

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-67992147-6799 www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(2), 277–282 | 277

Cross Site Scripting Attack Detection Approach Based on LSTM

Encoder-Decoder and Word Embeddings

Rokia Lamrani Alaoui* 1, El Habib Nfaoui2

Submitted: 09/11/2022 Accepted: 10/02/2023

Abstract: Web applications are the main target of Cyber Attacks. Cross-Site Scripting (XSS) is one of the most serious web attacks.

Through the use of XSS, cybercriminals are able to turn trusted websites into malicious ones, resulting in extreme harm and damage to

both the victims and the reputation of the website owner. According to the Open Web Application Security Project (OWASP) survey, XSS

has been ranked in the top 10 web application vulnerabilities since 2017. Though its real danger, only 10 research works studied XSS

attacks between 2010 and 2021 as reported recently by a systematic literature review on web attacks detection using Deep Learning. On

the other hand, in many Natural Language Processing (NLP) applications, the use of word embeddings and Deep Encoder-Decoder models

has considerably improved the performance of downstream NLP tasks. Thereby, in this work, we proposed a Deep Learning approach

based on LSTM Encoder-Decoder and free-context word embedding for XSS attacks detection. Then, we implemented the proposed model

and compared it with state-of-the-art approaches. The experimental results show that our model achieves good results; 99.08% Accuracy,

99.09% precision, and 99.08% Recall.

Keywords: Deep learning, Encoder-Decoder, Cross Site Scripting attack, Web security, word embedding, XSS

1. Introduction

Web applications are daily used in various life domains such

as education, healthcare, finance, and entertainment. While

they allow for close and easy communication with

consumers, they constitute the entry point for attackers to

compromise sensitive services and data.

Cross Site scripting attack is one of the most serious threats

to web applications. Indeed, based on the OWASP surveys

[1], it is ranked in the top 10 web application vulnerabilities

since 2017. There exist two types of XSS attacks: i) Client

XSS; in which malicious data is used to modify the DOM

with unsafe JavaScript calls. The source of this data could

be the DOM itself (i.e. DOM XSS attack), or it could have

been sent by the server in an HTTP response (i.e. Reflected

XSS attack). Finally, the source of data could be from a

stored location on the server (i.e. Stored client XSS attack).

ii) Server XSS occurs when a user supplied malicious data,

and the server includes it in HTTP responses or stores it in

a database without a proper validation. In the first case, the

attack is named Reflected Server XSS, and in the second

case it is a Stored Server XSS.

XSS attacks cause serious damage to the confidentiality and

security of web applications. In fact, a successful XSS attack

allows web attackers to take over users’ accounts, or to

install malware on users’ devices, or to redirect

unsuspecting users to a fake website under the guise of the

real one, or even to modify the presentation content of

websites.

In order to protect web applications from server XSS

attacks, it is recommended to perform user input validation

and context sensitive server-side output encoding. As for

client XSS attacks, it is recommended to use safe JavaScript

APIs. Several tools have been developed to implement these

security mechanisms. We cite as examples, static and

dynamic analysis, black box fuzzing and rule matching

based Web Application Firewalls. Overall, these methods

consume time and memory, and are limited due to the

complexity of web applications and the abundance of web

development libraries and frameworks. Also, some methods

tend to generate high rates of false positives, or cannot

achieve high code coverage, or cannot detect zero-day

attacks.

In this paper, we propose an approach for XSS attacks

detection based on Deep Learning. Our main contributions

are as follow:

- We used different free context word embeddings to

transform HTTP requests to numerical vectors that can be

processed by the classification models.

- We implemented different Deep Encoder-Decoder

models and evaluated their performance on a public XSS

1 LISAC Laboratory. Department of Computer Science. University Sidi
Mohamed Ben Abdallah, Faculty of Science Dhar El Mahraz, Fez , Morocco.

ORCID ID: 0000-0002-2545-2316
2 LISAC Laboratory. Department of Computer Science . University Sidi
Mohamed Ben Abdallah, Faculty of Science Dhar El Mahraz, Fez , Morocco.
ORCID ID : 0000-0002-5816-0897
* Corresponding Author Email: rokia.lamranialaoui@usmba.ac.ma

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(2), 277–282 | 278

attacks dataset.

- We compared the performance of the proposed models

using the same experimental parameters, which facilitated

the identification of the LSTM based Encoder-Decoder

model and word2vec as the best XSS attacks detection

approach.

- We compared the proposed approach with the state-of-

the-art.

The remainder of this paper is organized as follows. Section.

2 reviews related research works. Section. 3 explains the

basic concepts needed to understand our proposed approach.

Section. 4 describes the approach proposed to detect XSS

attacks. Section. 5 reports the results of the experiments.

Conclusion and future work are presented in the last section.

2. Related work

Many research works have been devoted to web applications

security. Since 2010, and till 2021, about 63 research papers

have studied web attacks detection based on Deep Learning

[2]. However, despite the fact that XSS attack is one of the

most serious web attacks, only few research works have

been interested in XSS attacks detection using Deep

Learning techniques. Reference [3] detected web attacks

using stacked generalization ensembles for LSTM and

word2vec. Reference [4] extracts features using n-gram and

stacked auto-encoder and classifies web attacks, including

XSS, by using isolation forest algorithm. Reference [5] used

a GRU based encoder–decoder model with an attention

mechanism for detecting XSS, SQL injection (SQLI) and

BruteForce attacks. In [6], the authors implemented a

stacked denoising auto-encoder to detect malicious requests

in the execution traces of java web applications. Reference

[7] combined CNN and LSTM to detect XSS attacks.

Reference [8] used CNN to detect SQLI and XSS attacks.

Reference [9] detected XSS, Remote File Inclusion,

Directory Traversal (DT), and SQLI using character-level

embedding and CNN. Reference [10] implemented a Deep

Feed Forward network (DFFN) to detect XSS attacks.

Reference [11] proposed an ensemble classification model

of CNNs and LSTMs to identify XSS and SQLI attacks. In

Reference [12] and Reference [13], the authors proposed a

DFFN based model to detect DOM-XSS attacks and XSS

flaws in PHP and JavaScript source code respectively.

Reference [14] detected XSS, SQLI, and DT using CNN.

Finally, [15] proposed an LSTM based XSS detection

model, and they provided a dataset specifically constructed

for the purpose of XSS detection and made it available on

GitHub [16]. We based the evaluation of our approach on

the dataset proposed in the research paper [15].

3. Preliminaries

In this section, we briefly explain the key basic concepts

needed for a good understanding of our proposed

approach.

3.1. Free-context word embedding

There exist two main categories of word embedding: static

(free-context) word-embedding and non-static (not free-

context) word embedding. In the former, vector

representations of words remain constant throughout the

model training, while in the latter, they are modified in the

same way as the other model’s parameters (i.e. weights and

bias). While non-static word embedding may incur over-

fitting, in static word embedding we rely on the hypothesis

that the obtained vector representation is reliable regardless

of the classification task in which it is used, which is not

always true.

Follows, we give a brief description of the most used word-

embeddings:

- Word2vec [17] is a feed forward neural network of two

layers that takes a textual input and generates the

corresponding numerical vectors. There are two word2vec

based models: CBOW and Skip-Gram. The first model is

known to have a faster processing and an accurate word to

vector generation than the second model.

- Glove [18] was developed by Stanford and stands for

Global Vectors for Word Representation. It is an

unsupervised learning algorithm for obtaining vector

representations for words. It aims to conciliate the word

prediction models with the word statistics over a whole

corpus. In fact, the model training is performed on

aggregated global word-word co-occurrence statistics from

a corpus. Pre-trained word vectors with different embedding

dimensions (50,100, 200 or 300) are made available for use

without a need to retrain the model.

- FastText [19] was developed by Facebook. It has the same

goal as Word2vec. It also uses the same Neural Network

architectures to predict word vectors. However, unlike

word2vec, FastText treats each word as composed of

character N-grams. So the vector for a word is made of the

sum of the character N-grams vectors. The use of N-grams

in FastText resolves the Out-Of-Vocabulary issue

encountered in Word2vec or Glove.

3.2. Encoder-Decoder models

The Encoder-Decoder is a neural network architecture

which is composed of two sub-neural networks: an encoder

and a decoder. The encoder maps the input data to a fixed-

length representation, while the decoder exploits the

encoded representation to reconstruct or classify the original

input. In other words, the encoder is trained with the help of

the decoder. If the decoder reconstructs or classifies

accurately the original input, it means that the encoder is

sufficiently trained. Fig. 1 and Fig. 2 show respectively a

Feed Forward Neural Network based auto-encoder and an

LSTM based encoder-decoder.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(2), 277–282 | 279

Fig. 1. Feed Forward NN based auto-encoder.

Fig. 2. LSTM based encoder-decoder.

In this work, we implemented LSTM based Encoder-

Decoder model and CNN based Encoder-Decoder model.

While both share the same theoretical background, there are

some practical differences in the process of models’

construction. In fact, at the training stage, CNN based

encoder-decoders try to minimize the reconstruction error of

the original input: we input the vector corresponding to the

HTTP web request to the encoder which outputs a

representation vector from which the decoder has to

reconstruct the input. The model is trained until the

difference between the original input and the reconstructed

input is acceptable. Afterwards, we suppress the decoder

model of the CNN encoder-decoder architecture, and we

replace it with any other classification model. In our case,

we chose to use a feed forward network (FFN). We trained

the FFN while keeping the CNN encoder’s weights and bias,

learned during the training phase, constant until the FFN can

detect malicious HTTP web requests with good accuracy

and low false positive rate. Finally, a new set of HTTP web

requests; not seen during the training steps, is given to the

model, composed of CNN-encoder and FFN, in order to

assess its XSS detection performance. Thus, in the case of

CNN based Encoder-Decoder, the architecture of the final

model is not the same used at the training phases. Also, the

model training is done two times and with different

objectives. The first time, the model is trained to minimize

the reconstruction error of the original input while in the

second time the model is partially trained to maximize the

detection of XSS attacks. Fig. 3 and Fig. 4 show respectively

how the CNN based encoder-decoder model was used to

implement our proposed approach detailed in Sec. 4.

Fig. 3. Flow graph of XSS detection approach using CNN

encoder-decoder (training stage).

Fig. 4. Flow graph of XSS detection approach using CNN

encoder-decoder (testing stage).

On the other hand, in the case of LSTM based Encoder-

Decoder,

The model architecture remains the same at both the training

and the evaluation phases. Also, the objective of the training

is to make the model capable of classifying the HTTP web

requests into normal requests and XSS attacks. The concept

of a good input reconstruction can be included in the fact

that the LSTM-encoder’s hidden states are given as initial

states to the LSTM-decoder. If the latter reaches a good XSS

detection, this implies that the hidden states are a good

representation of the input HTTP web request. Same as at

the training phase, at the evaluation phase, we give HTTP

web requests to both the LSTM encoder and the LSTM-

decoder, and we pass the hidden states of the encoder to the

decoder. Figure. 5 shows how the LSTM based encoder-

decoder model was used to implement our proposed

approach explained in detail in Sec. 4.

4. Proposed Approach

4.1. Overview

Figure 5 depicts the main stages of the proposed XSS attack

detection approach. Firstly, we transform the HTTP request

payload to a vector by executing a sequence of operations

that we explain in section 4.2. Then, we feed it to the Deep

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(2), 277–282 | 280

Learning classification model, which determines whether an

XSS attack is present or not in the HTTP request payload.

Fig. 5. Flow graph of XSS detection approach using

LSTM encoder-decoder (training and testing stages).

4.2. Pre-processing

4.2.1. Decoding

Web attackers encode malicious content using different

encoding techniques such as base64, or Hex encoding so

that signature based Web Applications Firewalls will not be

able to detect that an HTTP Web request hides an XSS

attack. Thus, in this step, we decode the HTTP request

payloads to obtain the original decoded content.

4.2.2. Tokenization

In this step, we split the HTTP request payload into a set of

tokens such that the syntax, keywords or key characters are

preserved.

4.2.3. Generalization

We parse each list of tokens; we retain keywords and we

replace ordinary words or values with a unique ordinary

word.

4.2.4. Vectorization

In the vectorization step, we transform the array of tokens to

a numerical vector of size d. If a web request is composed

of s words, the resulting embedding matrix has a s × d

dimension. d is a model hyperparameter and is called the

embedding dimension.

We opted for free-context word embedding to vectorize

HTTP requests payloads. Namely, we compared word2vec,

FastText, and Glove. And as a baseline, we also

implemented one-hot encoding in which we substitute a

word in a given sentence with 1 if it exists in the vocabulary,

and with 0 otherwise.

4.3. LSTM based Encoder-Decoder model

In this work, we propose to classify HTTP web requests into

XSS attacks and normal requests using LSTM based

Encoder-Decoder. LSTM Encoder-Decoder is a model

where the encoder and the decoder are LSTMs such that the

hidden state of the encoder is the initial state of the decoder.

The model is ready to use when the encoder and the decoder

can accurately communicate information about the input

through the hidden states’ values, which translates to a

minimal loss function and a good classification accuracy.

Figure 5 summarizes the proposed detection approach.

5. Experiments and Results

We used Keras, python, genism, FastText to implement the

LSTM based Encoder-Decoder model and we run our

experiments on Google Collaboratory platform. In the next

sections, we detail the experiments and the obtained results.

5.1. Dataset

We used a public dataset dedicated to XSS attacks. It is

available on GitHub [14]. It contains 33428 XSS attacks and

31428 normal Web HTTP payloads. We have split the

dataset into three balanced sets; the training set, the

validation set and the test set used to train the model, tune

the model hyper-parameters, and test the model,

respectively.

5.2. Performance metrics

We used different performance metrics; accuracy, precision,

recall, F1-score, AUC, FPR, and TNR. In the next lines, we

give a brief description of each performance metric:

- Accuracy: is the proportion of HTTP web requests

classified correctly.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦   =   
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

- Recall: is the proportion of XSS attacks detected by the

model among all the XSS attacks contained in the dataset.

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

- Precision: is the proportion of XSS attacks correctly

classified by the model among the HTTP web requests

detected as XSS attacks.

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

- F1-score: is the harmonic average of precision and recall.

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 .
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 . 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

- False Positive Rate: indicates the proportion of normal

HTTP web requests misclassified as XSS attacks.

𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁

- Area Under the Curve (AUC): is the area under the ROC

curve, which is the plot between the TPR (y-axis) and the

FPR (x-axis). It indicates the model’s ability to distinguish

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(2), 277–282 | 281

between classes.

- True Negative Rate: indicates the proportion of actual XSS

attacks correctly identified by the model.

𝑇𝑁𝑅 =
𝑇𝑁

𝐹𝑃 + 𝑇𝑁
= 1 − 𝐹𝑃𝑅

5.3. Results

Figure. 6 reports the results of our experiments and

compares our work to other research papers that proposed

Deep Learning based methods for XSS attack detection in

Web Http requests.

 Fig. 6. Experiments results

We developed an LSTM Encoder-Decoder model for XSS

attacks detection. Our detection model achieves good results

and it is compared favorably with related works ([6],[14],

[9]).

Based on the results reported in Fig. 6, we observe that,

overall, LSTM Encoder-Decoder achieves the best

classification results regardless of the word embedding

technique used. However, CNN Encoder-Decoder results

are improved slightly when used with Glove. Moreover, we

remark that the use of FastText with either CNN or LSTM

yields the lowest rate of false positives. Finally, the

comparison of our approach with state-of-the-art should be

taken with caution. Indeed, although the three research

works propose a Deep Learning method for XSS attacks

detection, they use different datasets, evaluation metrics and

pre-processing techniques.

6. Conclusion

We proposed an XSS attacks detection approach based on

LSTM Encoder-Decoder model and free-context word

embedding. The classification results of our proposed model

are as competitive as state-of-the-art approaches (i.e.

99.08% Accuracy, 99.09% precision, and 99.08% Recall).

As future work, we plan to test our model on private datasets

and deploy it in real web applications to evaluate its

efficiency.

References

[1] OWASP, "Top 10 Web Application Security Risks,"

2017. [Online].

[2] R. L. Alaoui and E. H. Nfaoui, "Deep Learning for

Vulnerability and Attack Detection on Web

Applications: A Systematic Literature Review,"

Future Internet, vol. 14, no. 4, p. 118, 2022.

[3] R. L. Alaoui and E. H. Nfaoui, "Web attacks detection

using stacked generalization ensemble for LSTMs and

word embedding," 2022.

[4] A. M. Vartouni, S. S. Kashi and M. Teshnehlab, "An

anomaly detection method to detect web attacks using

Stacked Auto-Encoder," 2018.

[5] Z.-Q. Qin, X.-K. Ma and Y.-J. Wang, "Attentional

Payload Anomaly Detector for Web Applications,"

Springer International Publishing, 2018, pp. 588-599.

[6] D. Tripathy, R. Gohil and T. Halabi, "Detecting SQL

Injection Attacks in Cloud SaaS using Machine

Learning," 2020.

[7] R. Kadhim and M. Gaata, "A hybrid of CNN and

LSTM methods for securing web application against

cross-site scripting attack," Indones. J. Electr. Eng.

Comput. Sci, vol. 21, pp. 1022-1029, 2020.

[8] T. Liu, Y. Qi, L. Shi and J. Yan, "Locate-Then-Detect:

Real-time Web Attack Detection via Attention-based

Deep Neural Networks.," 2019.

[9] W. Rong, B. Zhang and X. Lv, "Malicious web request

detection using character-level CNN," 2019.

[10] F. M. M. Mokbal, W. Dan, A. Imran, L. Jiuchuan, F.

Akhtar and W. Xiaoxi, "MLPXSS: an integrated XSS-

based attack detection scheme in web applications

using multilayer perceptron technique," IEEE Access,

vol. 7, pp. 100567-100580, 2019.

[11] C. Luo, Z. Tan, G. Min, J. Gan, W. Shi and Z. Tian,

"A novel web attack detection system for internet of

things via ensemble classification," IEEE Transactions

on Industrial Informatics, vol. 17, no. 8, pp. 5810-

5818, 2020.

[12] W. Melicher, C. Fung, L. Bauer and L. Jia, "Towards

a lightweight, hybrid approach for detecting dom xss

vulnerabilities with machine learning," 2021.

[13] H. Maurel, S. Vidal and T. Rezk, "Statically

identifying XSS using deep learning," Science of

Computer Programming, vol. 219, p. 102810, 2022.

[14] T. Chen, Y. Chen, M. Lv, G. He, T. Zhu, T. Wang and

Z. Weng, "A Payload Based Malicious HTTP Traffic

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(2), 277–282 | 282

Detection Method Using Transfer Semi-Supervised

Learning," Applied Sciences, vol. 11, no. 16, p. 7188,

2021.

[15] Y. Fang, Y. Li, L. Liu and C. Huang, "DeepXSS: Cross

site scripting detection based on deep learning," 2018.

[16] GitHub, "XSS dataset," 2018. [Online].

[17] T. Mikolov, K. Chen, G. Corrado and J. Dean,

"Efficient estimation of word representations in vector

space," arXiv preprint arXiv:1301.3781, 2013.

[18] J. Pennington, R. Socher and C. D. Manning, "Glove:

Global vectors for word representation," Proceedings

of the 2014 conference on empirical methods in natural

language processing (EMNLP), pp. 1532-1543, 2014.

[19] P. Bojanowski, E. Grave, A. Joulin and T. Mikolov,

"Enriching word vectors with subword information,"

Transactions of the association for computational

linguistics, vol. 5, pp. 135-146, 2017.

