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Abstract: Rapid technological ups and downs have led to an increasingly quick jump in product overviews. Fast ups and downs enable 

useful life for long-life schemes, but they also provide significant issues for managing obsolescence when combined. Numerous techniques 

for anticipating obsolescence risk and product life cycle have been developed over time. However, gathering the data necessary for 

prediction is frequently difficult and independent, leading to disparities in forecasts. The goal of this paper is to develop a ML based system 

capable of accurately forecasting obsolescence risk and product life cycle while minimizing maintenance and upkeep of the predicting 

scheme in order to report these issues. Specifically, this innovative approach enables prediction of the obsolescence risk level as well as 

the timeframe during which a part becomes obsolete. A case study of the computer sale is presented to demonstrate the value and potency 

of the unique approach. 
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1. Introduction 

Almost all industrial sectors experience some level of 

obsolescence, which is typically brought on by the 

availability of more affordable alternatives, alternatives 

that can achieve superior presentation and perfection, or 

a combination of these two. Currently, technological, 

practical, lawful, and sartorial obsolescence causes 3% 

of all electrical items in the globe each month to become 

obsolete. The music industry, for instance, is subject to 

technical obsolescence. Initial music recordings were 

made on vinyl, followed by eight-track cassettes, cassette 

tapes, and finally digital downloads. During the 1980s, 

cassettes were replaced by compact discs. The music 

business is only observing a skill transition from MP3 to 

music streaming facilities. Every social shift generates 

enormous volumes of outmoded inventory, including 

physical music instruments and audio players. 

The difficulty of element and software obsolescence in 

supporting sectors has increased over the past few years 

as a result of the integration of electronic components 

and software into normally non-electronic manufactured 

goods. Since sensitive plans are typically more expensive 

than active plans, the need for practical organization 

grows when obsolescence occurs. Sensitive plans require 

higher resources, including time and materials, to handle 

and can result in more interruptions that lower customer 

satisfaction. Sensitive planning provides businesses more 

time to strategize and react with a practical and affordable 

solution [3]–[6]. An obsolescence forecasting approach is 

the cornerstone of a workable active obsolescence 

organization plan. 

Many sectors can suffer greatly from obsolescence, and as 

a result, there is a substantial corpus of research on 

decision-making related to obsolescence and, more 

generally, on analyzing items throughout their life cycle. 

Cost minimization models are offered for both the product 

design side and the supply chain management side of 

obsolescence management in order to handle the economic 

element of obsolescence [7]–[9]. The structuring of 

obsolescence information has also been the subject of 

extensive research [10]–[12]. During the design stage of a 

product's life cycle, one may make more informed 

judgments thanks to the structuring of the information. 

There are three categories of obsolescence management 

and decision-making techniques:  

a. Reactive in the short term;  

b. Reactive in the long term; and  

c. Proactive.  

Lifetime purchase, hobby purchase, aftermarket sources, 

and identification of alternative or substitute components, 

emulated parts, and salvaged parts are some of the most 

popular short-term reactive obsolescence resolution 

solutions [3], [13]. These tactics, however, are only short-

term and may fail if the company runs out of options for 

obtaining the necessary components. Redesign and design 

refresh are better long-term choices. However, these 
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solutions frequently need extensive design work and 

have high upfront costs. 

The subcategories of obsolescence forecasting include:  

a. Obsolescence risk forecasting and  

b. Life cycle forecasting.  

The probability that a component or other element will 

become obsolete is determined through forecasting for 

obsolescence risk. Life cycle forecasting is used to 

determine how long it will be before a part or component 

becomes obsolete. The creation date and life cycle 

forecast can be used by analysts to project a time frame 

for when a part or component will become obsolete.  

Forecasting obsolescence is essential during both the 

product's design and manufacturing life cycles. 

Decisions taken during the design phase are thought to 

be the root of 60%–70% of the costs incurred over the 

course of a product's life cycle [21]. Designers can 

choose designs with lower risk of component 

obsolescence and thus lower lifetime cost effect by 

understanding the risk level for each component in 

proposed bills of materials created in the design process. 

Throughout a product's life cycle, obsolescence 

forecasting can also be used to examine anticipated 

component obsolescence dates and determine the best 

time to implement a product redesign that will get rid of 

the most out-of-date or at-risk-of-obsolescence parts. 

To lower the risk for manufacturers and other businesses 

brought on by issues like quick technological 

advancements and brief technological life cycles, it is 

essential to precisely estimate the obsolescence cycle. 

Numerous statistical models have been investigated [4–

7] for the precise prediction of the obsolescence risk and 

date. [6] describes a Weibull-based conditional 

probability method as a risk-based strategy for foretelling 

the obsolescence of microelectronic components. [8] is a 

summary of the references made to the issue of 

component obsolescence. Implementing a statistical 

model that can change quickly enough to anticipate the 

obsolescence cycle of hundreds of different component 

kinds is challenging, though. Additionally, it is 

challenging to compile the input parameters for various 

models. 

Many techniques for forecasting future trends by 

learning large-capacity data and gathering relevant 

knowledge are being investigated in light of recent 

increases in computer performance. Outstanding 

outcomes are being shown by these teaching techniques, 

especially Machine Learning (ML) and Deep 

Learning (DL) techniques [9–12]. Different machine-

learning techniques can be applied depending on the data 

type or application. Few researches have used these ML 

or DL techniques to forecast the DMSMS obsolescence 

cycle, to the best of the authors' knowledge. Two ML-based 

approaches for estimating the risk of obsolescence and the 

life cycle were proposed by Jennings et al. (2016) [13]. For 

data on the cell phone market, successful predictions were 

made utilizing random forests, artificial neural networks, 

and support vector machines. 

Grichi et al. (2017, 2018) [14,15] proposed the use of a 

random forest and a random forest together with genetic 

algorithm searches for optimal parameter and feature 

selection for cell phone data, respectively. Trabelsi et al. 

(2021) [16] combined a feature selection and MLfor 

obsolescence prediction. As described above, ordinary 

learning methods attempted to increase the accuracy of 

prediction by combining the existing machine-learning 

methods and applying them to the component obsolescence 

data. Although it is necessary to present efficient methods 

and hybridize them, it is expected that the accuracy of 

prediction can be improved further if the characteristics of 

each part data are used for learning.   

2. Learning Models 

It's crucial to pick a ML or DL algorithm with strong 

computational and predictive capabilities for the dataset. A 

simple to understand tree-building method that can learn 

complex relationships is the decision tree (DT). An 

ensemble method, which outperforms each individual 

algorithm in terms of generalization, can be created by 

merging numerous techniques. The two well-liked 

ensemble techniques are boosting and bagging. In this 

study, a hybrid approach is suggested, and its benefits are 

contrasted with those of a number of widely used standard 

algorithms, including individual algorithms, bagging 

algorithms (random forest), boosting algorithms (gradient 

boosting), and DL techniques (DL network and recurrent 

neural network). 

The following machine learning algorithms are briefly 

introduced, and their combinations are discussed for better 

outcomes. 

1. Linear Regression (LR) 

2. Decision Trees (DT) 

3. Random Forests (RF) 

4. Support Vector Machines (SVM) 

5. Bayesian Regression (BR) 

2.1 Linear Regression 

An algorithm that corresponds to supervised machine 

learning is linear regression. On the basis of the data points 

for the independent variables, it attempts to apply relations 

that would forecast the outcome of an event. The relation 

is often a straight line that as closely as possible fits the 

various data points. A continuous form, or numerical value, 

is the output. The output could include things like revenue 
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or sales in money, the quantity of goods sold, etc. The 

independent variable in the example above can be one or 

many. In mathematics, linear regression can be written 

as Equation 1.   

𝑦

= 𝛽0 + 𝛽1𝑥

+ 𝜀                                                                       (1) 

Here, y = Dependent Variable,     x = Independent 

Variable, 𝛽0= intercept of the line, β1 = Linear 

regression coefficient,         ε = random error. The final 

variable, random error 𝜀  is necessary because the best fit 

line also does not precisely encompass the data points. 

2.2 Decision trees  

In the shape of a tree structure, decision trees construct 

regression or classification models. It incrementally 

develops a decision tree to go along with the breakdown 

of a dataset into smaller and smaller subsets. A tree with 

decision nodes and leaf nodes is the end result. A 

decision node (such as Outlook) may have two or more 

branches, each of which represents a value for the 

attribute being checked (e.g., Sunny, Overcast, and 

Rainy). An option for the numerical aim is represented 

by a leaf node (for instance, Hours Played). A decision 

tree's root node is the topmost decision node and the best 

predictor. Numerical and categorical data can both be 

handled by decision trees. DTs that use features from 

training data split the data based on information gain 

from the root of the tree. The aim function to maximize 

this information gain in each division is the following: 

𝑓(𝑝𝑎𝑟𝑒𝑛𝑡, 𝑓𝑒𝑎𝑡𝑢𝑟𝑒)

= Ϯ𝑝 − ∑

𝑛

𝑗=1

𝑁𝑗

𝑁𝑝

 Ϯ𝑗                       (2) 

Here, Ϯ is the impurity indicator, N is the number of 

samples of the node, the subscript p denotes the parent 

node, the subscript j denotes the j-th child node, and n is 

the number of child nodes. As an impurity indicator, 

entropy  Ϯ𝐸 or Gini impurity Ϯ𝐺   is widely used as given 

in Equations 3 and Equations 4 respectively. 

Ϯ𝑡
𝐸 =

∑𝑚
𝑖=1

𝑁𝑖

𝑁𝑡
𝑙𝑜𝑔2 (

𝑁𝑖

𝑁𝑡
)                                                          (3)  

 

Ϯ𝑡
𝐺 =

∑𝑚
𝑖=1 (

𝑁𝑖

𝑁𝑡
)

2

                                                                     (4)  

Where m is the number of classes in the node t and the 

subscript i denotes the ith class in node t. DTs have a few 

restrictions on the training data; thus they are prone to            

over-fitting. Therefore the maximum depth of the DT is 

usually controlled as a regulatory variable [10,11].  

2.3 Random Forest 

Ensemble learning's fundamental concept is pretty 

straightforward. The predictions from many ML 

algorithms should be combined in some way after training. 

This method typically produces forecasts that are more 

accurate than those of any one model. A model made up of 

numerous base models is known as an ensemble model. 

So, ensemble learning is a process where multiple ML 

models are generated and combined to solve a particular 

problem. In general, ensemble learning is used to obtain 

better performance results and reduce the likelihood of 

selecting a poor model.  Various types of ensemble 

learning exist, including: 

1. Ensemble Learning in Sequence (Boosting) 

2. Stacking, Bootstrap Aggregating,  

3. Parallel Ensemble Learning (Bootstrap => Bagging),  

4. Others (less commonly used). 

A supervised learning system called Random Forest is built 

on several Decision Trees and the ensemble learning 

approach. Because Random Forest uses a bagging method, 

all computations are performed concurrently and there is 

no interaction between the Decision Trees as they are 

constructed. Both Classification and Regression tasks can 

be solved with RF. 

The term "Random Forest" refers to the Bagging concept 

of randomizing data and creating several Decision Trees 

(Forest). Overall, it is an effective machine learning 

technique that reduces the drawbacks of a Decision Tree 

model (we will cover that later on). Additionally, as 

evidenced by the abundance of academic papers, technical 

articles, and Kaggle competitions, Random Forest is highly 

popular.  

Let's look at the Random Forest's actual algorithm to help 

make things clear: 

● Therefore, you wish to include K Decision Trees in our 

ensemble together with your original dataset D. You 

also have a number N; you will build a tree until each 

node has less than or equal to N samples (for the 

Regression, task N is usually equal to 5). Additionally, 

each node of the decision tree will include a random 

feature chosen from a pool of F characteristics. From 

these F features, the feature that will be used to split the 

node is chosen (for the Regression job, F is often equal 

to sqrt (number of features of the original dataset D).  

● The rest is quite straightforward. K subsets of the data 

are created by Random Forest from the original dataset 

D. Samples that are "out-of-bag" are those that do not 

fit into any subgroup. 

● K trees are constructed using just one subset. 

Additionally, each tree is constructed until each node 
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contains N samples or fewer. Additionally, F 

characteristics are chosen at random for each node.  

● The node K trained models are divided into an 

ensemble using one of them, and the final outcome 

for the Regression task is generated by averaging the 

predictions of the individual trees. 

2.4 Support Vector Machines 

A multiobjective function is created by combining the 

geometrical characteristics of the tube. After that, the 

convex optimization—which has a single solution—is 

resolved uses the appropriate numerical optimization 

techniques. The hyperplane is represented by support 

vectors, which are training samples that are beyond the 

tube's boundaries. The most important examples that 

influence the shape of the tube in a supervised learning 

environment are the support vectors, and training and test 

data are considered to be independent and identically 

distributed (iid), coming from the same fixed but 

unknowable probability data distribution function. 

2.5 Bayesian Regression 

Each data point in the linear regression method of 

machine learning is represented by a pair of vectors: the 

input vector and the output vector. In its most basic form, 

linear regression makes the assumption that the kth output 

vector was created through some linear combination of 

the kth input vector's elements plus a constant term, to 

which Gaussian noise was then added. The best fitting 

linear relationship between the inputs and outputs can 

then be found using traditional linear regression and the 

data. With the aid of Bayesian linear regression, a 

somewhat natural mechanism can endure a lack of or 

poorly distributed data. It enables you to apply a prior to 

the noise and coefficients, allowing the priors to assume 

control in the absence of data. More crucially, you can 

inquire of Bayesian linear regression as to which aspects 

of its data fit it is confident in and which aspects are 

highly speculative (perhaps based entirely on the priors). 

3.  Methodology 

The proposed method as shown in Figure 1 first divides 

the training data into ‘k’ groups. As ‘k’ is the number 

which represent type of components. Then for each data 

in the test data, an appropriate model is selected for the 

prediction as follows. Suppose that (C1, C2… Ck) are the 

centroids of the groups in the partition of the training 

data. Given test data X, the distance between X and each 

of the centroids is measured as in Equations 5.   

 

𝑑(𝑋, 𝐶𝑖) = ‖𝑋 − 𝐶𝑖‖  𝑖

= 1,2,3, … , 𝑘                                  (5) 

 

If the distance is minimized at i= 𝑖∗, 𝑡ℎ𝑎𝑡 𝑖𝑠 Equations 6. 

 

  𝑑(𝑋, 𝐶𝑖∗) =  𝑚𝑖𝑛𝑖{𝑑(𝑋, 𝐶𝑖)   𝑖 =

1,2,3, … , 𝑘}                     (6) 

 

Then the learning model obtained from the 𝑖𝑡ℎ cluster of 

the training data is applied for the prediction of X. The 

procedure is repeated for each of the test data as in Figure 

1. 

Varying machine-learning techniques produce different 

prediction outcomes, and no technique is particularly 

accurate. As a result, an ensemble method that modifies 

standard machine learning techniques is taken into 

consideration. Obsolescence is defined as the average of 

the three machine-learning algorithms' predicted 

obsolescence, LR, DT, RF, SVM and BR. The following 

Equation 7 is used.  

𝑌𝐴𝑣𝑔 =  
1

5
 (𝑌𝐿𝑅 + 𝑌𝐷𝑇 + 𝑌𝑅𝐹 + 𝑌𝑆𝑉𝑀 + 𝑌𝐵𝑅)                 (7) 

𝑌𝐿𝑅 , 𝑌𝐷𝑇𝑌𝑅𝐹 , 𝑌𝑆𝑉𝑀𝑎𝑛𝑑 𝑌𝐵𝑅  are the predictions from LR, 

DT, RF, SVM and BR respectively.  

4. Algorithm 

The proposed method's technique is outlined in the 

algorithm. It should be highlighted that the algorithm runs 

automatically, necessitating no human involvement from 

the processing of input data to the foretelling of 

obsolescence.  

Proposed algorithm 

● Convert the categorical data to numeric data; 

● Define the features; 

● Define the target data; 

● Find the optimal size of clustering; 

● Partition the training data; 

● For each cluster do 

● Find optimal hyper parameters; 

● Find best model; 

● End 

● For each data in the test data do 

● Find the closest cluster using Equation  6; 

● For each learning method do 

● Predict using the best model of the closest cluster; 

● End 

● Predict using the hybrid method Equation 7; 
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● End 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 1. Proposed methodology 
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5. Results and Discussion 

The Section 2 covers important theoretical material. 

Looking through the dataset and learning more about the 

recommended and existing data is the first step in data 

exploration. The dataset under consideration includes the 

sample number of computer products sold as well as the 

two attributes that have been hypothesized and are in the 

dataset, as illustrated in Figure 2 and Figure 3. The 

algorithm is given the training set once the dataset has 

been divided into training and testing sets in order to 

educate it how to predict values. 

MAE and RMSE error parameters were applied in this 

study. Root Mean Square Error (RMSE) is the average 

error's square root. On the basis of Equation 8, the mean 

squared error is displayed. 

𝑅𝑀𝑆𝐸

= √
∑𝑛

𝑖=1 (𝑦𝑜𝑏𝑠 , 𝑖 − 𝑦𝑚𝑜𝑑𝑒𝑙 , 𝑖)2

𝑛
                                (8) 

Where, 𝑦𝑜𝑏𝑠 is actual output and 𝑦𝑚𝑜𝑑𝑒𝑙  are the model 

output of ith sample.  The average of all absolute errors 

is called the Mean Absolute Error (MAE). This 

parameter is calculated using Equation 9.  

𝑀𝐴𝐸

=
1

𝑛
  ∑

𝑛

𝑖

|𝑒𝑡|                                                                   (9) 

 

 

Fig. 2. Sample quantity of computer products sale 

 

 

 

Fig. 3. Graphical presentation of computer products sale 

The prediction accuracy is then compared with respect to 

MRE and RMSRE, two measurements. The MRE of the 

combine training data of all items to be predicted and 

separate data of items to be predicted are shown in Table 

1. It demonstrates that training with RF over fits the 

provided training data and that the mistakes from the LR 

and DT, SVM and BR are bigger than those of the other 

shallow machine learning methods.  

The MRE error for the test data of the combine training 

data of all items to be predicted and separate data of items 

to be predicted is shown in Table 2. All machine learning 

predictions, whether they involve clustering or not, 

outperform BR, and for all four categories, the four shallow 

machine learning methods—LR, DT, RF and SVM. In 

many applications, ML techniques produce accurate 

regression results, but in this case, the absence of data 

makes it impossible for them to identify the appropriate 

parameters.       

Although the prediction of statistics with separate data of 

items to be predicted is superior to the test data of the 

combine training data of all items to be predicted, machine 

learning still produces the majority of the outcomes. When 

separate data of items to be predicted, the machine learning 

methods' flaws are more significant.  

The LR, DT, RF, SVM and BR machine-learning 

approaches provide accurate forecasts for 0157, 0541, 

16/32 bit µC, 4N33M and 8 bit µC, whereas the BR provide 

accurate predictions for 0157, 0541, 16/32 bit µC, 4N33M 

and 8 bit µC. Even when the same model is used, the 

accuracy of the models with separate data of items to be 

predicted is better than the accuracy of the models test data 

of the combine training data of all items because the data 

in each separate data of items to be predicted has less 

variation than the entire data. Therefore, the machine-
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learning model trained with the separate data of items to 

be predicted represents the data better than a single 

model trained with the entire data. The hybrid technique 

produces good accuracy regardless of the category or the 

training method, which suggests that the hybrid method 

is dependable.  

The 𝑅𝑀𝑆𝐸 errors of the training data the combine 

training data of all items to be predicted and separate data 

of items to be predicted are shown in Table 3. The LR, 

DT, SVM and BR approaches all produce greater errors 

than the others, and training using RF appears too overfit.      

The RMSE errors of the test data the combine training 

data of all items to be predicted and separate data of items 

are shown in Table 4. For the given items, the 

predictions from all machine learning techniques 

combine training data of all items are superior to the 

naive statistical prediction. The combine training data of 

all items, the statistical and BR approaches produce 

significant inaccuracies when used to bridge rectifier 

diodes. In reality, for all three categories, the RMSE 

errors from the RF approach are substantial.  

Table 1. MRE of the training for Combine training data of 

all items to be predicted and Separate data of items to be 

predicted. 

Machine 

learning 

algorithms 

Item 

Combine training 

data of all items to 

be predicted 

Separate 

data of 

items to be 

predicted 

LR 

0157 0.270 0.460 

0541 0.089 0.279 

16/32 bit 

µC 0.419 0.609 

4N33M 0.375 0.565 

8 bit µC 0.135 0.325 

DT 

0157 0.360 0.530 

0541 0.179 0.349 

16/32 bit 

µC 0.509 0.679 

4N33M 0.465 0.635 

8 bit µC 0.225 0.395 

RF 

0157 0.000 0.000 

0541 0.000 0.000 

16/32 bit 

µC 
0.000 0.000 

4N33M 0.000 0.000 

8 bit µC 0.000 0.000 

SVM 

0157 0.34 0.520 

0541 0.159 0.339 

16/32 bit 

µC 0.489 0.669 

4N33M 0.445 0.625 

8 bit µC 0.205 0.385 

BR 

0157 0.36 0.160 

0541 0.179 0.179 

16/32 bit 

µC 0.309 0.109 

4N33M 0.265 0.165 

8 bit µC 0.125 0.125 

 

Table 2. MRE of the training for Combine training data of 

all items to be predicted and Separate data of items to be 

predicted. 

Machine 

learning 

algorithms 

Item 

Combine training 

data of all items to 

be predicted 

Separate 

data of 

items to be 

predicted 

LR 

0157 0.170 0.300 

0541 0.110 0.119 

16/32 bit 

µC 
0.319 0.449 

4N33M 0.275 0.405 

8 bit µC 0.195 0.165 

DT 

0157 0.260 0.370 

0541 0.079 0.189 

16/32 bit 

µC 
0.409 0.519 

4N33M 0.365 0.475 

8 bit µC 0.125 0.235 

RF 

0157 0.000 0.000 

0541 0.000 0.000 

16/32 bit 

µC 
0.000 0.000 

4N33M 0.000 0.000 

8 bit µC 0.000 0.000 

SVM 0157 0.240 0.360 
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0541 0.059 0.179 

16/32 bit 

µC 
0.389 0.509 

4N33M 0.345 0.465 

8 bit µC 0.105 0.225 

BR 

0157 0.090 0.100 

0541 0.079 0.119 

16/32 bit 

µC 
0.109 0.149 

4N33M 0.165 0.105 

8 bit µC 0.185 0.165 

 

Table 3. RMSE of the training for Combine training data of 

all items to be predicted and Separate data of items to be 

predicted. 

Machine 

learning 

algorithms 

Item 

Combine training 

data of all items to 

be predicted 

Separate 

data of 

items to be 

predicted 

LR 

0157 0.317 0.470 

0541 0.240 0.289 

16/32 bit 

µC 
0.449 0.619 

4N33M 0.405 0.575 

8 bit µC 0.325 0.335 

DT 

0157 0.390 0.540 

0541 0.209 0.359 

16/32 bit 

µC 
0.539 0.689 

4N33M 0.495 0.645 

8 bit µC 0.255 0.405 

RF 

0157 0.240 0.370 

0541 0.220 0.389 

16/32 bit 

µC 
0.149 0.419 

4N33M 0.231 0.375 

8 bit µC 0.276 0.435 

SVM 
0157 0.370 0.530 

0541 0.189 0.349 

16/32 bit 

µC 
0.519 0.679 

4N33M 0.475 0.635 

8 bit µC 0.235 0.395 

BR 

0157 0.227 0.270 

0541 0.209 0.289 

16/32 bit 

µC 
0.239 0.319 

4N33M 0.295 0.275 

8 bit µC 0.315 0.335 

 

Table 4. RMSE of the testing for Combine training data of 

all items to be predicted and Separate data of items to be 

predicted. 

Machine 

learning 

algorithms 

Item 

Combine training 

data of all items to 

be predicted 

Separate 

data of 

items to be 

predicted 

LR 

0157 0.32 0.56 

0541 0.26 0.379 

16/32 bit 

µC 
0.469 0.709 

4N33M 0.425 0.665 

8 bit µC 0.345 0.425 

DT 

0157 0.41 0.63 

0541 0.229 0.449 

16/32 bit 

µC 
0.559 0.779 

4N33M 0.515 0.735 

8 bit µC 0.275 0.495 

RF 

0157 0.26 0.46 

0541 0.24 0.479 

16/32 bit 

µC 
0.169 0.509 

4N33M 0.251 0.465 

8 bit µC 0.296 0.525 

SVM 

0157 0.39 0.62 

0541 0.209 0.439 

16/32 bit 

µC 
0.539 0.769 
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4N33M 0.495 0.725 

8 bit µC 0.255 0.485 

BR 

0157 0.24 0.36 

0541 0.229 0.379 

16/32 bit 

µC 
0.259 0.409 

4N33M 0.315 0.365 

8 bit µC 0.335 0.425 

 

6. Conclusion 

Rapid technological ups and downs have caused product 

overviews to move up and down with increasing 

frequency. Fast ups and downs extend the useful life of 

long-term plans, but when coupled, they also provide 

considerable challenges for managing obsolescence. 

Over time, many methods have been developed for 

predicting the risk of obsolescence and the product life 

cycle. The difficulty and independence of obtaining the 

data needed for prediction, however, usually results in 

discrepancies in forecasts. The purpose of this study is to 

create a machine learning (ML) based system capable of 

projecting product life cycle and obsolescence risk 

accurately while minimizing maintenance and upkeep of 

the prediction scheme in order to report these issues. The 

ability to estimate the level of obsolescence risk and the 

period in which a part will become obsolete is 

specifically provided by this novel approach. In 

particular, this novel approach makes it possible to 

forecast the level of obsolescence risk and the period of 

time during which a part would become obsolete. A case 

study of the computer sale is presented to demonstrate 

the value and potency of the unique approach. 
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