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Abstract: This study aims to determine the best classification technique for lung cancer detection. Four different machine learning 

algorithms are implemented, which are Naïve Bayes (NB), Support Vector Machine (SVM), K-Nearest Neighbor Classifier (KNN), and 

Decision Tree (DT). The classification was carried out on 140 CT Scan data from the Lung Image Database Consortium image collection 

(LIDC-IDRI) dataset. Furthermore, the preposition started with a variety of filtering methods, The segmentation used was Otsu 

thresholding, which was textured with extraction using 11 features. The best results were obtained using DT, Low pass filter, and GLCM 

segmentation angle of 450 with performance results of 99.00% accuracy, 100.00% sensitivity, and 98.04% specificity for training data, as 

well as 96.25% accuracy, 95.12% sensitivity and 97.44 % specificity for test data. 
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1. Introduction 

Cancer occurs due to cell changes, which cause uncontrolled 

cell growth and division. It can also cause tumours, 

impairment of the immune system, and abnormalities that 

prevent the body from functioning properly [1]. 

Furthermore, lung cancer is the leading cause of mortality 

among other types globally, accounting for 18.4% of all 

death cases [2, 3]. It is generally detected between the age 

of 55 and 70 years because early diagnosis is quite difficult. 

The presence of small nodules in the organ is an early sign 

of abnormalities and they have the potential to become 

cancerous [4]. 

The condition can be detected through X-ray examination, 

which provides different images of a normal lung or 

cancerous lung [5]. As technology advances in the health 

sector, medical imaging is often used in the clinical 

diagnosis and treatment of various diseases [6]. Computed 

Tomography (CT) has been widely used to detect lung 

disorders, including pneumoconiosis, pneumonia, lung 

disease, edema, and cancer [7]. The image results obtained 

from the scan are often blurry or lack contrast, which makes 

the diagnosis and prognosis very difficult, especially in the 

early stages with small cancer cells [3]. This is due to the 

presence of noise that can reduce the quality. Therefore, this 

defect must be removed or reduced to make the information 

in the image clearer [8].  

Technological developments in CT increased the detail of 

the anatomical slices of the body with smaller sizes and also 

provided better image quality. This then causes an increase 

in the number of datasets generated, where one scanning 

process can produce 500 slices [9]. A radiologist observing 

one slide often requires 2 – 3.5 minutes [10] with 68% 

accuracy in examining images and can be detected up to 

82% more accurately than two radiologists [11]. The most 

challenging task performed on data generated by CT scans 

is the analysis and evaluation, hence, the assistance of a 

Computer-Aided Detection (CAD) is needed [12]. Image 

processing techniques with CAD have gained attention in 

all sectors, especially health, in terms of lung cancer 

detection [13]. 

Digital image processing consists of several stages, where 

the first step is image preprocessing to reduce noise and 

improve quality. It then segments to distinguish the region 

of interest (ROI) from other structures, followed by feature 

extraction to extract different features from the image. The 

final stage is classification, which is performed to evaluate 

and diagnose ROI based on the extracted features [14,15]. 

Various studies showed that the use of these methods can 

outperform radiologists, and has a 38-100% accuracy in 

detecting nodules as well as their location [16]. 
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2. Related Works 

The first CAD used to detect cancer nodules was carried out 

in the late 1980s with the limited ability of computers to 

perform image analysis [17]. Technological developments 

and the discovery of computers with high performance in 

computing processes and artificial neural networks have 

increased the development of studies in this field. 

Kulkarni et al. classified lung cancer stages starting with the 

pre-processing using a Gabor filter, followed by 

segmentation with a marker-based watershed. 

Subsequently, feature extraction was performed using 

geometric features, followed by SVM for the classification 

process [18]. Aggarwal et al. [19] classified 90 images using 

a median filter, thresholding and morphological closing 

operation. The feature extraction used eight geometric 

features, while the classification with LDA obtained an 84% 

accuracy and 53.33% specificity.  

Magdy et al. compared four types of classification, namely 

NN, SVM, NB, and linear classifier, for 83 CT image data 

from TCIA [12]. The preposition stage using a wiener filter 

was followed by AM-FM modelling Partial Least Squares 

Regression. The KNN obtained an Accuracy of 64%, 55% 

Sensitivity, and 72% Specificity, the SVM had a 90% 

accuracy, 85% sensitivity, and 97% Specificity, while Naïve 

Bayes had 82% accuracy, 82% sensitivity, and 82% 

specificity. The linear classifier obtained an accuracy of 

95% with 94% sensitivity and 97% specificity. 

Punithavathy et al. [20] recorded an accuracy of 92.67% for 

detecting lung nodules using the wiener filter with CLAHE 

technique, ROI extraction, feature extraction using 3 GLCM 

features, and classification with FCM Clustering. 

Meanwhile, [21] compared three classification methods, 

namely MLP, KNN, and SVM, for 60 CT LIDC images 

using median filters, histogram equalization, region 

growing, thresholding in the preposition, segmentation 

processes as well as feature extraction using five 

morphological features. The results showed that MLP 

obtained an accuracy of 90.41%, 73.55% sensitivity, and 

94.68% specificity, while the KNN had an accuracy of 

91.20 %, 81.76% sensitivity, and 93.59% specificity. The 

SVM had an accuracy of 90.60 %, 73.44% sensitivity, and 

94.94% specificity. 

Taher et al., with 100 image data from the Tokyo Center for 

lung cancer, compared two classification methods, namely 

ANN and SVM, with the Bayesian framework in terms of 

their preposition stage, mean shift technique for 

segmentation, and features Nucleus to Cytoplasm (NC) 

ratio, perimeter, density, curvature, circularity and Eigen 

ratio for feature extraction. Based on the results, ANN had 

a sensitivity of 94%, 83% specificity, and 90% accuracy of 

90%, while SVM had 97% sensitivity, 96% specificity, and 

97% accuracy [22]. The values obtained by Riti et al. for the 

three parameters was 85% [23], using the Otsu thresholding 

for the segmentation process. Furthermore, the convexity, 

solidity, circularity, and compactness for feature extraction 

and classification were carried out with MLP. Hasnely et al. 

[24] also used Otsu thresholding with MLP to classify 

cancer nodules with ROI and feature extraction variations 

using six statistical methods (Histogram) and 5 GLCM 

features. For the histogram, an accuracy of 80% was 

obtained, along with 88% sensitivity and 72% specificity. 

For GLCM, an accuracy of 96% was recorded with a 

sensitivity of 96%, and specificity of 96%. The combination 

of both methods produced an accuracy of 98%, 96% 

sensitivity, and 96% specificity. 

El-regaily et al. [25] used 400 LIDC CT scan images and 

using Thresholding, thorax, lung extractions, and 

reconstruction for the preposition and segmentation 

processes. Structure extraction, tabular structure 

elimination, and Rule-based classifier obtained an accuracy 

of 70.53%, 77.77% sensitivity, and 69.5% specificity. A 

total of 4,682 image data from TCIA were used by Kalaivani 

et al. with Histogram Equalization, Binarization in the 

preposition process, Region props function for feature 

extraction, and backpropagation classification with an 

accuracy of 78% [26]. Lavanya et al. [27] used data from 

LIDC with prepositions using a winer filter, a segmentation 

process using the FLICM algorithm, feature extraction with 

three geometric features, and classification using BPN. An 

accuracy of 85.9% was recorded, along with 90.87% 

sensitivity and 84.77% specificity. 

Bao et al. compared four classification methods: SVM, 

BPNN, PNN, and k-means Clustering. The proposition 

stage was carried out with High boost filtering, followed by 

a segmentation process using FCM Clustering Algorithm, 

while statistical methods were used for feature extraction. 

The accuracy values for SVM, PNN, BPNN, and K-means 

clustering were 85%, 82%, 86%, and 81%, respectively 

[28]. Variations of feature extraction in the form of LTCoP 

and LBP were performed by Bruntha et al. [29] for 50 

images from LIDC. The preposition stage used median 

filtering, followed by intensity thresholding segmentation, 

while the classification was performed with SVM. The 

LTCop and LBP had 91.5% and 89.2%, respectively. 

Furthermore, Karthiga et al [30] compared the FMSVM, 

MLP, KNN, SVM and I-NBC classifications, which had 

accuracies of 98%, 52%, 46%, 96%, and 98%, respectively. 

The stages of Minimum Mean Square Error preposition, 

ROI segmentation, and feature extraction using 10 

parameters were also compared. 

Image data from LIDC was tested by Narayanan et al. using 

the preposition median filtering stage for segmentation with 

thresholding. The feature extraction stage used seven 

geometric features, while the classification used ANN with 

an accuracy of 92.2% [31]. Perumal et al. [32] used the 
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Enhanced Artificial Bee Colony (EABC) Optimization 

classification and obtained a sensitivity of 92.4%. The 

prepositions were carried out with CLAHE, followed by 

segmentation using Sobel, while feature extraction used five 

levels of haar wavelet transform. 

Listyalina et al. [33] designed software with artificial neural 

networks from X-Ray images. The median filter served as 

the filtering method, while the discrete cosine 

transformation and adaptive histogram equalization were 

used for image feature extraction. The level of accuracy 

obtained was 72.97% in detecting lung cancer from X-ray 

results. Firdaus et al. [34] discussed the development of an 

image-based lung cancer detection system with feature 

detection in the form of GLCM and SVM as the 

classification method. In determining lung cancer diagnosis 

as benign or malignant, this system had an accuracy of 

83.33%. 

Furthermore, Bhatt & Soni [35] proposed an approach for 

classifying the condition with a classification technique in 

the form of CBIR-based BOF and grouping pattern 

categories with K-means clustering. This method provided 

a training accuracy of 99% and a testing accuracy of 

98.56%. A total of 120 CT Scan image data were tested by 

Yunianto et al. [36], using a median filter in the preposition 

process, and Otsu Thresholding in the segmentation. It was 

then extracted using the GLCM feature with variations in 

angle direction, and the classification process used Naïve 

Bayes with an accuracy of 88.33%. 

3. Material and Method 

Based on a review of relevant studies in the related works, 

the proposed method of classifying images was based on the 

determined procedure. Data acquisition was carried out for 

.png format images. They were then processed in the pre-

processing stage to improve the quality and eliminate noise 

by choosing between low pass, median, and high pass 

filtering. Segmentation was performed using Otsu 

thresholding, while feature extraction was used to determine 

the characteristics possessed by the image using the 

statistical method, namely Histogram and GLCM with 

variations in the angle direction of 00, 450, 900, and 1350. 

Furthermore, the database obtained from the extraction 

process was then classified using the NB, SVM, KNN, and 

DT. These four classification methods were included in the 

Top 10 algorithms in data mining [37]. Fig. 1 shows a block 

diagram of the proposed system.  

3.1. Datasets 

The research data was obtained from The Lung Image 

Database Consortium image collection (LIDC-IDRI) 

Dataset, which was downloaded from 

https://nbia.cancerimagingarchive.net/nbia-search/ using 

the NBIA Data Retriever [38] in DICOM format for further 

analysis. Furthermore, the 3D Slicer 4.11[39] was used to 

retrieve the slice number in the source database, marked by 

four radiologists, and then converted into .png format. A 

total of 140 images were used, and they consist of 100 

training and 40 testing data. 

3.2. Image pre-processing 

Image quality improvement was done before processing to 

increase the quality and correct errors [40]. The Grayscaling 

stage [41] and variations of the filtering process in the form 

of low pass, median, and high pass filters [42-45] were used 

for this process. The low pass filter process passes low-

frequency and attenuates signals with higher frequencies 

than the cutoff frequency [46]. Median filtering is an 

effective technique used to reduce noise without removing 

the edges [47-50]. The high pass filter maintains high 

frequencies, which makes the image clearer with sharper 

edges [51]. 

3.3. Segmentation 

Image segmentation involves separating objects from other 

 

    

Fig 1. Block diagram of the proposed system     
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items or the backgrounds from an image. The thresholding 

method has a threshold value used to convert a grayscale 

image into the binary form [52]. This study used the Otsu 

Thresholding method [53, 54]. 

3.4. Feature Extraction 

The feature extraction or separation process aims to find 

some texture features of the image, thereby facilitating 

accurate classification and segmentation. The classification 

depends on the quality of the features produced. In this 

study, six parameters of the first order Histogram-based 

Matrix were used: mean, standard deviation, Skewness, 

Kurtosis, Energy, and Entropy [55, 56]. Furthermore, five 

parameters of second-order GLCM were used to evaluate 

image features related to order histogram statistics, namely 

contrast, correlation, homogeneity, variance, and 

smoothness [57-59].  

3.5. Classification 

The classification used was Naïve Bayes [60] with a 

probability in the maximum posterior, which only took the 

largest class. The posterior probability was only calculated 

based on the main form [61]. The support vector machine 

(SVM), which is a supervised learning algorithm model 

used in data analysis for classification and regression, needs 

to be developed at AT&T Bell Laboratory [62-66]. 

Furthermore, the K-Nearest Neighbor (KNN) is a method 

for classifying objects based on the closest learning data. A 

decision tree was combined with the supervised machine 

learning method [67-69]. 

4. Results and Discussion 

4.1. Preprocessing 

The inputted .png format image sample was converted to 

grayscale and then processed into low pass, median, and 

high pass filters to determine the form with the best 

performance. 

 

(a)                                       (b) 

 

(c)                                           (d) 

Fig 2. Image of normal lung (a) input image, (b) low 

pass filtering (c) median filtering, (d) high pass filtering. 

The changes that occurred cannot be seen visually, as shown 

in Fig. 2 and 3, but the histogram in the program has 

different values. This was indicated by the histogram results 

produced in Fig. 4 and 5.  

 

(a)                 (b) 

 

          (c)                            (d) 

Fig 3. Image of lung cancer nodules (a) input image, (b) 

low pass filtering, (c) median filtering, (d) high pass 

filtering. 

 

(a)                               (b) 

  

(c)                                                    (d) 

Fig 4.  Histogram of normal lung image (a) input image, 

(b) low pass filtering, (c) median filtering, (d) high pass 

filtering. 

 

(a)                                              (b) 
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(c)                                                 (d) 

Fig 5.  Histogram of lung cancer nodules image (a) input 

image, (b) low pass filtering, (c) median filtering, (d) high 

pass filtering 

Histograms from the low pass and medium filtering have 

almost the same intensity and number of pixels. They can 

both reduce noise by making the intensity more even and 

smoothing the image. The grayscale segmentation and low 

pass filter obtained less noise and a higher average accuracy 

value [70]. In MRI, the median type processing can also 

remove noise [71]. 

The image produced in the high pass filter process is sharper 

than the original form. Furthermore, the edge pixels are 

shown to be brighter, while the non-edge pixels are darker. 

During improvement with the high pass filter method, the 

image produced was too sharp compared to the original 

[72]. 

4.2. Segmentation 

The segmentation was carried out with used the Otsu 

Thresholding method, where the threshold value is 

automatically calculated based on the input image. This 

method was performed with a discriminant analysis 

approach [73]. Therefore, the segmentation can now 

separate the lung object from its background. Each image 

has a different intensity of gray level and a threshold value. 

The Otsu thresholding segmentation for the normal lung 

image and lung cancer nodule image is presented in Fig. 6 

and 7, respectively. 

  

(a)                                          (b) 

 

(c) 

Fig 6. (a) Otsu thresholding using a low pass filter for 

normal lung images, (b) Otsu thresholding using a median 

normal lung image filter, (c) Otsu thresholding using a 

high pass filter for normal lung images 

 

   

(a)                                            (b) 

 

(c) 

Fig. 7 (a) Otsu thresholding using a low pass filter for lung 

cancer nodules, (b) Otsu thresholding using a median filter 

for lung cancer nodules, (c) Otsu thresholding using a high 

pass filter for lung cancer nodules 

Fig. 6 and 7 show that the edges of the image were detected 

after using the Otsu thresholding method. The lung object 

and the image background can be seen, hence, the 

foreground and background can be distinguished with this 

process. A CT scan of the organ consists of high-intensity 

pixels in the body and low-intensity pixels in the lungs and 

surrounding cavities, which can be separated with a 

thresholding process by automatically calculating the 

optimal threshold value [74]. In Fig. 6, the image results 

were in the form of a dark lung, with white spots as the 

remaining noise. Meanwhile, in Fig. 7, there are nodules on 

the CT scan image of the cancerous organ, where the size 

looks larger than the surrounding noise. The nodule image 

has more white spots than the normal form. These results 

are similar to Otsu thresholding in brain MRI image study 

using the threshold method and GLCM with the KNN 

algorithm. Threshold white patches are part of the tumor 

[75]. 
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4.3. Feature Extraction 

 Feature extraction used six parameters of first-order 

Histogram-based Matrix and five parameters of second-

order GLCM with a distance of 1 pixel as well as angles of 

0°, 45°, 90°, and 135°. Furthermore, Tables 1 – 6 show the 

results of the average feature extraction values for lung 

cancer nodules and normal lung images with various filters. 

The correlation value revealed the relationship between 1 

pixel and its neighboring variant, the energy and 

homogeneity values are a measure of the similarity and 

concentration of intensity pairs in the image. The 

smoothness value indicates the smoothness of the intensity. 

Meanwhile, the kurtosis and skewness indicate the 

sharpness and relative slope of the histogram curve. 

Based on the statistical value obtained, the normal lung 

images have a higher contrast than the cancerous nodule. 

Furthermore, the correlation, energy, homogeneity, 

smoothness, kurtosis, and skewness of the lung cancer 

nodule image was higher than the normal. 

The irregularity of the gray intensity and the average value 

in the image as indicated by the entropy and mean values. 

The standard deviation shows the histogram variance 

obtained from the image. Furthermore, the normal lung has 

a higher mean, standard deviation, and entropy compared to 

the feature extracted lung cancer nodule. The variance is a 

variation of the co-occurrence matrix element, which shows 

the image with a small gray degree transition. Hence, the 

value recorded for both of them was small. 

The feature extraction was compared with the input value, 

where 0 indicated the image of lung cancer nodules, and 1 

indicated that of the normal lung. It was then used as a 

database for the classification process. 

Table 1. The feature extraction on the lung cancer nodules image segmented using a low pass filter. 
Angle 

direction 
contrast correlation Energy Homogeneity Mean 

St. 

Deviation 
Entropy Variance Smoothness Kurtosis Skewness 

00 0.005 0.987 0.613 0.997 0.257 0.437 0.822 0.146 1.000 2.235 1.111 
450 0.008 0.978 0.609 0.996 0.257 0.437 0.822 0.146 1.000 2.235 1.111 

900 0.006 0.983 0.611 0.997 0.257 0.437 0.822 0.146 1.000 2.235 1.111 

1350 0.009 0.977 0.609 0.996 0.257 0.437 0.822 0.146 1.000 2.235 1.111 

Table 2. The feature extraction on normal lung images segmented using a low pass filter 

Angle 

direction 
contrast correlation Energy Homogeneity Mean 

St. 

Deviation 
Entropy Variance Smoothness Kurtosis Skewness 

00 0.007 0.977 0.663 0.996 0.208 0.406 0.737 0.132 1.000 3.076 1.441 

450 0.013 0.956 0.657 0.993 0.208 0.406 0.737 0.132 1.000 3.076 1.441 
900 0.010 0.969 0.660 0.995 0.208 0.406 0.737 0.132 1.000 3.076 1.441 

1350 0.013 0.960 0.657 0.993 0.208 0.406 0.737 0.132 1.000 3.076 1.441 

Table 3.  The feature extraction on the lung cancer nodules image segmented using a median filter 

Angle 

direction 
contrast correlation Energy Homogeneity Mean 

St. 

Deviation 
Entropy Variance Smoothness Kurtosis Skewness 

00 0.005 0.987 0.613 0.997 0.256 0.437 0.821 0.146 1.000 2.245 1.116 

450 0.008 0.978 0.610 0.996 0.256 0.437 0.821 0.146 1.000 2.245 1.116 

900 0.007 0.983 0.612 0.997 0.256 0.437 0.821 0.146 1.000 2.245 1.116 

1350 0.009 0.977 0.609 0.996 0.256 0.437 0.821 0.146 1.000 2.245 1.116 

Table 4. The feature extraction on normal lung images segmented using a median filter 

Angle 

direction 
contrast correlation Energy Homogeneity Mean 

St. 

Deviation 
Entropy Variance Smoothness Kurtosis Skewness 

00 0.008 0.977 0.666 0.996 0.205 0.404 0.732 0.131 1.000 3.135 1.461 

450 0.013 0.959 0.660 0.993 0.205 0.404 0.732 0.131 1.000 3.135 1.461 
900 0.010 0.968 0.663 0.995 0.205 0.404 0.732 0.131 1.000 3.135 1.461 

1350 0.013 0.956 0.660 0.993 0.205 0.404 0.732 0.131 1.000 3.135 1.461 

Table 5.  The feature extraction on the lung cancer nodules image segmented using a high pass filter 

Angle 

direction 

contrast correlation Energy Homogeneity Mean St. 

Deviation 

Entropy Variance Smoothness Kurtosis Skewness 

00 0.008 0.978 0.609 0.996 0.257 0.437 0.823 0.147 1.000 2.231 1.110 

450 0.011 0.972 0.607 0.995 0.257 0.437 0.823 0.147 1.000 2.231 1.110 

900 0.010 0.975 0.608 0.995 0.257 0.437 0.823 0.147 1.000 2.231 1.110 
1350 0.011 0.971 0.606 0.994 0.257 0.437 0.823 0.147 1.000 2.231 1.110 

Table 6.  The feature extraction on normal lung images segmented using high pass filter 

Angle 

direction 

contrast correlation Energy Homogeneity Mean St. 

Deviation 

Entropy Variance Smoothness Kurtosis Skewness 

00 0.016 0.950 0.654 0.992 0.208 0.506 0.738 0.133 1.000 3.068 1.438 

450 0.020 0.939 0.650 0.990 0.208 0.506 0.738 0.133 1.000 3.068 1.438 

900 0.019 0.942 0.651 0.990 0.208 0.506 0.738 0.133 1.000 3.068 1.438 
1350 0.020 0.939 0.650 0.990 0.208 0.506 0.738 0.133 1.000 3.068 1.438 
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4.4. Classification 

The classification process used the NB, SVM, KNN, and 

DT methods. The database from the feature extraction was 

entered as a dataset. These methods can calculate every 

opportunity for existing features. Hence, new values 

obtained are used to calculate data accuracy. A confusion 

matrix was combined with the actual and predictive values, 

which were useful for measuring the performance level of 

the program test results. The True Positive (TP) parameter 

was used when the normal image was read normally, while 

the False Positive (FP) was used when the normal image 

was read as a lung cancer nodule. The performance results 

were calculated based on the equation [76]. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 𝑥100%  

 (1) 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
 𝑥100%   (2) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑁

𝑇𝑁+𝐹𝑃
 𝑥100%   (3)  

 

By using equations 1-3, the accuracy, sensitivity, and 

specificity values were obtained from the applied 

classification process, as shown in Tables 7-10.  

Based on the performance data for the four types of 

classification methods in Table 7-10, the type with the best 

value is presented in Table 10, namely the DT classification 

with a GLCM 450 angle direction and low pass filter, which 

has a 99.00% accuracy, 100.00% sensitivity, and 98.04% 

specificity. In the training program, the variation was used 

as input for the classification process in the test data. In the 

testing process using the test data program, a total of 40 

images were entered. Using equations 1-3, the accuracy 

value was 96.25%, while the sensitivity and specificity were 

95.12% and 97.44%, respectively. Comparing these results 

with previous studies in the related works section [17-36] 

has the best accuracy value. 

5. Conclusion 

Image classification of lung cancer and normal lung was 

done using the NB, SVM, KNN, and DT methods. Based on 

the method used, the best performance value was obtained 

from the training process using variations of low pass filter, 

otsu thresholding segmentation, GLCM feature extraction 

Table 7. The performance of the training data classification process using Naïve Bayes 

Angle 

direction 
Low pass filter Median filter High pass filter 

Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity 

00 97.00% 96.08% 97.96% 97.00% 96.08% 97.96% 97.00% 97.96% 96.08% 

450 97.00% 96.08% 97.96% 97.00% 96.08% 97.96% 95.00% 94.12% 95.92% 

900 98.00% 98.00% 98.00% 97.00% 96.08% 97.96% 95.00% 94.12% 95.92% 

1350 97.00% 96.08% 97.96% 95.00% 95.92% 94.12% 95.00% 94.12% 95.92% 

Table 8. Performance of the training data classification process using SVM 

Angle 

direction 
Low pass filter Median filter High pass filter 

Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity 

00 57.00% 70.59% 54.22% 56.00% 68.75% 53.57% 56.00% 68.75% 53.57% 

450 56.00% 66.67% 53.66% 58.00% 72.22% 54.88% 59.00% 80.00% 55.29% 

900 55.00% 66.67% 52.94% 54.00% 64.29% 52.33% 56.00% 68.75% 53.57% 

1350 58.00% 70.00% 55.00% 55.00% 66.67% 52.94% 56.00% 68.75% 53.57% 

Table 9. The performance of the training data classification process using KNN 

Angle 

direction 

Low pass filter Median filter High pass filter 

Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity 

00 58.00% 59.52% 56.90% 54.00% 54.76% 53.45% 65.00% 65.96% 64.15% 

450 64.00% 64.00% 64.00% 57.00% 57.78% 56.36% 73.00% 74.47% 71.70% 

900 60.00% 60.00% 60.00% 54.00% 54.55% 53.57% 63.00% 63.83% 62.26% 

1350 67.00% 67.35% 66.67% 59.00% 60.47% 57.89% 71.00% 73.33% 69.09% 

Table 10. The performance of the training data classification process using Decision Tree 

Angle 

direction  

Low pass filter Median filter High pass filter 

Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity 

00 97.00% 97.96% 96.08% 97.00% 97.96% 96.08% 95.00% 95.92% 94.12% 

450 99.00% 100.00% 98.04% 95.00% 97.87% 92.45% 94.00% 95.83% 92.31% 

900 98.00% 98.00% 98.00% 97.00% 97.96% 96.08% 95.00% 95.92% 94.12% 

1350 98.00% 98.00% 98.00% 97.00% 97.96% 96.08% 93.00% 95.74% 90.57% 

 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(2), 425–436 |  432 

with 45 angle direction, and classification using DT, which 

had 99.00% accuracy, 100.00% sensitivity, and 98.04% 

specificity. The performance for the test data obtained 

96.25% accuracy, 95.12% sensitivity, and 97.44% 

specificity. Therefore, the method is good for predicting and 

classifying lung cancer and normal lung CT Scan image 

results. 
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