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Abstract: In recent years, there has been a significant expansion in the infrastructure for video surveillance, which has resulted in an 

increase in the number of intelligent surveillance systems that use computer vision and pattern recognition algorithms. In this article, we 

offer a unique intelligent surveillance system that is based on deep learning and is utilized for the management of road vehicles. In other 

words, the system is able to label any vehicle via the use of computer vision, and as a result, it is able to quickly distinguish cars that have 

visual tags. This capability allows the system to extract the vehicle visual tags that are present on urban roadways. The visual tags that are 

discussed in this article include the license plate number, the color of the car, and the kind of vehicle. These visual tags also contain a 

variety of other attributes, such as passing location and passing time. In this work  the particular area video footage was retrieved. Then 

the formation of clustered hub was done for the fusion of the several footage data . The violation based vehicle details are grouped by using 

the Gaussian mac clustering approach. Then from the grouped features the specialized features according to the required event was isolated 

using the Metaheuristic chaos vortex optimization. Finally the proposed hyperbolic back propagate boltzmann neural network (HBPBNN) 

architecture detects the vehicle and its related violations  in a precise manner. The whole experimentation was carried out in a real time 

database. On-road experimental findings show that the algorithm outperforms the most cutting-edge vehicle recognition algorithm in testing 

data sets. The findings of the comparative assessment indicated that the recommended model performed better than the other models in 

use. 

 

Keywords: Automated Vehicular Surveillance , Deep Learning, Gaussian mac clustering approach, Metaheuristic chaos vortex 

optimization,  Hyperbolic back propagate Boltzmann neural network 

 

1. Introduction 

Congestion, accidents, and violations all present serious 

problems for traffic management systems in most major and 

medium-sized cities due to the increasing urban population. 

As a result, there has been a lot of interest in studies of active 

traffic surveillance, which seek to keep tabs on and control 

vehicular traffic. The development of computer vision has 

made the video camera a cost-effective and promising 

sensor for monitoring traffic. In the last 30 years, video 

surveillance systems have become an integral aspect of ITS 

(ITSs). Vehicle detection, tracking, identification, 

behavioral analysis, and so on are just some of the ways 

these systems gather visual data about moving vehicles. For 

the most part, current surveillance systems gather data on 

traffic flows, which consists mostly of traffic metrics and 

incident detection. 

 It is more difficult to discover traffic incidents, but this area 

offers a lot of room for exploration. Video-based traffic 

surveillance has made significant strides, but there are still 

a number of issues that need to be overcome before it can be 

used in an ITS setting. Here is a rundown of some of the 

problems that have been encountered so far with video 

surveillance systems. 

• Daytime and evening illumination conditions vary 

significantly. Although nighttime operations are possible 

with the use of supplementary illumination equipment, these 

devices often have restricted viewing ranges. In high-traffic 

situations, pedestrians, bicyclists, trees, and buildings may 

readily obscure a car's view, and the same is true for other 

cars. When cars change lanes or turn, their poses might be 

quite different from one another. 

• Vehicles come in all sizes, colors, and forms imaginable. 

The picture size in pixels varies when a vehicle moves 

within the camera's field of vision (FOV). As a result, 

certain finer points of visual information are lost, and the 

reliability of detection models is put to the test. 

To better comprehend the roadway behavior of vehicles and 

drivers: When following a vehicle as it moves through a 

road system, cameras must work together to get an 

understanding of the whole traffic state and the status of the 

driver via global behavior analysis. In order to better 
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understand how vehicles behave, we describe a generic 

system architecture of hierarchical and networked vehicle 

surveillance in ITSs based on an examination of current 

surveillance systems. There are four distinct levels that 

make up the hierarchy. Obtaining Data at the First Network 

Layer and the Emergence of Hub Clusters . This layer's job 

is to use visual sensors to collect information about traffic 

situations in a given region, organize that information, and 

finally obtain pictures. The Layer 2 Attributes use a 

Gaussian mac clustering technique to group up the attributes  

in the pictures based on their dynamic and static features. 

Dynamic qualities are those that pertain to the features of a 

moving vehicle, such as its speed, direction of travel, path 

taken along the road system, etc. License plate number, 

vehicle type, color, logo, driver status, and other such fixed 

qualities are used to describe the outward look of a vehicle. 

Metaheuristic chaos vortex optimization is used in the third 

layer to extract unique details about the desired event based 

on the attributes already retrieved in the previous layers. The 

Interpretation of Behavior is done at the Fourth Layer. Here, 

we use a Hyperbolic back propagate Boltzmann neural 

network to do some attribute analysis, learn about the 

aggressive driving habits of cars and drivers, and get a sense 

of how the transportation system is now congested. This rest 

of the paper is structured as follows. In the second section, 

we take a look at the current level of research in the fields 

of vehicle object identification and vehicle surveillance. In 

Part 3, we see an example of the stated issue. Layers of 

implementation for the recommended technique are 

explored in Section 4, and Section 5 presents the results of 

the experimental assessment. At last, this paper's last section 

provides closure. 

 

2. Related Works 

In [1], deep learning is used to solve the problems of vehicle 

identification and fine-grained categorization. THS-10 is a locally 

produced dataset with strong intraclass and low interclass variance, 

making it ideal for performing fine-grained classification and the 

associated complexity. There are a total of 4,250 car photos in the 

collection, including 10 different makes and models (Honda City, 

Honda Civic, Suzuki Alto, Suzuki Bolan, Suzuki Cultus, Suzuki 

Mehran, Suzuki Ravi, Suzuki Swift, Suzuki Wagon R, and Toyota 

Corolla). Using the AU-AIR dataset, the authors of [2] describe 

innovative methods for traffic monitoring and surveillance based 

on state-of-the-art and widely used DL object identification models 

(Faster-RCNN, SSD, YOLOv3, and YOLOv4). Due to the extreme 

inequity present in this data set, an additional 500 photos were 

harvested by web-mining methods. Twofold is the originality of 

this work's contribution. Firstly, this article provides a rigorous 

scholarly explanation for why ground-view photos are not suitable 

for aerial object recognition. Furthermore, the efficacy of these 

algorithms has been examined by conducting a regress 

comparison. On the Analytics Vidhya Emergency Vehicle dataset, 

[3] examined the results of eight different CNN architectures. The 

goal of [4] is to provide a Decision-Tree enabled technique driven 

by Deep Learning for extracting anomalies from traffic cameras 

while precisely predicting the beginning and end times of the 

anomalous occurrence. Anomaly detection and analysis were part 

of their methodology when a detection model was developed. Our 

detection model was built on top of YOLOv5. [5] In their study, 

they offer a novel method for categorizing vehicles in order to shed 

insight on the difficulties associated with sorting unbalanced data. 

The datasets are first compiled from two sources: the MIOvision 

Traffic Camera Dataset and the Beijing Institute of Technology 

Vehicle Dataset. In order to improve the quality of the gathered 

vehicle photos and to recognize cars from the denoised images, 

adaptive histogram equalization and the Gaussian mixture model 

are employed. The feature vectors are then extracted from the 

identified cars using the Steerable Pyramid Transform and the 

Weber Local Descriptor. In the end, an ensemble deep learning 

approach is used to classify vehicles based on the retrieved data. 

To identify automobiles in traffic cam footage, [6] used Generative 

Adversarial Nets (GANs). The three-stage process for vehicle 

categorization that was created is as follows. In order to create 

adversarial samples for the uncommon classes, first GAN was 

trained on a gathered traffic dataset. After training an ensemble-

based Convolutional Neural Network (CNN) on the skewed 

dataset, the second step is to perform sample selection to get rid of 

the adversarial examples of poorer quality. Finally, the enhanced 

dataset was used to fine-tune the ensemble model using the chosen 

adversarial samples. Extensive trials revealed that the proposed 

GAN method performed well in vehicle classification on MIO-

TCD as measured by the Cohen kappa score, mean recall, 

precision, and mean precision. However, as the deeper networks 

are ready to converge, degradation difficulties would arise in the 

created GAN technique. A novel method for classifying vehicles 

based on a hierarchical multi-SVM (multi-Support Vector 

Machine) classifier was proposed in [7]. First, they built a 

hierarchical multi-SVM method for vehicle classification after 

extracting foreground objects from surveillance movies. In 

addition, the categorized cars' performance was monitored using a 

voting-based rectification strategy. This research aimed to 

construct a viable system for robust vehicle classification in a high-

volume traffic scene using the hierarchical multi-SVM approach. 

Since varied perspectives, shadows, and significant occlusion 

make the created approach useless in real-world busy traffic 

situations, the development was abandoned. In addition, [8] used 

the SVM classifier with the small YOLO to identify and classify 

vehicles. In the experimental phase, the created model's accuracy 

and recall were verified using the BIT Vehicle Dataset. The 

experimental results show that the built model accurately 

categorizes the vehicles in traffic videos that are being streamed in 

real-time. A significant drawback of this research was that SVM 

was a binary classifier, which only allows for binary 

categorization. In [9], the quicker R-CNN technology was used to 

create a system for classifying different kinds of vehicles. The 

created approach was tested using photographs of the actual traffic 

intersection taken in real time. To better recognize a vehicle that is 

partially obscured by changing lighting, camera orientation, and 

picture size, a revolutionary approach will be required in the future. 

A convolutional neural network (CNN) model for vehicle 

categorization was created in [10], and it features precise tuning 

and pretraining. To get the base model with connection weights, 

we pretrained it using GoogLeNet on the ImageNet Large Scale 

Visual Recognition Challenge 2012 (ILSVRC2012) dataset. An 

initial model was constructed, and then fine-tuned on the vehicle 

dataset to get an accurate classification. Van, minibus, truck, bus, 

automobile, and motorbike are only some of the six vehicle types 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(2), 232–244 |  234 

included in the gathered highway surveillance footage used in this 

research review. It was during the experimental phase that the 

vehicle dataset was analyzed for performance in terms of accuracy. 

Overfitting is a key issue with the established CNN model, and it 

also requires a lot of computing power. There are six essential steps 

in [11]'s novel framework for vehicle type classification: data 

preparation, vehicle detection, vehicle tracking, structure 

matching, feature extraction, and vehicle classification. We used 

noise reduction and color conversion to prepare the collected 

traffic surveillance footage for analysis. Moreover, the cars were 

picked out thanks to the employment of the Otsu thresholding 

technique and background reduction. The Kalman filter was then 

used to keep track of the moving cars. The feature vectors were 

extracted using the log Gabor filter and the Harrish corner detector, 

and then the information was input into an ANFIS for vehicle 

classification. Extensive experimental evidence demonstrated that 

the established framework significantly improved upon previous 

attempts at vehicle categorization in terms of mistake rate and 

accuracy. Dimensionality, a cause of the complexity of the model, 

is made worse by the established framework. As of [12], a novel 

semisupervised CNN architecture has been introduced for vehicle 

type categorization. Sparse Laplacian filtering is used in the 

designed architecture to extract detailed and unique vehicle 

information. The multitask learning input layer softmax classifier 

was trained to distinguish between different kinds of vehicles. The 

characteristics learnt by the semisupervised CNN architecture 

were shown to be sufficiently discriminatory in this literature 

review's challenging scene environments. To test the effectiveness 

of the designed architecture in terms of classification accuracy, 

extensive experiments were performed on the BIT Vehicle Dataset 

and a publicly available dataset. Since the semisupervised CNN 

architecture has many more layers, training takes more time. On 

the BIT Vehicle Dataset and the MIO-TCD, [13] proposed a novel 

densely linked single-split super learner and used versions for 

vehicle type categorization. The established model was 

straightforward; it did not need the use of complex reasoning or 

specially constructed features to improve on the existing state of 

the art in vehicle type categorization. The suggested model brings 

the vanishing gradient issue, which is a prominent worry in this 

literature review, to the complex datasets. Using a Principal 

Component Analysis Convolutional Network, [14] created a novel 

semisupervised model for vehicle type classification (PCN). 

Convolutional filters were used in the created model to extract the 

discriminative and hierarchical features. The proposed model 

outperformed the baseline in simulations because it is resistant to 

noise contaminations, lighting conditions, rotation, and translation, 

all of which might affect performance in real-world settings. A 

bigger number of training parameters are included in the created 

PCN model, which causes overfitting. Sparse-Filtered 

Convolutional Neural Networks with Layer Skipping (SF-

CNNLS) was designed for automobile classifiers by [15]. Using 

the SF-CNNLS methodology, which has three channels, this 

research aimed to extract discriminant and rich vehicle 

information. Also, information about the cars' color, brightness, 

and shape was collected from the three channels of each image to 

provide a complete picture of the vehicles' appearance. The created 

SF-CNNLS approach's performance was verified using a reference 

dataset, as detailed in the Experimental Results and Discussion. 

Truck, minivan, bus, passenger, taxi, automobile, and SUV classes 

were ultimately categorized using a softmax regression classifier. 

However, there may be a loss of vehicle type information due to 

the embedding of lower-resolution vehicle pictures in the created 

softmax regression classifier's deeper layers. For the purpose of 

classifying small, lightweight vehicles, [16] created a deep CNN 

method. In this paper, the authors use specificity, precision, and -

score to verify the generated model's performance on a real-world 

dataset. Despite its potential, the constructed model fell short in 

some conditions, including those with a known baseline, camera 

jitter classes, and adverse weather. Each published study describes 

in detail the approaches used, the datasets used, the benefits and 

drawbacks of applying the established algorithms to the task of 

vehicle type classification, and so on. This study proposes a novel 

ensemble deep learning method to enhance vehicle type 

categorization, which should help with the aforementioned 

problems. 

 

3. Problem Statement 

  According to the findings of a search of the relevant literature, 

there are two primary issues connected with the currently available 

deep learning-based algorithms for vehicle surveillance. 

Specifically, these issues are as follows: The first problem is the 

amount of time and computer processing that is required to cope 

with their enormous quantity of matrix products (due to their 

multilayer structures), as well as their sampling and second order 

optimization approaches, such as conjugate gradient. This is the 

primary worry. The second issue concerns the selection of the most 

suitable network topology, that is, choosing the optimum number 

of layers for the network as well as the number of neurons that 

should be placed in each of those levels. In this study, a unique 

approach to deep learning was devised in order to solve the 

problems that have previously been identified. 

 

4. Proposed Work 

 Vehicle surveillance has recently been an important study topic 

in the field of intelligent traffic systems. This is owing to the 

diverse range of applications that vehicle surveillance might have, 

including the monitoring of traffic flow statistics and individual 

vehicles. There have been many different ways established that use 

vehicle type categorization. These systems are often based on 

cameras, magnetic induction, or optic fibers. Because of the 

widespread implementation of traffic surveillance cameras, the 

image-based techniques have garnered a lot of interest in the 

computer vision field. Figure 1 presents the method of 

optimization and deep learning associated flow diagram.  
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Fig. 1 Schematic representation of the suggested methodology 

 

4.1 Dataset  

 The footage that is obtained by a surveillance camera that has 

been mounted on a xxxx is what is gathered for the purpose of data 

gathering. There are three movies total, and each one was filmed 

on a different day, resulting in different amounts of traffic and 

illumination. The road has a total of five lanes, and the traffic 

density is exceptionally high, with each car traveling at a speed that 

is somewhere in the middle. As may be seen in Figure 1, the front 

and somewhat side views of the vehicles that are present in the 

scenario. 

 

4.2 Data clustering and feature grouping 

 

Most variables have limited range, therefore the finite moments 

assumption seems sense. Take into account the possibility that 

each individual video is a random occurrence. The of the 

independent variables in a model can be predicted with full 

confidence in most cases, with the exception of seasonal and 

temporal trend data. This is the true regardless of whether or not 

the many, unrelated video data sources pertain to events that are 

fundamentally asynchronous. This means that the various video 

sources must be linked in order to provide efficient monitoring. So, 

let's go back to our generic model and pretend we don't have any 

data on  𝑃𝑖𝑡 and  𝑄𝑖𝑡. Only data from the 𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒𝑠1. 

 

         𝑄𝑡 = ∑ 𝑄𝑖𝑡,
𝑀
𝑖=1 𝑃𝑡 = ∑ 𝑃𝑖𝑡,

𝑀
𝑖=1                          (1) 

 

To solve this issue, we need to provide a meaningful connection 

between  𝑃𝑖𝑡 and  𝑄𝑖𝑡. The joint distribution of 

𝑃1𝑡, … . , 𝑃𝑀𝑡, 𝐵1𝑡 , … . , 𝐵𝑀𝑡, 𝑉1𝑡 , … . , 𝑉𝑀𝑡
5 implies a conditional 

density of𝑃𝑖𝑡, 𝐵𝑖𝑡 ,and𝑉𝑖𝑡given 𝑃𝑡 , denoted by𝑒𝑖𝑡(𝑃𝑖𝑡, 𝐵𝑖𝑡, 𝑉𝑖𝑡|𝑃𝑡). 

As a result, the definition of the macro-function is,  

 

𝐹(𝑃𝑡|𝑄𝑡) = ∑ 𝐹[𝐿𝑖(𝑃𝑖𝑡, 𝐵𝑖𝑡, 𝑉𝑖𝑡)|𝑃𝑡]
𝑀
𝑖=1                            

=∑∫𝑆𝑖𝑡

𝑀

𝑖=1

𝐿𝑖(𝑃𝑖𝑡, 𝐵𝑖𝑡, 𝑉𝑖𝑡)𝑒𝑖𝑡(𝑃𝑖𝑡, 𝐵𝑖𝑡, 𝑉𝑖𝑡|𝑃𝑡)𝑐𝑃𝑖𝑡𝑐𝐵𝑖𝑡𝑐𝑉𝑖𝑡 

= ∑ Γ𝑖𝑡(𝑃𝑡) =
𝑀
𝑖=1 Γ𝑡(𝑃𝑡),                                                    (2) 

where 𝑆𝑖𝑡, represents the appropriate integrated area 

Γ𝑖𝑡(𝑃𝑡) = ∫𝑆𝑖𝑡
𝐿𝑖(𝑃𝑖𝑡, 𝐵𝑖𝑡 , 𝑉𝑖𝑡)𝑒𝑖𝑡(𝑃𝑖𝑡, 𝐵𝑖𝑡 , 𝑉𝑖𝑡|𝑃𝑡)𝑐𝑃𝑖𝑡𝑐𝐵𝑖𝑡𝑐𝑉𝑖𝑡 

After the data has been integrated, the GMCA algorithm is used to 

categorize the characteristics into groups. The goal is to divide a 

dataset of training samples, {𝑦𝑚}𝑚=1
𝑀 , into L categories, where m 

is the dimension of the dataset. We learn a latent feature 𝑤 ∈

 𝕊𝑁×1 for each training sample y. Our working hypothesis is that 

the latent characteristics have a Gaussian mixed distribution. To 

specify which Gaussian component contains the latent feature w, 

we add the binary vector 𝑑𝜖{0, 1}𝑙×1. Specifically, we assume a 

Gaussian mixture distribution for our data in this model. In 

particular, we model the generation process for a sample y as 

follows. 

𝑡(𝑑; 𝜋) = ∏ 𝜋𝑙
𝑑𝑙𝐿

𝑙=1                                                     (3) 

𝑡(𝑤|𝑑𝑙 = 1) = ℳ(𝜇𝑙 , 𝑑𝑖𝑎𝑔(𝜎𝑙
2)) 

𝑡𝜃(𝑦|𝑤) = {
𝐵𝑒𝑟(𝜇𝑦)        𝑖𝑓 𝑦 𝑖𝑠 𝑏𝑖𝑛𝑎𝑟𝑦

ℳ(𝜇𝑦 ,⋋ 𝐽)       𝑦 𝑖𝑠 𝑟𝑒𝑎𝑙 − 𝑣𝑎𝑙𝑢𝑒𝑑
     (4) 

If we designate the lth element of 𝑑𝑙 and 𝜋𝑙 and the lth entry 

of as  d and π, then we can say that 𝜋𝑙  satisfies 

∑ 𝜋𝑙 = 1,𝐿
𝑙=1 𝜇𝑙and 𝜎𝑙

2 . Here, 𝜇𝑦 = ℎ(𝑤𝑚; 𝜃), J, J is the 

identity matrix, is a fixed parameter, and h is a network 

whose parameters may be adjusted by training. Maximum a 

posterior (MAP) of latent variables and maximum 

likelihood estimate (MLE) of parameters are challenging to 

discover by directly solving the generative model. To solve 

this problem, we introduce a new distribution 𝑡𝜃(𝑤, 𝑑|𝑦), 

selected from a narrow class and parametrized by a 

learnable parameter φ, that approximates the posterior 

distribution 𝑣𝜙(𝑤, 𝑑|𝑦). In particular, we suppose that 

𝑣𝜙(𝑤, 𝑑|𝑦)may be written as 𝑣𝜙(𝑤, 𝑑|𝑦) =

𝑣𝜙1(𝑤, 𝑑|𝑦)𝑣𝜙2(𝑑|𝑤). We then provide a definition for,  

 

𝑣𝜙1(𝑤|𝑦) = ℳ(�̃�, diag(�̃�2))                                     (5) 

𝑣𝜙2(𝑑|𝑤) = Multinominal (�̃�)                            (6)  

Where 

[�̃�, 𝑙𝑜𝑔(�̃�2)] = 𝑒1(𝑦; 𝜙1) 
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�̃� = 𝑒2(𝑤; 𝜙2) 

Note that 𝑒1 and 𝑒2 here represent neural networks with 

parameters 𝜙1 and 𝜙2, respectively. This model utilizes a 

pair of neural networks. The first, denoted 𝑒1, uses the 

training samples to infer the latent distributions, and the 

second, denoted 𝑒2, determines the likelihood that the latent 

features are distributed along a given Gaussian component. 

The parameters can be estimated within the generative 

model and inference model framework by means of 

maximizing the log-likelihood function, i.e. 
𝑚𝑎𝑥
𝜙, 𝜃 ∑ 𝑖𝑛 𝑡𝜃(𝑦𝑖)

𝑀
𝑖=1                                             (7) 

After this we will see that the log-likelihood function can 

accommodate the function 𝐻(𝜙, 𝜃, 𝑦𝑖 , 𝑦𝑗). A training 

sample yi has a log-likelihood ln𝑡𝜃(𝑦𝑖)that may be broken 

down into its component parts.   

 

𝐼𝑛 𝑡𝜃(𝑦𝑖) = 𝐿𝐾(𝑣𝜙(𝑤, 𝑑|𝑦𝑖)||𝑡𝜃(𝑤, 𝑑|𝑦𝑖)) +

𝐹𝑞𝜙(𝑤, 𝑑|𝑦𝑖)
[𝐼𝑛

𝑡𝜃(𝑦𝑖,𝑤,𝑑)

𝑣𝜙(𝑤, 𝑑|𝑦𝑖)
]                                 (8) 

Remarkably, if we substitute, 

𝑣𝜙(𝑤, 𝑑|𝑦𝑖) with 𝑣𝜙(𝑤, 𝑑|𝑦𝑗)  

𝐼𝑛 𝑡𝜃(𝑦𝑖) = 𝐿𝐾(𝑣𝜙(𝑤, 𝑑|𝑦𝑖)||𝑡𝜃(𝑤, 𝑑|𝑦𝑖)) +

𝐹𝑞𝜙(𝑤, 𝑑|𝑦𝑖)
[𝐼𝑛

𝑡𝜃(𝑦𝑖,𝑤,𝑑)

𝑣𝜙(𝑤, 𝑑|𝑦𝑗)
]                              (9) 

“Averaging the equation (10) and (11), we have” 

𝐼𝑛 𝑡𝜃(𝑦𝑖) = 𝐻(𝜙, 𝜃, 𝑦𝑖 , 𝑦𝑗) +
1

2
(𝐾(𝜃, 𝜙; 𝑦𝑖) +

𝐾𝐾(𝜃, 𝜙; 𝑦𝑖 , 𝑦𝑗))                                            (10) 

Where 

𝐾(𝜃, 𝜙; 𝑦𝑖) = 𝐹𝑣𝜙(𝑤,𝑑|𝑦𝑖) [𝐼𝑛
𝑡𝜃(𝑦𝑖 , 𝑤, 𝑑)

𝑣𝜙(𝑤, 𝑑|𝑦𝑗)
] 

𝐾(𝜃, 𝜙; 𝑦𝑖 , 𝑦𝑗) = 𝐹𝑣𝜙(𝑤,𝑑|𝑦𝑖) [𝐼𝑛
𝑡𝜃(𝑦𝑖 , 𝑤, 𝑑)

𝑣𝜙(𝑤, 𝑑|𝑦𝑗)
] 

Remember the restriction that ∑ 𝑧𝑖𝑗 = 1,𝑗  we can rewrite the 

objective function as 
𝑚𝑎𝑥
𝜙, 𝜃

1

2
∑ ∑ 𝑧𝑖𝑗

𝑀
𝑗=1 (𝐾(𝜃, 𝜙; 𝑦𝑖) + 𝐾(𝜃, 𝜙; 𝑦𝑖 , 𝑦𝑗))

𝑀
𝑖=1 (11) 

Similarly, 𝐾(𝜃, 𝜙; 𝑦𝑖 , 𝑦𝑗) can be rewritten as 

𝐾(𝜃, 𝜙; 𝑦𝑖 , 𝑦𝑗) = 𝐹𝑣𝜙(𝑤|𝑦𝑖)𝑣𝜙(𝑑|𝑤) [𝐼𝑛
𝑡𝜃(𝑦𝑖 |𝑤)𝑡(𝑤|𝑑)𝑡(𝑑)

𝑣𝜙(𝑤|𝑦𝑗)𝑣𝜙(𝑑|𝑤)
] 

(12) 

and ultimately assessed by, 𝐾(𝜃, 𝜙; 𝑦𝑖 , 𝑦𝑗) ≈

∑ 𝑦𝑐
𝑖𝑙𝑜𝑔𝜇𝑦𝑗|𝑐 + (1 − 𝑦𝑐

𝑖) log (1 − 𝜇𝑦𝑗|𝑐) −
𝐶
𝑐=1

∑ 𝛾𝑖𝑙𝐿
𝑙=1 ∑ (𝑙𝑜𝑔𝑁

𝑛=1 𝜎𝑙
2|𝑛 +

�̃�𝑗
2|𝑛

𝜎𝑙
2|𝑛
+

(�̃�𝑗|𝑛−𝜇𝑙|𝑛)

𝜎𝑙
2|𝑛

2

) +

∑ 𝛾𝑗𝑙𝐿
𝑙=1 𝑙𝑜𝑔

𝜋𝑖𝑙

𝛾𝑗𝑙
+

1

2
∑ (1 + 𝑙𝑜𝑔𝑁
𝑛=1 �̃�𝑗

2|𝑛)                (13) 

Where 

𝜇𝑦𝑗 = ℎ(𝑤𝑗 ; 𝜃) 

𝑤𝑗 = �̃�𝑗 + �̃�𝑗𝑜𝜖 

For instance, the element of the affinity matrix with the 

Gaussian kernel is defined as 

𝑧𝑖𝑗 =

{
 

 1

𝑏𝑖
exp(−

‖𝑦𝑖 − 𝑦𝑗‖2
2

2𝑟𝑖
2 )           𝑖𝑓𝑦𝑗𝜖𝛭(𝑦𝑖)

0,                                                𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(14) 

where 𝑏𝑖   is a normalizer that sets ∑ 𝑧𝑖𝑗𝑧 = 1  and 𝑟𝑖is a 

predefined scalar. 𝛭(𝑦𝑖) denotes the set consisting of the 

nearest associated features of 𝑦𝑖 . 

The pixel characteristics may finally be categorized. 

 

4.3 Feature selection 

All the formulae from chaos theory and the vortex search 

optimization technique are brought together in the suggested 

model. The objective is to identify the most advantageous 

aspects of the automobile occurrence. The following 

phrases describe these locations: 

➢ Firstly, let us declare the generation of potential answers inside 

the search region. 

➢ For the second state, if the answer is too far beyond the 

acceptable range, these transformations may be applied to bring it 

inside the bounds. 

➢ Third, the MCVO method uses the retrieved characteristics 

from the previous step to narrow the search area using the reverse 

gamma function and other specialized features. The chaos map is 

used to brainstorm potential answers in this approach. Using a 

Gaussian chaotic distribution and a vortex search method, a 

number of neighbor solutions D p (r), where p specifies the 

iteration index and is p=0 in the beginning stages, were constructed 

arbitrarily close to the initial center _0 in C-dimensional space.. 

Here, D0 (s) = { r1, r2, . . rn} n = 1, 2, 3, …, the solutions are denoted 

by m, and the total number of possible solutions is also denoted by 

m. As shown in Eq. (15), the suggested technique is expressed as 

a formula. 

t(y|μ) =
1

√2πc
exp {−

1

2
(dn − μ)T

−1
∑(dn − μ)

}          (15) 

where c stands for the number of dimensions, dn is the c × 

1  vector of a specialized variable, µ  is the c1 vector of the 

sample mean (center), and is the covariance matrix. These 

mappings are used to bring the solution within the required 

range if it is found to be outside. The present circle's center, 

μ0, is swapped out with a solution (the best one), rϵD0(r), 

which is chosen and remembered during the selection step. 

It is important to verify that the candidate solutions fall 

inside the search parameters before moving on to the 

selection step. This is achieved by relocating the solutions 

outside the limits within them, as in Eq (15). Eq. describes 

the MCVO when chaotic sequences are included (15). Eq. 

(15) represents the value of the chaotic map at the i-th 

iteration, denoted by Dn(i). 

 rl
i =

{
  
 

  
 
Dni ∗  (upperlimitlowerlimiti

i ) + lowerlimiti, rl
i

< lowerlimiti

1
lowerlimiti ≤ rl

i < upperlimiti

Dni ∗ (upperlimitlowerlimiti
i ) + lowerlimiti , rl

i

< lowerlimiti

(16) 

 The inverse gamma function and DNs were used to narrow 

the search area. With each iteration of the MCVO, the radius 
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is shrunk using the inverse incomplete gamma function. Eq. 

gives the incomplete gamma function (17). 

γ(y. a) = ∫ f−1pb−1cpb > 0
dn

0
                                  (17) 

“where b>0 is known as the shape parameter and dn ≥ 0 is 

a specialized variable”. 

  

. In this work, we use the chaos function to evaluate the 

appropriateness of the chosen characteristics. It was via trial 

and error that the L and distance strategy was chosen. The 

number of features, K m, is the sum total, and the weighting 

factor takes on values between zero and one. The value of 

may be adjusted to modify the relative weights of 

characteristics used for categorization and the features 

actually chosen. The weight factor β is often set to values 

close to 1 since increasing accuracy is the main aim of any 

classifier. The value 0.8 was used in this study. The optimal 

strategy is one that simultaneously optimizes for 

classification accuracy and feature selection complexity. 

Fit = maximize (a + β × (1 −
Km

Kr
))                        (18) 

Atlast specialized features are isolated. 

 

4.4 Classification 

In this case, the recommended model was utilized to determine 

whether or not the car was under surveillance. The proposed 

HBPBNN has nodes with three levels, including an input layer, 

hidden layer(s), and an output layer. 

“Where, 

𝑌 = 𝑌𝑖]𝑖=1
𝑀 , 𝑖𝑡ℎ= no. of input vector, where 𝑌𝑖 =

{𝑌1, 𝑌2…𝑌𝑚} is 𝑖𝑡ℎ the input with m no. of feature Repeat 

that for each epoch”  

The activation function is applied to the computed link 

weights between the input layer nodes and the hidden layer 

nodes, which take the input data and represent the 

connection between them as weights. The activation 

function uses the weighted sum plus a bias to determine 

whether or not a certain node should be activated. 

 
Fig.2 Architecture of the suggested network 

 

“The net input to the neuron 𝑤1 at layer k = 1 is computed 

as in Equation (19) by using weight 𝑍1, input 𝑦1 and bias 

𝑎1. The net output 𝐵1 has been computed  by using Relu 

activation function on 𝑤1". 

𝑊1 = 𝑍1 × 𝑌 + 𝑎1                                                           (19) 

𝐵1 = 𝑟𝑒𝑙𝑢(𝑊1)                                                         (20) 

Forward propagation in HBPBNN involves layer 1's net 

output B1 being computed and then passed on to layer k in 

the form of Equation (19) and Equation (20). 

𝐵𝑘−1 = 𝑟𝑒𝑙𝑢(𝑊𝑘−1)                                              (21) 

𝑊𝑘 = 𝑍𝑘 × 𝐵𝑘−1 + 𝑎1                                          (22) 

The status of output was demonstrated as follows, 

𝑜𝑘 = 𝐵𝑘 = 𝜎(𝑊𝑘)                                                    (23) 

The HBPBNN learns by minimizing the loss 

gained (Equation (24)) from the network at the output𝑜𝑘 =

𝐵𝑘 = 𝜎(𝑊𝑘  . Figure 2 shows how the HBPBNN's 

parameters are tuned by backpropagation learning, where 

the gradient of the loss function 𝜅  with respect to the 

parameters (Equation (24)) is determined. Equations (21), 

(22), and (23) may be used to calculate the gradient of with 

regard to the values of 𝑍𝑘 , 𝑎𝑘 ,and 𝐵𝑘−1, respectively (where 

P is transpose matrix).  

𝜅 = −
1

𝑛
∑ (𝑥𝑖 log(𝑜𝑖) + (1 −𝑛
𝑖=1

𝑥𝑖)log (1 −𝑜𝑖))                                                                 (24) 

Δ𝑍𝑘 =
𝜕𝜅

𝜕𝑍𝑘
=

1

𝑛
𝜕𝑊𝑘𝐵𝑘−1𝑃                          (25) 

Δ𝑎𝑘 =
𝜕𝜅

𝜕𝑎𝑘
=

1

𝑛
∑ 𝜕𝑊𝑘,𝑖𝑛
𝑖=1                             (26) 

Δ𝐵𝑘−1 =
𝜕𝜅

𝜕𝐵𝑘−1
= 𝑍𝑘𝑝𝜕𝑊𝑘,𝑖 

“Then the parameters 𝑊𝑘 , 𝑎𝑘 , and 𝐵𝑘−1 are 

updated from the obtained gradients Δ𝑍𝑘 , Δ𝑎𝑘  , and 
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Δ𝐵𝑘−1 as presented in Equations (24), (25), and (26), 

respectively” 

𝑊𝑘 = 𝑊𝑘 − 𝜂 × Δ𝑍𝑘                                (27) 

𝑎𝑘 = 𝑎𝑘 − 𝜂 × Δ𝑎𝑘                                     (28) 

𝐵𝑘−1 = 𝐵𝑘−1 − 𝜂 × Δ𝐵𝑘−1                         (29) 

 

The suggested networks use a nonlinear activation 

function (Relu) to calculate the next layer's output from the 

weighted inputs based on the output and bias of the layer 

below it. In deep learning models, loss functions represent 

the cost function to be minimized. For multilabel 

classification, the traditional loss function is the categorical 

cross-entropy. The neural network's approximation of a yes 

or no answer is determined using activation functions. 

Depending on the range of the activation function, it then 

maps the succeeding characteristics. The sigmoid activation 

function is used to make the model's final prediction. 

Dropout of nodes is used to prevent overfitting. Within the 

context of dropout, randomly selected neurons are ignored 

during a training phase. The person is "dropped out" of the 

program without any explanation. That's because the 

weights update isn't applied to the neuron during reversible 

propagation, and it also represents the fact that the forward 

propagation is temporally passive with respect to the 

activation function of downstream neurons. This allows the 

network to train more rapidly, have less overfitting, and 

provide better predictions using deep learning. The 

normality of the nodes in the network structure makes them 

more resistant to the inputs, and the dropout of nodes has an 

effect on the simulation of many networks with diverse 

network structures. 

 

 

Algorithm: HBPBNN 

 

“Input: Size of feature space, training set, size of feature subspace, feature set, number of feature subspace, one test 

sample, and number of classes.  

Output: Classification of vehicle surveillance data. Process:  

For y = {𝑌1, 𝑌2…𝑌𝑚}: classes Label the samples of i th class.  

Train the feature subsets using HBPBNN . 

 Train {70%) Test {30%) 

       Neuron {code input} 

             Neural size{Number of nodes} 

Ranking feature set utilizing  

𝑊1 = 𝑍1 × 𝑌 + 𝑎1 ← 𝑤1’s last ranked featur 

Begin  

      Relu{ 

𝐵1 = 𝑟𝑒𝑙𝑢(𝑊1) 

} 

          For 

                   output 𝐵1 

                   forward propagation𝐵𝑘−1 = 𝑟𝑒𝑙𝑢(𝑊𝑘−1) 

             Else        

𝑊𝑘 = 𝑍𝑘 × 𝐵𝑘−1 + 𝑎1 

Out { 

𝑜𝑘 = 𝐵𝑘 = 𝜎(𝑊𝑘) 

} 

Gradient comput{𝑍𝑘 , 𝑎𝑘 ,and 𝐵𝑘−1} 

       

Δ𝑍𝑘 =
𝜕𝜅

𝜕𝑍𝑘
=
1

𝑛
𝜕𝑊𝑘𝐵𝑘−1𝑃 

Δ𝑎𝑘 =
𝜕𝜅

𝜕𝑎𝑘
=
1

𝑛
∑𝜕𝑊𝑘,𝑖

𝑛

𝑖=1

 

Δ𝐵𝑘−1 =
𝜕𝜅

𝜕𝐵𝑘−1
= 𝑍𝑘𝑝𝜕𝑊𝑘,𝑖 

For  

    Updation; 

                

𝑊𝑘 = 𝑊𝑘 − 𝜂 × Δ𝑍𝑘 
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𝑎𝑘 = 𝑎𝑘 − 𝜂 × Δ𝑎𝑘 

𝐵𝑘−1 = 𝐵𝑘−1 − 𝜂 × Δ𝐵𝑘−1 

 End for  

End 

 

Calculate the value of counter Output. 

      Return 

           End 

                  End” 

 

 

5. Performance Analysis 

An Intel Core i3-3370 computer with 8 GB of RAM and a 3.60 

GHz clock speed was used for the test. Python, which is free and 

widely used, was chosen to develop the method because of its 

extensive collection of pre-existing modules. The suggested work 

is implemented in Python 3.7 with the help of the CV2 packages 

for computer vision. Images and movies may be prepared for 

viewing and edited afterwards with the help of the tools available 

in the CV2 library. The little resources required to complete the 

process contribute to its low cost.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.3. Clustered input and vehicle selection 

 

The sample input and the process of the video data grouping along 

with the vehicle selection was done as depicted in figure 3.Here 

from the retrieved video the single hub was developed for fusing 

the data as a whole. Then the vehicle shows abnormal behavior 

was selected for  further steps of surveillance. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.4 . Simulated output 

The simulated output and the status of the vehicle violence 

behavior was demonstrated in figure 4.Here the selected vehicle 

seems to be violating the traffic rules. 
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Fig.5. Epochs Vs. Loss 

The loss function, which is created from all of the data in an 

epoch, is a quantitative measure of loss for the whole epoch. When 

building an iterative curve, some information must always be lost. 

The resulting curve demonstrates that, in comparison to other 

approaches, classifier training, validation, and testing losses are 

relatively low. If there is a little difference between the training 

loss and the validation loss, our model is probably underfitted. By 

expanding the size, the training loss might be minimized (either the 

number of layers or the raw number of neurons in each layer). The 

information utilized to estimate the loss is shown in Figure 5. The 

suggested technique outperforms previous methods because it 

experiences far less severe levels of level loss. 

.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.6. Violence rate prediction 

 

According to the data shown in figure 6, the vehicle that was 

chosen exhibits a marginal breach of the regulations governing 

traffic. 

 

In order to demonstrate that the proposed method is effective, it 

may be contrasted with the many mechanisms that are already in 

place [5]. The suggested system's accuracy, precision, and recall 

are evaluated in order to determine how well it functions.  

Accuracy 

It calculates the percentage of vehicles with an accurate violent 

status classification. It determines the degree to which the findings 

correspond to the real ground truth results. 

ACCU =(TP+TN)/(TP+TN+FP+FN)                                 (30) 

 

Precision 

By removing aberrant vehicle status from the dataset, it assesses 

how accurate the behavior of the proposed approach is and uses 

that information. 

Precision= TP/(TP+FP)                                                 (31)            

 

Recall 

The ratio of correctly predicted instances and all instances. 

 Recall= TP/(TP+FN)                                                     (32)                                                                  

 

It establishes the degree to which the actual results coincide with 

the predictions that were developed. The total number of 

anticipated positives and projected negatives should be multiplied 

by the sum of all the actual positives and negatives, and then that 

number should be divided by the total. In contrast, the accuracy of 

the strategy that was recommended is 99.5%, which is higher than 

the accuracy of the processes that are being employed at the 

moment (see Figure 7)  
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Fig.7.  Accuracy rate analysis 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

Fig.8.  Recall rate analysis 

 

The extent to which a classifier is able to properly identify all 

aberrant surveillance data that does not have a problem with their 

condition is referred to as their recall. In this particular scenario, as 

seen in figure 8, the proposed processes had a vast range of recall, 

which reached an impressive 99.8 percent. This percentage was 

fairly high in compared to other mechanisms that were previously 

in place

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.9. Precision rate analysis 
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As of from the figure 9 the suggested RSDDTC technique have 

the high rate of precision (99.7%) over the vehicle surveillance is 

very high that that of the  other existing mechanisms. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.10. AUROC analysis 

 

The plan outlined in that section takes into account the global 

performance measures shown in Figure 10. A value of 0.98 is 

shown for AUROC in Figure 10. The area under the curve 

(AUROC) score may be used to demonstrate that the classifier did 

a good job of correctly identifying the violation event. Each point 

on the ROC curve represents a pair of sensitivity and specificity 

values, which may be used to define cutoffs for decision-making 

purposes. ROC curves are often employed in medical diagnostics. 

The area under the ROC curve is a measurement that may be used 

to determine how well a parameter can differentiate between 

different types of activity..  

 

Table1 Comparative analysis for False detection rate (FDR) with false acceptance rate (FOR)

 

“Feature extraction”   “Classifier” “FDR(%)” “FOR (%)” 

 “MSVM” 22 18.03 

“KNN” 12 17 

“SPT” “DNN” 9.72 10.74 

 “LSTM” 8 3.20 

 “Ensemble” 6 1.29 

 “MSVM” 11.91 9.5 

 “KNN” 6.03 5.93 

“WLD” “DNN” 3 3.07 

 “LSTM” 2.09 1.02 

 “Ensemble” 1.72 0.86 

 “MSVM” 4 3.29 

 “KNN” 1.20 1.95 

“Hybrid (SPT + WLD)” “DNN” 0.98 0.83 

 “LSTM” 0.79 0.35 

 “Ensemble” 0.44 0.32 

“MCVO”(Proposed) “HBPBNN (proposed)” 0.2 0.2 
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Table 2 Performance metrics comparative analysis 

 

 

“Dataset” “Precision (%)” “Recall (%)” “Accuracy (%)” 

“GAN-based deep ensemble technique”  “MIO-TCD” 96.41 — — 

“Tiny YOLO with SVM”  “BIT Vehicle” 97.90 99.60 — 

“Semisupervised CNN model” “BIT Vehicle” — — 88.11 

“PCN with softmax classifier  “BIT Vehicle” — — 88.52 

“TC-SF-CNNLS  “BIT Vehicle” 90.52 90.41 93.80 

 “MIO-TCD” 99.12 99.69 99.13 

“Ensemble deep learning technique” “BIT Vehicle” 98.24 99.72 99.28 

 “Combined” 99.27 99.77 99.32 

“HBPBNN (proposed)” “Real time” 99.7 99.8 99.5 

 

According to an analysis of Table 1 and 2, the optimization and 

deep learning methodology combined to provide a mini- mum 

FDR of 0.2% and a FOR of 0.2%, which are efficient in 

comparison to other classification methodologies. 1000 vehicle 

images are used for testing, and 7000 vehicle images are converted 

from 5 security cameras and used in the real-time vehicle dataset. 

On the BIT Vehicle Dataset, the proposed ensemble deep learning 

approach is compared graphically in terms of FDR and FOR. The 

suggested ensemble deep learning approach on the Vehicle Dataset 

also requires 1.2 seconds to execute for each frame. Additionally, 

the simulation results showed that the created model had a 

classification accuracy of 99.5%. When compared to other 

currently used methods, the created methodology performs very 

well throughout the testing phase in terms of recall, precision, and 

accuracy. 

 

6. Conclusion  

An approach based on deep learning, which has previously been 

used largely in traffic surveillance systems, is suggested to be 

applied for vehicle surveillance in this article. At this point in time, 

video monitoring is being used for a variety of extra purposes all 

over the globe during the COVID-19 pandemic. Our software 

makes use of a deep learning technique, which can be broken down 

into a number of distinct stages, including feature extraction and 

categorization. Within the scope of this study, MCVO feature 

descriptors are used to extract active feature vectors in order to cut 

down on training time, enhance classification accuracy, and lessen 

the likelihood of overfitting issues within the context of the deep 

learning methodology. In this investigation, the deep learning 

methodology is used to categorize various cars according to their 

features. When compared to other classification methods, the 

performance of the deep learning methodology in terms of 

precision, recall, accuracy, FDR, and FOR was superior to that of 

the other classification methods. This was shown in the 

Experimental Results and Discussion section. The suggested 

method exhibited an increase in classification accuracy of no more 

than 10 percentage points when compared to the benchmark 

approaches that are already in use. The suggested method for 

enhancing vehicle type identification and classification will 

involve, in further work, the use of a segmentation algorithm that 

is based on clustering. In addition to this, a good intelligent 

transportation system places a strong focus on three-dimensional 

modeling, vehicle tracking, and occlusion handling. 
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