters of Every Task of a Job.

Fig 5. Apache Spark’s Cluster Architecture Experiment

Apache Spark cluster is formed by a local server machine

service. To assess our proposed model, two evaluation

metrics of performance are used as the following:

A. CPU execution time is defined as the period between

the beginning and the end of a given task

implemented on VMs. We presume that for each

instruction, it is necessary to have one clock cycle to

be executed. The CPU execution time can be

computed as the following:

Time of CPU execution = instructions number of a

task (i.e., clock cycles for a task) /clock rate.

B. Distributed size of memory is defined as the quantity

of memory (i.e., the main storage unit) of a VM,

devoted to the given task execution.

With reference to metrics above, the results obtained by

AFTM are compared with those ones obtained by genetic

algorithm and the traditional PSO.

10. Results Analysis for Simulation Experiment

Fig6 and Fig7 show the results of AFTM, PSO, and GA

executions of 5 jobs which consist of 5 tasks. For cases (5,

10, 15, and 20 VM nodes in the infrastructure of cloud

computing). Fig. 6 shows the CPU execution time yielded

after implementing all job tasks by various VM nodes.This

demonstrate that more models can bring about lowered

implementation time for various simulation tests. The

distributed memory with all job tasks after being

scheduled with more AFTM, PSO, and GA are illustrated

in Fig. 7. Furthermore, the smallest size of memory as in

the case of 20 VM nodes is allocated by AFTM

Fig 6. Job Execution Time after AFTM, PSO and GA

Scheduling with Apache Spark

VMj Measure 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Rate of CPU

clock
GHz 1.07 1.02 0.77 1.01 0.93 1.67 0.92 0.70 1.21 1.70 0.77 1.11 1.00 0.50 1.65 0.73 0.93 1.00 1.25 1.00

Size of

available

Memory

GBytes 1.01 0.78 1.65 1.50 1.44 1.0 1.12 0.19 1.0 1.42 1.21 1.12 1.20 0.81 1.12 1.42 1.23 1.50 1.00 0.9

Job

1

Job

2

Job

3

Job

4
Job5

Task

1

Instructions 1 x 109
1 x

109

3 x

109

2 x

109

2 x

109

Memory 0.20
0.1

0

0.2

0

0.3

0

0.2

0

Task

2

Instructions 1 x 109
3 x

109

4 x

109

1 x

109

2 x

109

Memory 0.30
0.2

0

0.1

0

0.2

0

0.1

0

Task

3

Instructions 4 x 109
1 x

109

2 x

109

3 x

109

2 x

109

Memory 0.40
0.3

0

0.2

0

0.1

0

0.1

0

Task

4

Instructions 3 x 109
3 x

109

2 x

109

1 x

109

1 x

109

Memory 0.20
0.1

0

0.2

0

0.3

0

0.3

0

Task

5

Instructions 4 x 109
2 x

109

1 x

109

2 x

109

1 x

109

Memory 0.20
0.3

0

0.1

0

0.3

0

0.2

0

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(2), 74–81 | 80

Fig 7.Allocated Memory by Jobs after AFTM, PSO and

GA Scheduling with Apache Spark

As shown in Fig.8, the multi-objective job-scheduling

problem is represented by the cost function in which

AFTM outperforms PSO and GA for all tests. AFTM-

Hadoop can give minimum cost services out of the

allocated memory by taking into consideration

transformation and crossover operations with the

reiterative times growing in three algorithms. Compared

with AFTM, GA, and PSO that consider local, and global

scope of the solution space, and also add a random

sampling so that the AFTM-Hadoop has a stronger global

optimization capability based on Apache Spark.

Fig 8.Cost Function of AFTM, PSO and GA VMs

Scheduling Problem with Apache Spark

11. Conclusion

This study aimed at investigating the concept of fault

management with the optimization of the job-scheduling

problem in the calculating infrastructure. Based on the

Apache Spark and swarm intelligence algorithms, a new

effective method called adapting fault-tolerant model

(AFTM) was proposed for job scheduling in the cloud

computing environment. For reducing the resource cost,

the performance was analyzed. The suggested model

covers the implementation of virtualizations with the job

task selection to health monitoring for fault diagnoses with

Apache Spark. The objective was to find an optimized cost

tradeoff between CPU execution time required by

virtualization services and the allocated memory.

Acknowledgements

Authors are sincerely grateful to the anonymous peer

reviewers for their precious comments given to improve

the quality of this work.

Author contributions

Sadoon AbdulAllah: Conceptualization, Methodology,

Writing-Original draft preparation.

Al-Hakam Ayad: Conceptualization, Visualization.

Nadia Maan: Data curation, Validation. Investigation,

formal analysis. Software, Writing- Original.

Redhwan M. A. Saad: Investigation, Writing, Reviewing,

Editing, and Supervision.

References

[1] TYAGI, Rinki; GUPTA, Santosh Kumar. A Survey

on Scheduling Algorithms for Parallel and

Distributed Systems. In: Silicon Photonics & High

Performance Computing. Springer, Singapore, 2018.

p. 51-64.

[2] PRAKASH, Shiva, et al. A Literature Review of QoS

with Load Balancing in Cloud Computing

Environment. In: Big Data Analytics. Springer,

Singapore, 2018. p. 667-675.

[3] Kalanirinika GR, et al.” fault tolerance in cloud using

reactive and proactive techniques”.

[4] Alkasem, A., Liu, H., Zuo, D., & Algarash, B.

(2018). Cloud Computing: A model Construct of

Real-Time Monitoring for Big Dataset Analytics

Using Apache Spark. In Journal of Physics:

Conference Series (Vol. 933, No. 1, p. 012018). IOP

Publishing..

[5] Ameen Alkasem, Hongwei Liu and Decheng Zuo.

CloudPT Performance Testing for Identifying and

Eliminating Bottlenecks in Dynamic Cloud

Services[C]. 18th International Conference on

Algorithms and Architectures for Parallel Processing

(ICA3PP), 2018.

[6] Egwutuoha, I.P., Chen, S., Levy, D., Selic, B. and

Calvo, R., 2012, November. A proactive fault

tolerance approach to High Performance Computing

(HPC) in the cloud. In Cloud and Green Computing

(CGC), 2012 Second International Conference

on (pp. 268-273). IEEE.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(2), 74–81 | 81

[7] Jhawar, R., Piuri, V. and Santambrogio, M., 2013.

Fault tolerance management in cloud computing: A

system-level perspective. IEEE Systems

Journal, 7(2), pp.288-297.

[8] Hwang, S. and Kesselman, C., 2003. A flexible

framework for fault tolerance in the grid. Journal of

Grid Computing, 1(3), pp.251-272.

[9] Patra PK, Singh H, Singh G (2013) Fault tolerance

techniques and comparative implementation in cloud

computing. Int J Comput Appl 64(14):37–41.

[10] Nawi NM, Khan A, Rehman M, Chiroma H,

Herawan T (2015) Weight optimization in recurrent

neural networks with hybrid metaheuristic Cuckoo

search techniques for data classification. Math Probl

Eng 501:868375.

[11] Xu H, Yang B, Qi W, Ahene E (2016) A multi-

objective optimization approach to workflow

scheduling in clouds considering fault recovery. KSII

Trans Internet Inf Syst 10(3):976–995.

doi:10.3837/tiis.2016.03.002.

[12] Kumar VS, Aramudhan M (2014) Hybrid optimized

list scheduling and trust based resource selection in

cloud computing. J Theor Appl Inf Technol

69(3):434–442

[13] G\ca\casior J, Seredyński F (2013) Multi-objective

parallel machines scheduling for fault-tolerant cloud

systems. In: Joanna K, Di Martino B, Talia D, Xiong

K (eds) Algorithms and architectures for parallel

processing. Springer, Switzerland, pp 247–256.

doi:10.1007/978-3-319-03859-9_21

[14] Kaveh A (2014) Particle swarm optimization. In:

Advances in metaheuristic algorithms for optimal

design of structures. Springer, Switzerland, pp 9–40.

doi:10.1007/978-3-319-05549-7

[15] Yuan H, Li C, Du M (2014) Optimal virtual machine

resources scheduling based on improved particle

swarm optimization in cloud computing. J Softw

9(3):705–708

[16] Kaur, J., Kalra, A., & Sharma, D. (2018).

Comparative Survey of Swarm Intelligence

Optimization Approaches for ANN Optimization.

In Intelligent Communication, Control and

Devices(pp. 305-314). Springer, Singapore.

[17] Lin, F. P. C., & Phoa, F. K. H. (2018). An efficient

construction of confidence regions via swarm

intelligence and its application in target

localization. IEEE Access, 6, 8610-8618.

[18] Chu, S. C., Huang, H. C., Roddick, J. F., & Pan, J. S.

(2011, September). Overview of algorithms for

swarm intelligence. In International Conference on

Computational Collective Intelligence(pp. 28-41).

Springer, Berlin, Heidelberg.

[19] Zhang, X., & Zhang, X. (2017). Thinning of antenna

array via adaptive memetic particle swarm

optimization. EURASIP Journal on Wireless

Communications and Networking, 2017(1), 183.

[20] https://en.wikipedia.org/wiki/Ant_colony_optimizati

on_algorithms

[21] Ameen Alkasem, Hongwei Liu, Muhammad Shafiq,

and Decheng Zuo, "A New Theoretical Approach: A

Model Construct for Fault Troubleshooting in Cloud

Computing," Mobile Information Systems, vol. 2017,

Article ID 9038634, 16 pages, 2017.

doi:10.1155/2017/9038634.

[22] Salloum, S., Dautov, R., Chen, X., Peng, P. X., &

Huang, J. Z. (2016). Big data analytics on Apache

Spark. International Journal of Data Science and

Analytics, 1(3-4), 145-164.

[23] Mavridis, I., & Karatza, H. (2017). Performance

evaluation of cloud-based log file analysis with

Apache Hadoop and Apache Spark. Journal of

Systems and Software, 125, 133-151.

[24] Ameen Alkasem, Hongwei Liu, and Decheng Zuo.

"Utility Cloud: A Novel Approach for Diagnosis and

Self-healing Based on the Uncertainty in Anomalous

Metrics." In Proceedings of the 2017 International

Conference on Management Engineering, Software

Engineering and Service Sciences (ICMSS '17),

Yulin Wang (Ed.). ACM,NewYork,NY,USA,99-

107.DOI: https://doi.org/10.1145/3034950.3034967,

(2017).

[25] Vasconcelos, P. R. M., & de Araújo Freitas, G. A.

(2014, December). Performance analysis of Hadoop

MapReduce on an OpenNebula cloud with KVM and

OpenVZ virtualizations. In Internet Technology and

Secured Transactions (ICITST), 2014 9th

International Conference for (pp. 471-476). IEEE.

https://doi.org/10.3837/tiis.2016.03.002
https://doi.org/10.1007/978-3-319-03859-9_21
https://doi.org/10.1007/978-3-319-05549-7

