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Abstract: Modeling a robotic arm is one of the popular types of CNC (computer numerical controller) machines that are suitable for 

specialized training and meeting the high demand in today's manufacturing industry. However, research and development of robotic arm 

models in Vietnam are still limited and primarily concentrated in large foreign-invested factories. This research develops a forward 

kinematics problem model for a six-degree-of-freedom robotic arm, which is a common type of model in the industry today, using artificial 

intelligence (AI). This study details each step, from axis transformations, translations, and rotations to determine the position of each link 

at various times, based on deep learning. It establishes the relationship between each step of the robot designed from the virtual model by 

AI. Furthermore, the study will use calculations and simulations to compare and contrast the deviations and verify the results. In the future, 

the study will incorporate inverse kinematics and dynamics problems to create a comprehensive study of the six-degree-of-freedom robotic 

arm model. 
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1. Introduction 

With the advancement of science and technology, the 

robotic arm model has always had fast, accurate, stable, and 

particularly time-saving operations when compared to work 

done by human hands. The robot's basic movements 

typically include rotation, translation, and parallelism in 

order to perform some basic operations such as holding, 

grasping, lifting, shifting, turning, and flipping [1] [2] [3] 

[4]. Through these movements, the robotic arm model can 

perform welding and assembly operations throug human 

control. The robotic arm model is frequently programmed 

and simulated in the virtual space of specialized software to 

save time during evaluation, fabrication, or trial production 

[5] [6] [7]. They can simulate the model's actual operation 

to anticipate the risks of collision, overload, or irregularities 

in motion. As a result, every actual movement of the robot 

during the working process will be precise and smooth, with 

no redundant movements. The movements of a robotic arm 

modeling are always the same and repeat exactly the same 

for the given cycles. As a result, these movements produce 

the exact results that each product requires, thereby reducing 

the number of products that are damaged, damaged as a 

result of carelessness or mishandling during the same 

operation as in humans, especially in jobs requiring a high 

level of concentration and high accuracy. As previously 

discussed, the robotic arm model is always monitored and 

operated correctly, it is resulting in high productivity from 

the industrial robot arm. They are especially capable of 

working around the clock (24/7) and bringing the highest 

productivity to businesses. Investors will cut many costs 

incurred during the manufacturing process, particularly for 

toxic, dangerous, and risky working environments such as 

dust, heat, radiation... As a result, the main robot is an ideal 

substitute for humans. Robots have helped us reduce a 

significant number of workplace accidents over the years. 

With the objective as analyzed above, those studies 

calculated the kinematics for the robotic arm model based 

on deep learning, which serves the assembly on automatic 

lines via a computational model based on the angular 

coordinate system. Thanks to the artificial intelligence 

model, robotic systems have been operated faster, more 

accurately and with a high degree of automation in 

operation, which can be applied in industrial environments 

[8] [9] [10] [11] [12]. Currently, the applications of machine 

learning models to robot operating systems are increasing 

and it is changing the image of factories and industrial parks 

around the world. 
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Fig. 1. The Denso VS-6556 robot. There are six-degree-of-

freedom 

The angular coordinate system, also known as the simulated 

coordinate system, is used to calculate the robot [13] [14] 

[15]. This is the coordinate system used in many current 

studies because of its ability to calculate accurately, simply, 

and efficiently. Rotation angles perform the three basic 

movements [16] [17] [18] [19]. The basic movements are 

determined by six rotation angles in the angular coordinate 

system. Because all of the robotic arm parts in this study are 

on the vertical plane, the basic calculations are all planar. 

When this plane rotates, this robotic arm model can be 

placed anywhere in the work area where human control is 

required [20] [21]. The compact model size and smooth 

control of this method for robots means that the operation 

area is relatively large and optimal compared to the size of 

the robot itself. This study discovered through a field survey 

that in order to improve the flexibility of the robotic arm 

model used in industry, manipulators must have a high 

number of degrees of freedom of movement. This 

demonstrates that the robotic arm model with six-degree-of-

freedom efficiency improves in the industrial use process. 

However, the number of degrees of freedom in this robotic 

arm model should not exceed six due to the complexity of 

the control process. This can be shown with six-degree-of-

freedom of movement, if properly arranged, it will be 

sufficient to create the flexibility of the final acting stage to 

be able to reach the manipulated object (located in its action) 

in all directions. The kinematic diagram of robotic arm 

model with six-degree-of-freedom obtained using the Denso 

VS-6556 robot model as shown in Figure 1 is as follows in 

Figure 2: 

 

Fig. 2. Kinematic diagram of the robot manipulator and 

DH coordinate systems for each stage. 

This research, based on artificial intelligence model, the 

manuscript calculates a forward kinematics problem model 

for a six-degree-of-freedom robotic arm model. The results 

obtained from the manuscript will solve many problems in 

controlling six -degree-of-freedom robot systems. This 

study details each step, from axis transformations, 

translations, and rotations to determine the position of each 

link at various times based on deep learning. It is done 

explicitly in establishing the relationship between each step 

of the robot that was designed from the virtual model by AI. 

Furthermore, the study will use calculations and simulations 

to compare and contrast the deviations and to verify the 

results. In the future, the study will incorporate inverse 

kinematics and dynamics problems in order to create a 

comprehensive study for the six-degree-of-freedom robotic 

arm model. 

2. Computational Model and Results Obtained  

2.1. Kinetic parameters Denavit – Hartenberg [22]: 

Stages will be n+1 on a robot with n joints. Thus, if the 

number of stages begins at 0 for the base stages (the model's 

pedestal) that are not moving and gradually increases up to 

n for the stages in the most recently manipulated position 

[23] [24] [25]. Number the joints from 1 to n, beginning with 

the joints associated with the first movable stages to the 

base. Thus, joint i is connected to its lower suture (i-1), on 

its proximal side by joint i  and joint (i+1) is connected to 

its higher suture (i+1) on its distal end. 

 

Fig. 3. Stage (i) and end joints (i-1) and (i). 

• The zi axis aligns with the joint axis i+1 

• The xi axis is defined along the common normal 

between the zi-1 and zi axis, in the direction from 

zi-1 to zi 

• The yi axis is determined by the right hand rule 

with 𝑦𝑖 = 𝑧𝑖 × 𝑥𝑖 

• The DH coordinate frame is defined by ai, αi, θi và 

di 

 

Fig. 4.Stage (i-1), i, (i+1) together with Bi and Bi+1, 

coordinate frames 
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The stage length ai is the distance along the xi axis between 

the zi-1 and zi axes. The kinetic length of the bond i is then 

given by ai. Furthermore, the bond i is the rotation of the zi-

1 axis around the xi axis required to become parallel to the zi 

axis. The di joint distance is equal to the distance between 

xi-1 and xi along the zi-1 axis. Joint displacement is also 

known as distance between joints, where joint angle i is the 

required rotation of the xi-1 axis around the zi-1 axis to 

become parallel to the xi axis. 

2.2. Setting the kinetic parameters Denavit - Hartenberg 

The study will establish a table of DH parameters through 

table 1 

Table 1. Denavit – Hartenberg table of kinematic 

parameters of the robot 

Elements  d1 ai αi 

1 θ1 335 75 -90o 

2 θ2 0 270 0 

3 θ3 - 900 0 90 90o 

4 θ4 -295 0 -90o 

5 θ5 0 0 90o 

6 θ6 + 1800 -80 0 90o 
Where the variables of the match are θ1,θ2,θ3,θ4,θ5,θ6, and 

the constants are d1,d4,d6,a2. Set the rotation angles at the 

joint variables to q1 = θ1, q2 = θ2, q3 = θ3, q4 = θ4, q5 = θ5, q6 

= θ6, and , q6 = θ6 for ease of calculation and programming. 

The Denavit - Hartenberg uniform coordinate 

transformation matrix in its general form for the following 

stages: 

T 
i−1

i =

[

cos qi −sin qi ⋅ cos αi sin qi ⋅ sin αi ai ⋅ cos qi
sin qi cos qi ⋅ cos αi −cos qi ⋅ sin αi ai ⋅ sin qi
0 sin αi cos αi di
0 0 0 1

] 

 (1) 

The matrix 𝑇𝑖−1
𝑖  is divided into two sub-matrixes, and the 

research presents a unique rotation and translation to 

generate the fixed motion required to move from stage i-1 

to i. 

𝑇 
𝑖−1

𝑖 = [
𝑅 

𝑖−1
𝑖 𝑑 

𝑖−1
𝑖

0 1
] (2) 

with 

𝑅 
𝑖−1

𝑖 = [

𝑐𝑜𝑠 𝑞𝑖 −𝑠𝑖𝑛 𝑞𝑖 ⋅ 𝑐𝑜𝑠 𝛼𝑖 𝑠𝑖𝑛 𝑞𝑖 ⋅ 𝑠𝑖𝑛 𝛼𝑖
𝑠𝑖𝑛 𝑞𝑖 𝑐𝑜𝑠 𝑞𝑖 ⋅ 𝑐𝑜𝑠 𝛼𝑖 −𝑐𝑜𝑠 𝑞𝑖 ⋅ 𝑠𝑖𝑛 𝛼𝑖
0 𝑠𝑖𝑛 𝛼𝑖 𝑐𝑜𝑠 𝛼𝑖

] (3) 

and  

𝑑 
𝑖−1

𝑖 = [

𝑎𝑖 ⋅ 𝑐𝑜𝑠 𝑝𝑖
𝑎𝑖 ⋅ 𝑠𝑖𝑛 𝑝𝑖

𝑑𝑖

] (4) 

Based on Table 1, kinematic parameters are determined by 

working conditions, the manuscript can find the 

transformation matrices by directly replacing the parameters 

in (1) to obtain a set of matrices, similar to Eq. (5) 

𝑇 
0
1 = [

𝑐𝑜𝑠 𝑞1) 0 − 𝑠𝑖𝑛( 𝑞1) 𝑎1. 𝑐𝑜𝑠( 𝑞1)

𝑠𝑖𝑛( 𝑞1) 0 𝑐𝑜𝑠( 𝑞1) 𝑎1. 𝑠𝑖𝑛( 𝑞1)
0 −1 0 𝑑1
0 0 0 1

]; 

 

𝑇 
1
2 = [

𝑐𝑜𝑠( 𝑞2) − 𝑠𝑖𝑛( 𝑞2) 0 𝑎2. 𝑠𝑖𝑛( 𝑞2)

𝑠𝑖𝑛( 𝑞2) 𝑐𝑜𝑠( 𝑞2) 0 𝑎2. 𝑐𝑜𝑠( 𝑞2)
0 0 1 0
0 0 0 1

]; 

 

𝑇 
2
3 = [

𝑠𝑖𝑛( 𝑞3) 0 − 𝑐𝑜𝑠( 𝑞3) 𝑎3. 𝑐𝑜𝑠( 𝑞3)

− 𝑐𝑜𝑠( 𝑞3) 0 − 𝑠𝑖𝑛( 𝑞3) −𝑎3. 𝑠𝑖𝑛( 𝑞3)
0 1 0 0
0 0 0 1

] 

 

𝑇 
3
4 = [

𝑐𝑜𝑠( 𝑞4) 0 − 𝑠𝑖𝑛( 𝑞3) 0

𝑠𝑖𝑛( 𝑞4) 0 𝑐𝑜𝑠( 𝑞3) 0
0 −1 0 −𝑑4
0 0 0 1

] 

 

𝑇 
4
5 = [

𝑐𝑜𝑠( 𝑞5) 0 𝑠𝑖𝑛( 𝑞5) 0

𝑠𝑖𝑛( 𝑞5) 0 − 𝑐𝑜𝑠( 𝑞5) 0
0 1 0 0
0 0 0 1

] 

 

𝑇 
5
6 = [

−𝑐𝑜𝑠( 𝑞6) 0 𝑠𝑖𝑛( 𝑞6) 0
− 𝑠𝑖𝑛( 𝑞6) 0 − 𝑐𝑜𝑠( 𝑞6) 0

0 1 0 −𝑑6
0 0 0 1

] (5) 

The research will derive a homogeneous coordinate 

transformation matrix 𝑇0 6,  which represents the final state 

of operation from the matrices shown above, as shown in 

Eq. (6): 

𝑇 
0
6 = 𝑇 

0
1 𝑇 
1
2 𝑇 
2
3 𝑇 
3
4 𝑇 
 4
5 𝑇 
5
6 = 𝑇 

0
3 𝑇 
3
6 =

[

𝑡11 𝑡12 𝑡13 𝑡14
𝑡21 𝑡22 𝑡23 𝑡24
𝑡31 𝑡32 𝑡33 𝑡34
0 0 0 1

] (6) 

2.3. Deep learning model in manuscript 

Deep learning is an artificial neural network where neurons 

are connected to each other, as shown in Figure 5, by 

weights as in Eq. (7). The output of the network is the sum 

of the inputs expressed in Eq. (8). Finally, the values of each 

neuron and their weights are fed into the activation function 

to turn them into the nonlinear function shown in Eq. (9).  

𝑢 = ∑ 𝑤𝑖𝑞𝑖 + 𝑏
𝑚
𝑖=1  (7) 

𝑞𝑖 = [𝑞1𝑞2𝑞3. . . 𝑞𝑚−1𝑞𝑚]
𝑇 (8) 
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𝑦 = 𝜑(𝑢 + 𝑑) (9) 

which, wi is the weight corresponding to qi, b is the 

coefficient of freedom 

 

Fig. 5. Deep learning model in manuscript 

Usually, in a deep learning network, each neuron in the 

hidden layer is connected to all the neurons in the network 

before and after it, so the deep learning network is said to be 

fully connected. A valid deep learning network must consist 

of at least three layers, including an input and an output layer 

and at least one hidden layer, shown as Eqs. 10–14 

𝑠𝑗 = ∑ 𝑤𝑖𝑗
𝑚
𝑖=1 𝑥𝑖 − 𝑏𝑗 (10) 

𝑢𝑘 = 𝑓(∑ 𝑣𝑘𝑗𝑦𝑗 − 𝑑𝑘
𝐻
𝑗=1 ); 𝑘 = 1,2,3, . . . 𝑂 (11) 

𝑦𝑗 = 𝑓(𝑠𝑗) (12) 

𝑦𝑗 = 𝑓(∑ 𝑤𝑖𝑗
𝑚
𝑖=1 𝑥𝑖 − 𝑏𝑗) (13) 

𝑦𝑗 =
1

1+𝑒𝑥𝑝(−(∑ 𝑤𝑖𝑗
𝑚
𝑖=1 𝑥𝑖−𝑏𝑗))

; 𝑗 = 1,2, . . . , 𝐻 (14) 

where W is the input weight matrix as Eq. 15, v is the output 

weight matrix in Eq. 16, b is the increment matrix input as 

Eq. 17, and d is the increment matrix output in Eq. 18 

𝑊 = (𝑤1𝑤2𝑤3. . . 𝑤𝑚−1𝑤𝑚) (15) 

𝑏 =

(

 
 

𝑏1
𝑏2
. . .
𝑏𝑚−1
𝑏𝑚 )

 
 

 (16) 

𝑣 =

(

 
 

𝑣1,1 𝑤2,1 𝑤3,1 . . . 𝑤𝑘−1,1 𝑤𝑘,1
𝑣1,2 𝑤2,2 𝑤3,2 . . . 𝑤𝑘−1,2 𝑤𝑘,2
. . . . . . . . . . . . . . . . . .
𝑣1,𝑗−1 𝑤2,𝑗−1 𝑤3,𝑗−1 . . . 𝑤𝑘−1,𝑗−1 𝑤𝑘,𝑗−1
𝑣1,𝑗 𝑤2,𝑗 𝑤3,𝑗 . . . 𝑤𝑘−1,𝑗 𝑤𝑘,𝑗 )

 
 

 (17) 

𝑑 =

(

 
 

𝑑1
𝑑2
. . .
𝑑𝑘−1
𝑑𝑘 )

 
 

  (18) 

The output vector of the deep learning network is influenced 

by the input vector and the activation function used. 

Specifically, the output value of the deep learning is 

calculated as the sum of the values of the input and the value 

of each neuron multiplied by their weight as shown in Figure 

6. 

 

Fig. 6. Fully connected network with 3 hidden layers 

3.  Kinetic model of the robotic arm model based 

on deep learning 

The transformation of kinematic information from joint 

variable space to Cartesian coordinate space is known as 

forward kinematics [26] [27] [28]. The research will then 

determine the position and direction of the final 

manipulation based on a specific set of matching variables. 

Kinetic information investigated in this study includes: link 

position, link speed, and link acceleration in Figure 7. 

However, in robotic arm modeling, the forward kinematics 

problem frequently deals with analyzing the position of the 

links at different times. As a result, the study of 

paramagnetic kinematics in this study will investigate the 

forward positions of the links by deep learning as shown in 

Figure 8, resulting in the determination of a combined 

transformation matrix between the links. 

𝑇 
0
𝑛 = 𝑇 

0
1(𝑞1) 𝑇 

1
2(𝑞2) 𝑇 

2
3(𝑞3). . . 𝑇 

𝑛−1
𝑛(𝑞𝑛) (19) 

To find the coordinates of the point P (x0, y0, z0) in the base 

coordinate system, as its coordinate system is given in the 

last step: 

𝑟 
0
𝑃 = 𝑇 

0
𝑛 . 𝑟 
𝑛
𝑃  (20) 

We can deduce the position of the active link's endpoint 

from this:   

𝑟 
0
𝑃 = 𝑇 

0
6. [

0
0
0
1

] = [

𝑡14
𝑡24
𝑡34
1

] (21) 

At the robotic arm model's resting position in the z and x 

directions with: with q1 = 0, q2 = 90o, q3  =  90o, q4  =  0, q5  

=  0, q6 = 0, 𝑇 
0
6, it becomes: 
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𝑇 
0
6 = [

0 0 1 𝑑6 + 𝑑4 + 𝑎1
−1 0 0 0
0 −1 0 𝑎3 + 𝑎2 + 𝑑1
0 0 0 1

] (22) 

3.1. Create the motion rule, draw the final operation’s 

trajectory, and test the results by deep learning 

Fig. 7. Denso robot model on Soilidworks software. 

Fig. 8. Using Motion Analysis to generate displacement 

results in three directions x, y, and z by deep learning 

To investigate the above results in Figures 7-8, the 

manuscript constructs the following movement law of the 

matching variables q over time t as follows: 

𝑞 = {

𝑞1 = 𝑞4 = 𝑞5 = 𝑞6 = 3𝑡
𝑞2 = −90 + 3𝑡
𝑞3 = 90 + 3𝑡

 (23) 

 

Fig. 9. The graph of the angle q1, q4, q5, q6 varies with time 

t 

 

Fig. 10. Graph of angle q2 varies with time t 

 

Fig. 11. The graph of angle q3 varies with time t 

We obtain the corresponding translational displacement 

graphs in the coordinate planes in the space of Oxy, Oxz, and 

Oyz in the time t = 0....10 (s), which are programmed, 

calculated, and drawn by Maple software in Figures 9-11. 

 

Fig. 12. Graph of the last manipulator's motion trajectory 

in space by deep learning 

 

 Fig. 13. Compare the displacement graphs in the y 

direction of the two methods by deep learning 

 

Fig. 14. Compare the displacement graphs in the z 

direction of the two methods by deep learning 
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Because the conventional coordinate system in Maple and 

the system coordinate system in Solidworks are opposite, 

the graph in Figures 12-14 will produce results with 

opposite signs. This manuscript get a table of data from the 

graphs that describes the difference between the two 

methods. 

Table 2: A comparison table of location data between Solidworks and Maple software 

No X’(slw) X  (maple) Y’ (slw) Y  (maple) Z’ (slw) Z  (maple) 

0 449.9999801 449.9999999 -0.0004610 0 695.0000131 695.0000000 

1 470.3039651 470.303960 -24.427700 24.42816125 650.7920117 650.7919974 

2 484.008174 484.0081442 -49.991935 49.99239506 605.5437109 605.5436959 

3 491.1268152 491.1267604 -75.804236 75.80469427 559.9382375 559.9382213 

4 

491.8543813 

491.8543018 -

101.010965 

101.0114197 

514.6408764 

514.6408597 

5 

486.5522778 

486.5521736 -

124.822784 

124.8232337 

470.2847361 

470.2847182 

6 

475.7294881 

475.7293596 -

146.540939 

146.5413824 

427.4576682 

427.4576500 

7 

460.0182938 

460.0181415 -

165.578819 

165.5792547 

386.6908230 

386.6908038 

8 

440.1462744 

440.1460987 -

181.477977 

181.4784032 

348.4491604 

348.4491407 

9 

416.9059558 

416.9057570 -

193.918100 

193.9185162 

313.1241576 

313.1241371 

10 

391.123541 

391.1233195 -

202.720739 

202.7211432 

281.0288781 

281.0288565 

Evaluation of the result: At each time unit t(s), the manuscript has displacement error: 

𝛥𝑥𝑖 = ||𝑥𝑖
′| − |𝑥𝑖||; 𝛥𝑦𝑖 = ||𝑦𝑖

′| − |𝑦𝑖||; 𝛥𝑧𝑖 = ||𝑧𝑖
′| − |𝑧𝑖|| 

 (24) 

Table 3: Displacement error in the x, y, and z directions 

No 

Δx (mm) Δy (mm) Δz (mm) 

Normal Deep 

learning 

Normal Deep 

learning 

Normal Deep 

learning 

0 0.01980 0.00841 0.46100 0.12451 0.01310 0.01024 

1 0.00510 0.00212 0.46125 0.13152 0.01430 0.01147 

2 0.02980 0.01254 0.46006 0.12541 0.01500 0.01004 

3 0.05480 0.01210 0.45827 0.12879 0.01620 0.01078 

4 0.07950 0.04124 0.45470 0.13024 0.01670 0.01012 

5 0.10420 0.08452 0.44970 0.12981 0.01790 0.01168 

6 0.12850 0.08542 0.44340 0.13145 0.01820 0.01024 

7 0.15230 0.09120 0.43570 0.14574 0.01920 0.01231 

8 0.17570 0.10852 0.42620 0.13011 0.01970 0.01033 

9 0.19880 0.14217 0.41620 0.12755 0.02050 0.01174 

10 0.22150 0.15421 0.40420 0.12452 0.02160 0.01424 

The average displacement error in each direction is as follows: 

𝛿𝑥−𝑑𝑒𝑒𝑝 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 =
𝛥𝑥𝑡𝑏
𝑥𝑡𝑏
′ = 0,00023133 ≈ 0,23% 𝛿𝑦−𝑑𝑒𝑒𝑝 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 =

𝛥𝑦𝑡𝑏
𝑦𝑡𝑏
′ = 0,000384640 ≈ 0,38% 
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𝛿𝑧−𝑑𝑒𝑒𝑝 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 =
𝛥𝑧𝑡𝑏
𝑧𝑡𝑏
′ = 0,000366312 ≈ 0,37% 

The study's findings have low error rates and are reliable, 

indicating two issues: 

- The forward kinematics problems of the robotic arm 

model include the creation of matrices in the manuscript that 

show the relationship between quantities such as 

coordinates, velocity, and acceleration between machine 

parts. As a result, they have high accuracy and low error and 

can be applied to real-world control models based on deep 

learning. 

- The machine learning application model in the 

manuscript gives much smaller errors than those commonly 

used today. The specific appropriate magnetic field range of 

this model, some basic settings, and the process of 

comparing and contrasting the results between the virtual 

simulation (Solidworks) and the calculated results on the 

algorithm have been built, which is effective and useful 

during implementation. 

4. Conclusion 

 The study developed a forward kinematics model for a six-

degree-of-freedom robotic arm using deep learning, with 

real-world working conditions. The model utilizes axis 

transformations, translations, and rotations to determine the 

position of each link at various times. It was designed from 

a virtual model, eliminating the need to build a physical 

model. The study conducted calculations and simulations to 

compare and verify the results between the virtual software, 

improving the efficiency of the process. By simulating the 

movement of the links with specific examples, the 

manuscript provides specific error cases for each 

corresponding link, resulting in a more accurate 

determination of the model's motion laws. In the future, the 

research will focus on inverse kinematics and dynamics 

problems, providing a more comprehensive study for the 

six-degree-of-freedom robotic arm model. 
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