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Abstract: Pipelines are commonly utilized to transmit chemical fluids over thousands of kilometres all over the globe. The pipes are 

designed to withstand a variety of environmental loading conditions, providing safe and durable delivery from the manufacturing 

location to the coast or distribution station. Leaks in piping systems, on the other side, are among the primary causes of numerous 

damages for pipeline operators and the surroundings. Pipeline failures may cause significant environmental catastrophes, human deaths, 

and financial losses. Significant research has been devoted to corrosion and localization using alternative strategies to avoid this threat 

and preserve an efficient and proper transmission infrastructure. This paper proposed a corrosion detection and prediction system using 

Internet of Things (IoT) and machine learning techniques. The system collaborates with two different methodologies, such as IoT utilized 

to collect data from underwater pipelines and various learning algorithms to identify corrosion possibilities. We have used analogue 

sensors such as thickness, GPS, pH, etc., to capture the current event. Based on pH value, impact of pipe thickness for a specific period 

has been analysed depending on learning algorithm. The standard defines policy rules and has used a semi-supervised learning algorithm 

for validation. The Q-learning based classification algorithm generates reward and penalty for each event and, based on that, defines the 

possibility of corrosion. A variety of extraction of features and selection methods were used during this research using the IoT model. An 

extensive experiment analysis of the proposed algorithm obtains higher classification and detection accuracy over the traditional machine 

learning classification algorithms. 

Keywords: Underwater pipelines, semi-supervised machine learning, feature extraction and feature selection, internet of things, cloud 

database. 

1. Introduction 

The oil and gas business, commonly known as that of the 

world's greatest energy generator, is one of the world's 

major sources of income. Oil and gas are transported to 

various places through huge and sophisticated offshore 

pipeline networks. Natural gas pipes under the sea were 

built in the late 1900s and are still in operation today [1]. 

Corrosion and leaking are more likely to happen as the 

pipeline network grows and ages, and in recent decades, 

the numbers of leaks reported are more than double 

compared to past years [2]. Because of the potential for 

contaminating leaks into maritime environments from 

gas pipelines, continual pipeline inspection and the 

ability to pinpoint the specific gas leak are critical. The 

primary goal of undersea pipeline leakage detection is to 

limit pollution, save precious energy resources, avoid 

unpleasant catastrophes, and assure the pipeline's safe 
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operation. The majority of undersea pipeline problems, 

according to significant study, are caused by equipment 

breakdown, construction faults, corrosion, temperature, 

external pressure, and harbour damage [3]. 
 

Fig. 1: Corroded pipe example in geometric modelling 

In pipeline representations either with or without 

weathering defects are created throughout the modelling 

phase to investigate the impact of corrosion weaknesses 

on crack formation when they interact. The simulated 

pipeline is made of API 5L X70 metal. The pipeline's 

outer diameter is 914.4 millimetre, and the minimum 

wideness is 15.875 millimetre. The operating pressure is 

assumed to be 1 Mega Pascal for modelling purposes. A 

semi-elliptical structure with a diameter of 15.2 

millimetres and a crack thickness of 2–12 millimetres 

represents the stress fracture. Structural analysis may be 
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used to get the SIF values for the lowest part and edge 

point. The huge pressure in the pipe is 1 Mega Pascal. 

Cuboid corrosion faults emerge on the pipeline's 

outermost layer at the same time, increasing the radial 

gap in between fracture centre and the corrosion centre 

from 150 -500 millimetres. The thickness of the 

corrosion imperfection varies between 2 - 14 millimetres, 

with every increment of 1 millimetre. The geometrical 

modelling of a degraded pipeline is shown in Figure 1, 

while the finite element model generated in this study is 

shown in Figure 2. 

Variables have varied effects in different sectors, and 

serious repercussions might be impacted by a variety of 

factors. Pipeline transportation inspection may be done 

in a variety of ways, and new ones are being created all 

the time. Internal (or software based) techniques, 

peripheral (or equipment) methodologies, and 

Temporary Test Based (TTB) methods are the three 

types of methods. In pipes, pressure ripples are formed, 

and the leaking is detected by monitoring fractional 

introspective of pressure waves in relation to the rupture 

[4, 5]. Depending on instantaneous pressure wave 

properties, transitory test based strategies are used to 

diagnose and evaluate leaks. Intrinsic leak detection 

methods are costly, and they frequently fail to detect 

leakage and processes on long tubes. Except for the 

acoustic approach, the effectiveness of external methods 

is dependent on water turbulence and flow, which are 

both costly and ineffective in most circumstances [6,7]. 

Because of the maximum adsorption of detectable light 

in sea water, optical cameras have found it tough. If not 

inconceivable, to investigate underwater pipelines; sound 

waves methods are usually considered being the most 

cost effective and having the widest coverage range for 

submerged quality inspection and backflow prevention. 

Gas bubbles are formed when a gas explosion develops 

underneath, generating auditory sounds. Underwater 

acoustic emissions are quickly propagated, and even a 

little breach may create a strong signal [6,8]. The sonar 

system's long-range capability and significant acoustic 

impedance difference among both gas bubbles and 

surrounding seawater makes it an effective instrument 

for inspecting seabed pipelines. 

 

 

 
 

Fig. 2: The pipeline grid division. Refinement of the corrosion defect grid in part and Refinement of the grid at the crack 

This paper's significant contribution is that a novel leak 

detection technique is proposed based on IoT model- 

based thickness of pipes. The thickness analogue sensor 

monitors the lines every six hours and saves the event 

information in the global dataset. According to semi- 

supervised classification algorithm, calculate the 

prediction weight is based on generated event. Finally, 

prediction of the corrosion possibility and creation of the 

alarm sensor with location details where corrosion is 

possible is done. The respective location has been traced 

based on a GPS sensor. To lessen economic and 

environmental repercussions, the developed technology 

can be utilized to optimize leakage detection systems and 

facilitate automated pipeline assessment. The paper's 

primary goals can be stated as follows: 

• Effective early prediction of corrosion for 

underwater oil and gas pipelines using IoT and 

Semi-supervised machine learning methods. 

• It gives correct prediction with location details and 

the current thickness of pipelines in the specific 

region. 

• This system can predict the early corrosion 

prediction as well as runtime corrosion detection in 

real-time scenarios, respectively. 
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The remainder of the research paper is divided into the 

following units: unit II discusses different current 

strategies for detecting and predicting of corrosion using 

numerous learning algorithms which has been developed 

by earlier researchers. Unit III depicts the research 

technique employed in the proposed system's 

implementation, whereas the algorithm specification for 

the recommended implementation is depicted in unit IV. 

In unit V, we describe the experimental setup used to 

assess the developed work and the final outcomes 

achieved using our techniques, as well as a comparison 

with a number of state-of-the-art procedures is done. The 

result and its future perspectives are explained in unit VI. 

2. Literature Survey 

Visual techniques of leak detection include trained 

canines, experienced employees, clever pigging, and 

drones [10]. This approach involves skilled workers 

walking along pipes looking for abnormal circumstances. 

Trained observers may detect leaks visually or by 

smelling the stench originating from the fracture spot. 

Similarly, whenever oil seeps from a pipeline rupture 

site, the noises or vibrations produced can be utilized to 

locate pipeline defects. Both the dogs and the smart 

pigging work like experts. The pig may be embedded 

with sensors as well as data recording devices such as 

fluorescence, optical camera, as well as video sensors if 

sight is strong. Jia et al. used recorded acoustic waves to 

identify gas leaks along a 3.13 km gas pipeline [11]. 

Acoustic waves generated by leakage travelled up the 

pipeline at almost the same rate as gas during the 

investigation, however the high-frequency constituents 

diminished far faster than that of the low-frequency 

counterparts. As a result, it is observed that low- 

frequency signals are sufficient for detecting pipeline 

leaks. 

Infrared thermography (IRT)-based pipeline leakage 

detection devices might even detect pipeline defects. IRT 

monitors temperature variations in the pipeline 

surroundings with infrared cameras [12]. To identify 

hydrocarbon leaks, the dielectric constant of the medium 

all around sensor is modified. [12]. Capacitive sensors 

are used in subsea pipes as a local coverage point 

sensors. The sensors detect hydrocarbons by measuring 

the difference in capacitance between seawater and 

hydrocarbons. The sensor's sensitivity to leak size 

depends on the distance between the leak location and 

the drift of the leaked medium. In order to detect high- 

pressure leakage of the steam, Oh et al. [14] presented an 

acoustic data condensation technique. The suggested 

technique effectively characterised the acoustic signature 

by using reduced data sets. The main advantages of 

adopting acoustic emission for pipeline network 

monitoring are the ease of questioning and installation, 

which does not need system downtime. However, 

background noise may readily hide the sound of major 

spillage at high flow rates. 

In [15], damaged acoustic signals were examined using 

LPCC and HMM. To analyze corrupted signals, the 

HMM was used, and LPCC was selected as the usual 

signal feature. The rate of acoustic signal detection 

improved to 97 percent, according to the studies. 

Bradford et al. [16] used aircraft GPR to detect spillage 

in and under snow. Oil under the snow diminishes the 

impedance contrast with inner ice, resulting in 

abnormally low amplitude radar reflections, according to 

the researchers. A 2 cm thick oil accumulation stuck 

beneath sea ice and snow can be discovered with a 51 

percent decline in reflected force using a   1Gega 

Hertz GPR device. Even though the signal to noise ratio 

is minimal, the researchers assume that their technique 

excels others (SNR). Furthermore, because GPR-based 

pipeline leakage detection equipment is consistent and 

exact, they are excellent for subterranean pipelines, but 

not for extended pipeline networks. The efficiency of 

IRT for underground pipes varies depending on pipe 

depth and covering medium such as concrete. Similarly, 

in clay soils, iron pipe corrosive agents may hide cast 

iron pipelines from GPR. A sufficient bandwidth is 

necessary for the GPR to work properly at the specified 

resolution and noise levels. It is critical that 

electromagnetic radiation is effectively coupled into the 

earth and penetrates sufficiently deep. 

The utilization of suitable wavelength light sources to 

stimulate molecules to higher energies is used in 

fluorescence techniques for hydrocarbon spillage 

investigation [13]. To detect hydrocarbon spillage, the 

ratio between the proportion of hydrocarbon fluid leaked 

and the intensity of light released at a specific 

wavelength can be detected. Leak detection employing 

fluorescent dyes (unfiltered UV) has proven effective 

[17]. Mounting fluorescence detectors on a ROV 

manipulator allows for rapid scanning and identification 

of leaks independent of tidal flow direction. If indeed the 

fluorescent dye concentration is high, however, the 

monitoring surroundings must be viewable in order for 

the process to work optimally. The effects of unamplified 

black light can easily deceive bystanders, causing them 

to stop monitoring the leakage site [18]. Despite the fact 

that recent submersible (tuned) fluorimeters can send 

information to a companion vessel for real-time viewing, 

this barrier still persists in hazy seas. 

EMI-based approaches measure changes in structural 

physical impedance produced by pipeline deterioration 

causes, which can be utilized to detect pipeline failure. 

The dynamic impedance of EMI transducers is 

monitored to identify leaks [19].  The EMI employs a 
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surface-bounded piezoelectric sensor for detecting 

pipeline abnormalities using high-frequency structural 

excitation (usually greater than 30 kiloHertz). The EMI 

approach has been used to monitor many constructions, 

including pipelines. The advent of autonomous 

submerged vehicles (AUVs) in subsea pipeline 

assessment and observing has decreased the need for 

human operators and hence there is a risk of human 

fatalities. Although AUV supervisory control is 

comparable to ROV teleoperation, only limited 

experienced operators are needed [20]. 

AUVs and ROVs are widely used to monitor oil and gas 

infrastructure. Commercial ROVs and AUVs are used in 

the sectors like gas and oil. Unmanned pipeline 

inspection vehicles have the benefit of being a remote 

operating system, making them suited for distant and 

dangerous environments. Unmanned vehicles also have 

lower maintenance costs and improved operational 

safety. Sadly, these systems have flaws. For example, 

buying or renting an AUV/ROV is quite expensive. 

Clouds, winds, and other climatological elements may 

also limit vehicle performance. Unmanned systems are 

also subject to regulatory restrictions in specific locations 

owing to safety concerns, since they lack the ability to 

detect and avoid other AUVs [21]. 

Since, bolted flange connections are commonly used in 

the building of petroleum pipeline systems, reliable 

monitoring techniques are required. It is possible to 

detect real-time bolt looseness using vision-based 

approaches. The vision-based method is presented by 

Nguyen et al. Park et al. [23] It is possible to adapt 

pipeline surveillance by applying the vision-based 

monitoring method for assessing bolted joint looseness in 

wind turbine tower structures. Wang et al. [24] suggested 

a novel vision-based bolt looseness method of detection 

to overcome the challenges of recognising the state of 

bolt images taken from unpredictable perspectives. The 

implemented algorithm can recognise the mark on the 

bolt and the location of the bolt on the flange connection 

offline. More online training is necessary to make this 

system more robust. In a pool of massive flag bolts, the 

method should really be possible to perceive loose bolts. 

Saikat Bose et. al. [25] advocates for the use of a novel 

data security protocol to verify the appointment of 

candidates for service. The process began with the 

private information being obfuscated in the e-initial 

mail's section for each area on the server run by the 

commission. Circular orientation of private share pieces 

and their hosted matrix intervals are determined by hash 

operations. The same hash operations and public sharing 

are used to verify any digitally signed letters that are 

downloaded from the designated location. On-the-spot 

fingerprints are hidden using identical concealment 

techniques in two sections for each section of the 

electronic letter. Each region's fourth segment is 

encrypted using a hash function to protect the copyright 

signature of the posting location. The commission's 

server verifies the legitimacy of the appointment and the 

validity of the candidate's signatures to ensure that the 

certified electronic letter is sent in its whole to the 

designated location. The effectiveness of the suggested 

procedure is established above the previous ways by the 

improved test findings from broader angles. 

3. Proposed System Design 

This system collects data from the IoT module that 

evaluates various sensors and it is connected to the 

microcontroller. Our fundamental aim is the detection of 

low thickness on underwater pipelines. As previously 

indicated, the 2000-event sample has been partitioned 

into different subsets. The training and testing subsets 

take up 70% and 30% of the total dataset, respectively. 

The first selection is used for training the model. The 

second subset is used for assessing the ability of model's 

prediction when it comes to predicting the corrosion state 

of new data samples that haven't been seen in the 

learning algorithm. Furthermore, this study effort did a 

random subsampling of the original dataset consisting of 

20 runs to properly measure model efficiency and to 

reduce the unpredictability produced by the data 

sampling method. In each run, 30% of the data is 

randomly collected to form the testing subset; the 

remaining data is utilized for training the model. As a 

consequence, by averaging forecast results derived from 

repeated collecting data, the entire performance of the 

model is accurately assessed. 
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Fig. 3: Proposed system architecture 

The background knowledge is training rules generated by 

train classifies, which  basically validate the test input 

3. Calculate distance from both instance vector 

𝑊𝑒𝑖𝑔ℎ𝑡𝐶𝑜𝑟𝑟(𝑛,𝑚) 

data generated from real time IoT dataset. According to 

the proposed algorithm, each event describes as reward 

𝑇𝑒𝑠𝑡_𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒.𝑙𝑒𝑛 

= ∑ (𝐴𝑡𝑡 [𝑛] … 𝐴𝑡𝑡[𝑛]) 

𝑛=1 

𝑇𝑟𝑎𝑖𝑛_𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒.𝑙𝑒𝑛 

∑ (𝐴𝑡𝑡 [𝑚] … … 𝐴𝑡𝑡[𝑚]) 

𝑚=1 

or penalty, and each event's weighted state changes as a 

result. The initial training rules plays the important roles 

for predict the events celled as Background Knowledge 

(BK), and those BK utilized in throughout execution. 

Algorithm Design 

In the proposed system as illustrated below, the 

classification algorithm is used for evaluating whether 

the event is normal or dangerous. In step 1, we have 

4. If(𝑊𝑒𝑖𝑔ℎ𝑡𝐶𝑜𝑟𝑟(𝑛,𝑚) > 𝑇ℎ) 

Reward ++; 

Else 

Penalty ++; 

5. Calculate Final distance from both reward and 

penalty 

 
𝑒𝑣𝑒𝑛𝑡_𝑐𝑜𝑢𝑛𝑡 

𝑝𝑒𝑛𝑎𝑙𝑡𝑦 

designed all training rules and in step 2 testing data is 

described. Step 3 and 4 describes assignment of reward 

or penalty and returning a class label as the final 

𝐹 = ∑ ( 

𝑒𝑣𝑒𝑛𝑡=1 

. 
𝑒𝑣𝑒𝑛𝑡_𝑐𝑜𝑢𝑛𝑡 

) ∗ 100 

outcome. 

Input : Traindata[], Testdata[], weighted threshold, 

distance function DF[] 

Output : Generated class label for test instance 

1. Read Test data from test matrix 

𝑇𝑒𝑠𝑡_𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒[] 
𝑇𝑒𝑠𝑡𝑑𝑎𝑡𝑎.𝑙𝑒𝑛 

= ∑ (𝐴𝑡𝑡 [𝑛] … … 𝐴𝑡𝑡[𝑛]) 

𝑛=1 

2. Read train data from train matrix 

𝑇𝑟𝑎𝑖𝑛_𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒[] 
𝑡𝑟𝑎𝑖𝑛𝑑𝑎𝑡𝑎.𝑙𝑒𝑛 

= ∑ (𝐴𝑡𝑡 [𝑚] … … 𝐴𝑡𝑡[𝑚]) 

𝑚=1 

6. Return F as final class. 

4. Results and Discussions 

In the result section, we compared our system’s result 

using various machine learning and semi supervised 

machine learning classification algorithms. The IoT 

environment has been generated for the Collection of 

data from underwater oil and gas pipelines. Each event 

has been generated in every 6 hours, and we have 

monitored almost 30 days of real-time data. Different 

analogue sensors are used for generating the event, and a 

Microcontroller has been deployed to collect data from 

all analogue sensors. 
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Fig. 4: No. of events with achieved reward penalties according to policies 

The above Figure 4 describes the number of events 

generated in the last 30 days and, according to design 

policy, how many events got rewarded as well as 

penalties. The penalty is nothing but the value which 

violates the generalized values by sensor 
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Fig. 5: Detection accuracy vs no. of events generation by IoT model 

In another experiment, we collected a number of events 

by using our IoT module and evaluated them with our 

classification algorithm. The four experiments have been 

done using values like 100, 500, 1000 and 5000. The 

average accuracy we have achieved was around 97.5%. 

 

Fig. 6: Event detection classification accuracy with proposed vs existing classification 

The SVM, NB, and ANN free machine learning 

classification algorithms has been evaluated in a similar 

environment. Parallelly our proposed Q-learning 

classification algorithm has been evaluated by using 

same data. As a result, q learning provides around 97% 

detection accuracy, which is 4-5% higher than 

conventional machine learning algorithms. 

5. Conclusion 

The detection and prevention of corrosion is an 

important task for prevention disaster in underwater oil 

and gas pipelines. The main concern with underwater gas 

pipes is the likelihood of leakage due to corrosion. Any 

leak detection error may have serious environmental and 
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economic consequences. These systems proposed an 

effective leak detecting technique with IoT and ML. 

Leak gas bubble signals must be distinguished from 

background signals for these systems to work. Currently, 

inspection requires a system, professional operator, a 

combination of sensors, making it a time-consuming, 

difficult, and expensive process. This research proposes 

an effective approach for detecting corrosion of pipeline 

natural gas, utilising coherent combination gas bubble 

acoustic dispersion fields. The proposed technique uses 

the IoT-ML system as a strong instrument for gathering 

reliable information over a vast region, independent of 

frequency and range for inspection of pipeline as well as 

leakage detection. The developed method gives better 

detection accuracy over the traditional machine learning 

algorithms. Validation of the proposed system with deep 

learning classification algorithms will be the research’s 

future work. 
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