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Abstract: Web applications are the main target of Cyber Attacks. Cross-Site Scripting (XSS) is one of the most serious web attacks. 

Through the use of XSS, cybercriminals are able to turn trusted websites into malicious ones, resulting in extreme harm and damage to 

both the victims and the reputation of the website owner. According to the Open Web Application Security Project (OWASP) survey, XSS 

has been ranked in the top 10 web application vulnerabilities since 2017. Though its real danger, only 10 research works studied XSS 

attacks between 2010 and 2021 as reported recently by a systematic literature review on web attacks detection using Deep Learning. On 

the other hand, in many Natural Language Processing (NLP) applications, the use of word embeddings and Deep Encoder-Decoder models 

has considerably improved the performance of downstream NLP tasks. Thereby, in this work, we proposed a Deep Learning approach 

based on LSTM Encoder-Decoder and free-context word embedding for XSS attacks detection. Then, we implemented the proposed model 

and compared it with state-of-the-art approaches. The experimental results show that our model achieves good results; 99.08% Accuracy, 

99.09% precision, and 99.08% Recall. 
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1. Introduction 

Web applications are daily used in various life domains such 

as education, healthcare, finance, and entertainment. While 

they allow for close and easy communication with 

consumers, they constitute the entry point for attackers to 

compromise sensitive services and data. 

Cross Site scripting attack is one of the most serious threats 

to web applications. Indeed, based on the OWASP surveys 

[1], it is ranked in the top 10 web application vulnerabilities 

since 2017. There exist two types of XSS attacks: i) Client 

XSS; in which malicious data is used to modify the DOM 

with unsafe JavaScript calls. The source of this data could 

be the DOM itself (i.e. DOM XSS attack), or it could have 

been sent by the server in an HTTP response (i.e. Reflected 

XSS attack). Finally, the source of data could be from a 

stored location on the server (i.e. Stored client XSS attack). 

ii) Server XSS occurs when a user supplied malicious data, 

and the server includes it in HTTP responses or stores it in 

a database without a proper validation. In the first case, the 

attack is named Reflected Server XSS, and in the second 

case it is a Stored Server XSS. 

XSS attacks cause serious damage to the confidentiality and 

security of web applications. In fact, a successful XSS attack 

allows web attackers to take over users’ accounts, or to 

install malware on users’ devices, or to redirect 

unsuspecting users to a fake website under the guise of the 

real one, or even to modify the presentation content of 

websites. 

In order to protect web applications from server XSS 

attacks, it is recommended to perform user input validation 

and context sensitive server-side output encoding. As for 

client XSS attacks, it is recommended to use safe JavaScript 

APIs. Several tools have been developed to implement these 

security mechanisms. We cite as examples, static and 

dynamic analysis, black box fuzzing and rule matching 

based Web Application Firewalls. Overall, these methods 

consume time and memory, and are limited due to the 

complexity of web applications and the abundance of web 

development libraries and frameworks. Also, some methods 

tend to generate high rates of false positives, or cannot 

achieve high code coverage, or cannot detect zero-day 

attacks. 

In this paper, we propose an approach for XSS attacks 

detection based on Deep Learning. Our main contributions 

are as follow: 

- We used different free context word embeddings to 

transform HTTP requests to numerical vectors that can be 

processed by the classification models.   

- We implemented different Deep Encoder-Decoder 

models and evaluated their performance on a public XSS 
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attacks dataset. 

- We compared the performance of the proposed models 

using the same experimental parameters, which facilitated 

the identification of the LSTM based Encoder-Decoder 

model and word2vec as the best XSS attacks detection 

approach. 

- We compared the proposed approach with the state-of-

the-art. 

The remainder of this paper is organized as follows. Section. 

2 reviews related research works. Section. 3 explains the 

basic concepts needed to understand our proposed approach. 

Section. 4 describes the approach proposed to detect XSS 

attacks. Section. 5 reports the results of the experiments. 

Conclusion and future work are presented in the last section. 

2. Related work 

Many research works have been devoted to web applications 

security. Since 2010, and till 2021, about 63 research papers 

have studied web attacks detection based on Deep Learning 

[2]. However, despite the fact that XSS attack is one of the 

most serious web attacks, only few research works have 

been interested in XSS attacks detection using Deep 

Learning techniques. Reference [3] detected web attacks 

using stacked generalization ensembles for LSTM and 

word2vec. Reference [4] extracts features using n-gram and 

stacked auto-encoder and classifies web attacks, including 

XSS, by using isolation forest algorithm. Reference [5] used 

a GRU based encoder–decoder model with an attention 

mechanism for detecting XSS, SQL injection (SQLI) and 

BruteForce attacks. In [6], the authors implemented a 

stacked denoising auto-encoder to detect malicious requests 

in the execution traces of java web applications. Reference 

[7] combined CNN and LSTM to detect XSS attacks. 

Reference [8] used CNN to detect SQLI and XSS attacks. 

Reference [9] detected XSS, Remote File Inclusion, 

Directory Traversal (DT), and SQLI using character-level 

embedding and CNN. Reference [10] implemented a Deep 

Feed Forward network (DFFN) to detect XSS attacks. 

Reference [11] proposed an ensemble classification model 

of CNNs and LSTMs to identify XSS and SQLI attacks. In 

Reference [12] and Reference [13], the authors proposed a 

DFFN based model to detect DOM-XSS attacks and XSS 

flaws in PHP and JavaScript source code respectively. 

Reference [14] detected XSS, SQLI, and DT using CNN. 

Finally, [15] proposed an LSTM based XSS detection 

model, and they provided a dataset specifically constructed 

for the purpose of XSS detection and made it available on 

GitHub [16]. We based the evaluation of our approach on 

the dataset proposed in the research paper [15]. 

3. Preliminaries 

In this section, we briefly explain the key basic concepts 

needed for a good understanding of our proposed 

approach. 

3.1. Free-context word embedding 

There exist two main categories of word embedding: static 

(free-context) word-embedding and non-static (not free-

context) word embedding. In the former, vector 

representations of words remain constant throughout the 

model training, while in the latter, they are modified in the 

same way as the other model’s parameters (i.e. weights and 

bias). While non-static word embedding may incur over-

fitting, in static word embedding we rely on the hypothesis 

that the obtained vector representation is reliable regardless 

of the classification task in which it is used, which is not 

always true. 

Follows, we give a brief description of the most used word-

embeddings: 

- Word2vec [17] is a feed forward neural network of two 

layers that takes a textual input and generates the 

corresponding numerical vectors. There are two word2vec 

based models: CBOW and Skip-Gram. The first model is 

known to have a faster processing and an accurate word to 

vector generation than the second model. 

- Glove [18] was developed by Stanford and stands for 

Global Vectors for Word Representation. It is an 

unsupervised learning algorithm for obtaining vector 

representations for words. It aims to conciliate the word 

prediction models with the word statistics over a whole 

corpus. In fact, the model training is performed on 

aggregated global word-word co-occurrence statistics from 

a corpus. Pre-trained word vectors with different embedding 

dimensions (50,100, 200 or 300) are made available for use 

without a need to retrain the model. 

- FastText [19] was developed by Facebook. It has the same 

goal as Word2vec. It also uses the same Neural Network 

architectures to predict word vectors. However, unlike 

word2vec, FastText treats each word as composed of 

character N-grams. So the vector for a word is made of the 

sum of the character N-grams vectors. The use of N-grams 

in FastText resolves the Out-Of-Vocabulary issue 

encountered in Word2vec or Glove. 

3.2. Encoder-Decoder models 

The Encoder-Decoder is a neural network architecture 

which is composed of two sub-neural networks: an encoder 

and a decoder. The encoder maps the input data to a fixed-

length representation, while the decoder exploits the 

encoded representation to reconstruct or classify the original 

input. In other words, the encoder is trained with the help of 

the decoder. If the decoder reconstructs or classifies 

accurately the original input, it means that the encoder is 

sufficiently trained. Fig. 1 and Fig. 2 show respectively a 

Feed Forward Neural Network based auto-encoder and an 

LSTM based encoder-decoder.   
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Fig. 1.  Feed Forward NN based auto-encoder. 

 

 

Fig. 2.  LSTM based encoder-decoder. 

In this work, we implemented LSTM based Encoder-

Decoder model and CNN based Encoder-Decoder model. 

While both share the same theoretical background, there are 

some practical differences in the process of models’ 

construction. In fact, at the training stage, CNN based 

encoder-decoders try to minimize the reconstruction error of 

the original input: we input the vector corresponding to the 

HTTP web request to the encoder which outputs a 

representation vector from which the decoder has to 

reconstruct the input. The model is trained until the 

difference between the original input and the reconstructed 

input is acceptable. Afterwards, we suppress the decoder 

model of the CNN encoder-decoder architecture, and we 

replace it with any other classification model. In our case, 

we chose to use a feed forward network (FFN). We trained 

the FFN while keeping the CNN encoder’s weights and bias, 

learned during the training phase, constant until the FFN can 

detect malicious HTTP web requests with good accuracy 

and low false positive rate. Finally, a new set of HTTP web 

requests; not seen during the training steps, is given to the 

model, composed of CNN-encoder and FFN, in order to 

assess its XSS detection performance. Thus, in the case of 

CNN based Encoder-Decoder, the architecture of the final 

model is not the same used at the training phases. Also, the 

model training is done two times and with different 

objectives. The first time, the model is trained to minimize 

the reconstruction error of the original input while in the 

second time the model is partially trained to maximize the 

detection of XSS attacks. Fig. 3 and Fig. 4 show respectively 

how the CNN based encoder-decoder model was used to 

implement our proposed approach detailed in Sec. 4.   

  

 

Fig. 3.  Flow graph of XSS detection approach using CNN 

encoder-decoder (training stage). 

 

 

Fig. 4.  Flow graph of XSS detection approach using CNN 

encoder-decoder (testing stage). 

On the other hand, in the case of LSTM based Encoder-

Decoder,  

The model architecture remains the same at both the training 

and the evaluation phases. Also, the objective of the training 

is to make the model capable of classifying the HTTP web 

requests into normal requests and XSS attacks. The concept 

of a good input reconstruction can be included in the fact 

that the LSTM-encoder’s hidden states are given as initial 

states to the LSTM-decoder. If the latter reaches a good XSS 

detection, this implies that the hidden states are a good 

representation of the input HTTP web request. Same as at 

the training phase, at the evaluation phase, we give HTTP 

web requests to both the LSTM encoder and the LSTM-

decoder, and we pass the hidden states of the encoder to the 

decoder. Figure. 5 shows how the LSTM based encoder-

decoder model was used to implement our proposed 

approach explained in detail in Sec. 4.    

4. Proposed Approach 

4.1. Overview 

Figure 5 depicts the main stages of the proposed XSS attack 

detection approach. Firstly, we transform the HTTP request 

payload to a vector by executing a sequence of operations 

that we explain in section 4.2. Then, we feed it to the Deep 
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Learning classification model, which determines whether an 

XSS attack is present or not in the HTTP request payload. 

  

 

Fig. 5.  Flow graph of XSS detection approach using 

LSTM encoder-decoder (training and testing stages). 

4.2. Pre-processing 

4.2.1. Decoding 

Web attackers encode malicious content using different 

encoding techniques such as base64, or Hex encoding so 

that signature based Web Applications Firewalls will not be 

able to detect that an HTTP Web request hides an XSS 

attack. Thus, in this step, we decode the HTTP request 

payloads to obtain the original decoded content. 

4.2.2. Tokenization 

In this step, we split the HTTP request payload into a set of 

tokens such that the syntax, keywords or key characters are 

preserved.  

4.2.3. Generalization 

We parse each list of tokens; we retain keywords and we 

replace ordinary words or values with a unique ordinary 

word. 

4.2.4. Vectorization 

In the vectorization step, we transform the array of tokens to 

a numerical vector of size d. If a web request is composed 

of s words, the resulting embedding matrix has a s × d 

dimension. d is a model hyperparameter and is called the 

embedding dimension. 

We opted for free-context word embedding to vectorize 

HTTP requests payloads. Namely, we compared word2vec, 

FastText, and Glove. And as a baseline, we also 

implemented one-hot encoding in which we substitute a 

word in a given sentence with 1 if it exists in the vocabulary, 

and with 0 otherwise.  

4.3. LSTM based Encoder-Decoder model 

In this work, we propose to classify HTTP web requests into 

XSS attacks and normal requests using LSTM based 

Encoder-Decoder. LSTM Encoder-Decoder is a model 

where the encoder and the decoder are LSTMs such that the 

hidden state of the encoder is the initial state of the decoder. 

The model is ready to use when the encoder and the decoder 

can accurately communicate information about the input 

through the hidden states’ values, which translates to a 

minimal loss function and a good classification accuracy. 

Figure 5 summarizes the proposed detection approach. 

5. Experiments and Results 

We used Keras, python, genism, FastText to implement the 

LSTM based Encoder-Decoder model and we run our 

experiments on Google Collaboratory platform. In the next 

sections, we detail the experiments and the obtained results. 

5.1. Dataset 

We used a public dataset dedicated to XSS attacks. It is 

available on GitHub [14]. It contains 33428 XSS attacks and 

31428 normal Web HTTP payloads. We have split the 

dataset into three balanced sets; the training set, the 

validation set and the test set used to train the model, tune 

the model hyper-parameters, and test the model, 

respectively. 

5.2. Performance metrics  

We used different performance metrics; accuracy, precision, 

recall, F1-score, AUC, FPR, and TNR. In the next lines, we 

give a brief description of each performance metric: 

- Accuracy: is the proportion of HTTP web requests 

classified correctly. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦   =   
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
  

- Recall: is the proportion of XSS attacks detected by the 

model among all the XSS attacks contained in the dataset. 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
  

- Precision: is the proportion of XSS attacks correctly 

classified by the model among the HTTP web requests 

detected as XSS attacks.  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
  

- F1-score: is the harmonic average of precision and recall. 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =  2 .
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 . 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +  𝑅𝑒𝑐𝑎𝑙𝑙
 

 

- False Positive Rate: indicates the proportion of normal 

HTTP web requests misclassified as XSS attacks. 

𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
 

- Area Under the Curve (AUC): is the area under the ROC 

curve, which is the plot between the TPR (y-axis) and the 

FPR (x-axis). It indicates the model’s ability to distinguish 
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between classes.  

- True Negative Rate: indicates the proportion of actual XSS 

attacks correctly identified by the model. 

𝑇𝑁𝑅 =
𝑇𝑁

𝐹𝑃 + 𝑇𝑁
= 1 − 𝐹𝑃𝑅 

 

5.3. Results 

Figure. 6 reports the results of our experiments and 

compares our work to other research papers that proposed 

Deep Learning based methods for XSS attack detection in 

Web Http requests. 

 

 Fig. 6.  Experiments results 

We developed an LSTM Encoder-Decoder model for XSS 

attacks detection. Our detection model achieves good results 

and it is compared favorably with related works ([6],[14], 

[9]). 

Based on the results reported in Fig. 6, we observe that, 

overall, LSTM Encoder-Decoder achieves the best 

classification results regardless of the word embedding 

technique used. However, CNN Encoder-Decoder results 

are improved slightly when used with Glove. Moreover, we 

remark that the use of FastText with either CNN or LSTM 

yields the lowest rate of false positives. Finally, the 

comparison of our approach with state-of-the-art should be 

taken with caution. Indeed, although the three research 

works propose a Deep Learning method for XSS attacks 

detection, they use different datasets, evaluation metrics and 

pre-processing techniques. 

6. Conclusion 

We proposed an XSS attacks detection approach based on 

LSTM Encoder-Decoder model and free-context word 

embedding. The classification results of our proposed model 

are as competitive as state-of-the-art approaches (i.e. 

99.08% Accuracy, 99.09% precision, and 99.08% Recall). 

As future work, we plan to test our model on private datasets 

and deploy it in real web applications to evaluate its 

efficiency. 

References 

[1]  OWASP, "Top 10 Web Application Security Risks," 

2017. [Online].  

[2]  R. L. Alaoui and E. H. Nfaoui, "Deep Learning for 

Vulnerability and Attack Detection on Web 

Applications: A Systematic Literature Review," 

Future Internet, vol. 14, no. 4, p. 118, 2022.  

[3]  R. L. Alaoui and E. H. Nfaoui, "Web attacks detection 

using stacked generalization ensemble for LSTMs and 

word embedding," 2022.  

[4]  A. M. Vartouni, S. S. Kashi and M. Teshnehlab, "An 

anomaly detection method to detect web attacks using 

Stacked Auto-Encoder," 2018.  

[5]  Z.-Q. Qin, X.-K. Ma and Y.-J. Wang, "Attentional 

Payload Anomaly Detector for Web Applications," 

Springer International Publishing, 2018, pp. 588-599. 

[6]  D. Tripathy, R. Gohil and T. Halabi, "Detecting SQL 

Injection Attacks in Cloud SaaS using Machine 

Learning," 2020.  

[7]  R. Kadhim and M. Gaata, "A hybrid of CNN and 

LSTM methods for securing web application against 

cross-site scripting attack," Indones. J. Electr. Eng. 

Comput. Sci, vol. 21, pp. 1022-1029, 2020.  

[8]  T. Liu, Y. Qi, L. Shi and J. Yan, "Locate-Then-Detect: 

Real-time Web Attack Detection via Attention-based 

Deep Neural Networks.," 2019.  

[9]  W. Rong, B. Zhang and X. Lv, "Malicious web request 

detection using character-level CNN," 2019.  

[10]  F. M. M. Mokbal, W. Dan, A. Imran, L. Jiuchuan, F. 

Akhtar and W. Xiaoxi, "MLPXSS: an integrated XSS-

based attack detection scheme in web applications 

using multilayer perceptron technique," IEEE Access, 

vol. 7, pp. 100567-100580, 2019.  

[11]  C. Luo, Z. Tan, G. Min, J. Gan, W. Shi and Z. Tian, 

"A novel web attack detection system for internet of 

things via ensemble classification," IEEE Transactions 

on Industrial Informatics, vol. 17, no. 8, pp. 5810-

5818, 2020.  

[12]  W. Melicher, C. Fung, L. Bauer and L. Jia, "Towards 

a lightweight, hybrid approach for detecting dom xss 

vulnerabilities with machine learning," 2021.  

[13]  H. Maurel, S. Vidal and T. Rezk, "Statically 

identifying XSS using deep learning," Science of 

Computer Programming, vol. 219, p. 102810, 2022.  

[14]  T. Chen, Y. Chen, M. Lv, G. He, T. Zhu, T. Wang and 

Z. Weng, "A Payload Based Malicious HTTP Traffic 



 

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(2), 277–282 |  282 

Detection Method Using Transfer Semi-Supervised 

Learning," Applied Sciences, vol. 11, no. 16, p. 7188, 

2021.  

[15]  Y. Fang, Y. Li, L. Liu and C. Huang, "DeepXSS: Cross 

site scripting detection based on deep learning," 2018.  

[16]  GitHub, "XSS dataset," 2018. [Online].  

[17]  T. Mikolov, K. Chen, G. Corrado and J. Dean, 

"Efficient estimation of word representations in vector 

space," arXiv preprint arXiv:1301.3781, 2013.  

[18]  J. Pennington, R. Socher and C. D. Manning, "Glove: 

Global vectors for word representation," Proceedings 

of the 2014 conference on empirical methods in natural 

language processing (EMNLP), pp. 1532-1543, 2014.  

[19]  P. Bojanowski, E. Grave, A. Joulin and T. Mikolov, 

"Enriching word vectors with subword information," 

Transactions of the association for computational 

linguistics, vol. 5, pp. 135-146, 2017.  

 

 

 


