

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-67992147-6799 www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(3s), 320–328 | 320

An Evaluation of Major Fault Tolerance Techniques Used on High

Performance Computing (HPC) Applications

Mirza Mohammed Akram Baig

Submitted: 02/11/2022 Accepted: 01/02/2023

Abstract: High performance computing have a high number of constituent components used to facilitate data movement. Key

characteristics of these systems include parallel processing, large memory, multiprocessor or multimode communication, and parallel

file systems. Though they can turnaround computing in scenarios that need maximum processing power, HPCs face many challenges,

key among them being fault tolerance. Today, most applications deal with faults by noting checkpoints frequently. Whenever a fault

occurs, all the processes are terminated, and the task is loaded once again from the last checkpoint. Most applications deal with faults by

noting checkpoints frequently. Whenever a fault occurs, all the processes are terminated, and the task is loaded once again from the last

checkpoint. Key fault tolerance techniques used on HPC applications (reactive and proactive) were evaluated in this paper. Reactive

protocols discussed include checkpointing/ restarting, replication, retry, and SGuard, while proactive techniques include preemptive

migration, software rejuvenation, and self-healing strategy. As seen from the discussion on the drawbacks of each approach, efficient

management of faults can best be achieved by using a hybrid system applying proactive and reactive measures simultaneously.

Keywords: management, multiprocessor, checkpoints, software rejuvenation, terminated, tolerance

1. Introduction

High Performance Computing (HPC) includes advanced

machines that utilize components similar to computers

used on a daily basis. HPCs use memory, data storage,

central processing units, communication, and software in

a speedy manner [1]–[3]. A key feature of this type of

computing is in the scale of use and the number of

constituent components used to facilitate data

movement. Faster communication is used in HPC

applications, facilitated by highly proprietary

communication schemes that attain speeds 4-100 times

faster than common Ethernet [1]. These applications use

parallel and simultaneous data paths to push and pull data

from the central processing unit to storage and memory,

and back [1]. Other terms that are used interchangeably

with HPC include supercomputing and advanced

computing.

The four basic characteristics of HPCs include: parallel

processing, large memory, multiprocessor or multinode

communication, and parallel file systems. For parallel

processing, HPC applications consist of various

computers with various cores in each CPU and many

CPUs in a single computer. Most HPCs have CPUs

ranging typically between 8 and 32 cores, but recent

general purpose graphics processing units (GPUs) use

hundreds of cores [4], [5]. Each supercomputer holds

between 32, 64, 256, or more gigabytes of memory, and

the quantity of memory depends on the science or

engineering used. Multinode communication allows the

use of a group of computers in one application [1], [4],

[5]. Special software techniques, such as Message

Passing Interface (MPI) may be used to share an

application on more than one computer [6]. Lastly, the

parallel file systems capability of HPCs allows the

movement of data between compute nodes and storage

facilities across many channels at the same time. HPCs

run on an operating system – mostly Linux – and often

require a machine-management software referred to as

middleware[1]. Due to the peculiarities of different

vendor platforms, processors, and storage disks among

other options, HPCs add a lot of complexity for its users.

HPCs are useful for capability or turnaround computing

in situations that require the highest processing power to

be utilized on one problem. However, these applications

often face various challenges, key among them being

fault tolerance [7], [8]. The many processors on modern

computing applications mean that components such as

virtual instances, communication links, integrated circuit

sockets, and processors are likely to fail. A concerning

issue with machines of this magnitude is the mean time

between failures. Recent estimates show that a system

operating with 100,000 processors is likely to report a

letdown every few minutes [7], [9], [10]. A primary issue

arising from this observation is how to use a machine

with over 100,000 processors effectively. The main issue

with HPC machines running on thousands of processors

is that their peak power might be in the petaflops range,
Senior Member of Technical Staff, Illumio Inc

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(3s), 320–328 | 321

yet the most effective power may be a few teraflops [10].

To minimize such challenges, it is necessary to design

and develop scientific algorithms that can help

supercomputers efficiently use their thousands of

processor machines. Fault tolerance, therefore, must

ensure that HPC applications operate smoothly and

simultaneously with minimal overheads and a detailed

outlook of the environment.

Today, most applications deal with faults by noting

checkpoints frequently. Whenever a fault strikes, all the

processes are terminated, and the task is loaded once

again from the last checkpoint [11], [12]. In line with this

approach, this paper evaluates major reactive and

proactive fault tolerance techniques used on high

performance computing applications. The rest of the

paper is organized as follows. Section II discusses

different types of faults and failures associated with high

performance computing. Key categories highlighted

include hardware and software faults and failures.

Section III classifies fault tolerance techniques into

reactive and proactive protocols. Reactive techniques

discussed include checkpointing/ restarting, replication,

retry, and SGuard, while proactive include preemptive

migration, software rejuvenation, and self-healing.

Section IV contains the conclusion.

2. Faults And Failures

A failure refers to an event that happens when a service

diverges from the rightful operation or at the bare

minimum when a single outward state of the system

strays from the rightful state [13], [14]. In high-

performance computing, various errors, faults, or failures

occur. Some are often momentary, while others are

irrecoverable [8]. Some of the faults and failures cause

irreversible effects immediately they strike, while others

can result in the corruption of data after a very long

delay. Irrecoverable faults and failures are usually the

worse since they interfere with the execution of the

application, a case in example being the fail-stop failures.

All in all, faults mostly arise as a result of complicated

interactions between internal and external factors that

happen infrequently and are less likely to reproduce [8],

[13].

Most scholarly studies divide faults and failures into two

primary categories: software and hardware [8], [13],

[14]. Each of these categories has their separate

subcategories. Hardware faults and failures represent

most of failures for all HPC systems. Most of the

hardware failures constitute errors in memory and

processor [14]. On the contrary, software errors represent

close to 30% of the faults and failures in HPCs. The

general principle is that as a system becomes bigger and

complex, the number of software failures increases.

Some contributing factors to software failures include

filesystem problems, failures of the job scheduler, and

challenges with the operating system [7], [13]–[16].

Nonetheless, failures with an unknown root cause can

also be significant in some sites [14]. Most of the failures

resulting from unidentified root causes often arise from

human errors, environmental factors, or challenges with

the network [14]. Overall, hardware failures are much

easier to diagnose than software faults.

Hardware

root causes

(%)

Software

root causes

(%)

Environmental

root causes (%)

CPU

42.8

Memory Dimm

21.4

Node Board

6.8

Other

5.1

Power Supply

4.4

Interconnect

Interface 3.1

Disk Drive

2.0

Interconnect

Soft Error 1.3

System Board

0.9

PCI Backplane

0.8

Other

software

30.0

OS

26.0

Parallel File

System

11.8

Kernel

software

6.0

Scheduler

Software

4.9

Cluster File

System

3.6

Resource

Mgmt

System 3.2

Network

2.7

User code

2.4

NFS

1.6

Power Outage

48.4

UPS

21.2

Power Spike

15.1

Chillers

9.8

Environment

5.3

Fig 1. Detailed data on the root cause of faults and

failures [14].

3. Fault Tolerance Techniques

Fault tolerance in computing systems is an area that has

been enriched through many years of research. Issues

relating to fault tolerance have been highlighted in

different areas of computing systems, including

operating systems, computer architecture, mobile

computing, distributed systems, and computer networks.

Even though advances have been made in tolerating

faults, each new area presents new challenges for which

past techniques have restricted applicability [17]. This

section discusses existing fault tolerance techniques

which exist in two major categories: reactive and

proactive fault tolerance techniques.

a. Reactive fault tolerance techniques

Reactive fault tolerance techniques minimize the impact

of failures on the application once the failure has

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(3s), 320–328 | 322

happened [7], [18]–[21]. Examples of policies under this

category include checkpointing, replication, retry, and

SGuard.

i) Checkpointing/ Restart

The checkpointing/ restart technique allows the system

to restart a task from the most recent check point instead

of the first phase [20]. Checkpointing can be performed

in coordinated and uncoordinated protocols and involves

saving a snapshot image of the current state of the

application [8], [22]. The snapshot image is later used for

reinitiating the execution in the event of failure.

Checkpointing also involves recomputing the

unaccounted-for parts of the execution. Due to the

capability that this technique offers, it is useful in long

running and big applications. Checkpointing can be of

various types, including process checkpointing,

coordinated checkpointing, uncoordinated

checkpointing, and hierarchical checkpointing.

One type often used in HPCs is process checkpointing

[8], [23]. In most HPC applications, a process features

various threads (could be at the user or system level),

making the process a comparable application on its own.

Process checkpointing seeks to mark and save the current

state of a process within HPCs. The technique relies on

coarse grain locking mechanism to fleetingly disrupt the

implementation of all process threads. The interruption

provides the checkpointing mechanism with the ability

to have a global view of the current state and minimize

the challenge of saving the state of the process to a

subsequent problem. Most modern process checking

protocols can depend on an operating system extension

[24]1, dynamic libraries [24], [25], compilers [26], [27],

user-level API [28], [29], or routines defined by the user

to create an application specific checkpoint [11].

Coordinated checkpointing is another popular method

used to achieve fault tolerance, more so in distributed

systems. The main goal of this approach is to establish a

coherent distributed view of the distributed system [8],

[30]–[32]. During the period free of failures, a

coordinated checkpoint protocol records the status of the

application and messages that pass through the network

in stable storage. Whenever a failure happens, the

recovery process entails resetting the application to the

last available status and reinitiating the execution

process. Compared to other checkpointing methods, the

coordinated technique is much simpler and the system

can tolerate concurrent failures [32], [33]. Besides, the

garbage collection process is much easier and efficient in

coordinated checkpointing since only the last checkpoint

of each process is required [34]. Though advantageous,

coordinated checkpointing has certain drawbacks. First,

1 The Berkeley Lab Checkpoint/ Restart (BLCR)

operating system extension provides an entirely open

checkpoint of the whole process. It is possible to restore

the checkpoint on the same hardware, with the same

the protocol is expensive in terms of the consumption of

energy since one failure can make all the processes

rollback to their previous checkpoint [34], [35]. Second,

the protocol’s approach of having all processes write

their checkpoints concurrently creates an eruption of

access to the I/0 system, and this may affect the speed of

executing the system [34], [36].

Another family of checkpointing protocols is

uncoordinated checkpointing. This technique does not

rely on synchronization between the processes during

checkpoints [34], [35]. Due to its capabilities,

uncoordinated checkpointing can be used to address the

issue of burst accesses to the input and output system by

providing room for better scheduling of checkpoints

[34], [35]. HPCs using uncoordinated checkpoints must,

however, be aware of its potential drawback. If none of

the set checkpoints create a coherent global state, the

application would need restarting from the beginning

whenever failures happen [8], [23], [34], [35], [37], [38].

This domino effect increases the cost of recovery and

complicates the garbage collection process.

Hierarchical checkpointing techniques also exist

alongside the above protocols. These approaches attempt

to put together coordinated and rollback processes

alongside uncoordinated checkpointing with message

logging [8], [23], [39]. Stated otherwise, hierarchical

checkpointing tries to keep the best of the two

approaches. The protocol distributes processes in groups.

Processes in the same group link up their checkpoints

and rollbacks, while uncoordinated checkpointing is

effected between groups [8], [23], [39]. This also means

that the status of one process depends on the exchanges

between groups, and with other processes inside the

group.

ii) Replication

Apart from checkpointing, HPC systems can also cope

through replication. Replication operates on the basis of

reproducing all computations [8], [23], [40]. The

protocol groups the processors in pairs, in a manner that

allows every processor to have a replica. In this case, a

replica refers to another processor carrying out similar

computations and receiving analogous messages [8],

[23]. When the processor is affected by a fault, the

replica remains unimpacted and the implementation of

the application can still go on until the replica itself is

affected by a fault later on. The operational process of

replication often seems expensive since half of the

resources are usually wasted, along with the overhead

costs involved in maintaining a reliable state between the

two processors of each pair [8], [23], [41]–[43]. Another

challenge with replication is the selection and placement

software environment. The checkpointing application

saves the whole state from CPU registers to the virtual

memory map, guaranteeing that the function call stack

is saved and restored without much intervention.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(3s), 320–328 | 323

of the replica since the system used for storage is often

large and complicated in nature. This means that replicas

occupy unnecessary storage space and do not necessarily

improve the operation of the system [19], [44]. While

replication can be used independently, it is also possible

for HPC systems to use them in combination with

checkpointing protocols as demonstrated in [8], [23],

[45].

Iii) Retry

Transient type of faults in HPCs can also be managed

using a ‘Retry’ protocol [19], [46]. Upon the detection of

a fault in the system, the protocol applies a retry

mechanism in an attempt to recuperate from the effect of

the fault. Once the retry mechanism has been activated,

the defective module attempts its activity once again for

a certain time period [19], [46]–[48]. In the event that the

fault persists much longer than the retry period set in the

system, it is considered as an irreversible fault. In such

cases, a faulty node has to be replaced [19], [46]. If a fault

recedes in between the retry period, it is categorized as a

transient fault and the system resumes its normal

functioning upon recovery. For this protocol to work

effectively, the retry period must tarry long enough to

allow the fault to go, as well as short enough to prevent

the intersecting of faults [19], [46]–[48].

iv) SGuard

The SGuard protocol is a relatively recent rollback and

recovery-based technique [19], [49], [50]. It is suitable

for instantaneous video streaming and experiences much

less turbulence since it is developed by a combination of

reactive fault techniques, such as checkpointing,

rollback, recovery and replication [49]. The approach has

mostly been applied to deal with faults affecting stream

processing engines (SPEs) that are installed in various

clusters. SGuard initiates checkpoints asynchronously as

the system is running [49], [50]. The protocol rolls back

and restores the failed servers using the last well-known

functional checkpoint. Checkpointing, together with the

other processes such as rollback and recovery of failed

servers happens asynchronously without encountering

interruptions [49], [50]. SGuard saves the checkpointed

states on distributed file systems (DFS), such as GFS,

HDFS, or Amazon EC2 [50]. Besides, it masks failures

using the replication approach. The protocol can manage

both hardware crashes and software failures and is

classified as a less troublesome solution for HPCs that

facilitate instantaneous video streaming [49], [50].

b. Proactive fault tolerance techniques

Proactive fault tolerance techniques are protocols used to

avoid imminent failure through prediction. These

measures suggest that it is possible for HPCs to

anticipate failures and take proactive action before the

failure happens. This is beneficial since it reduces the

impact of failure and increases the chances of successful

execution of applications [7], [51]–[53]. Examples of

processes, which are further discussed below, include

software rejuvenation, self-healing, and preemptive

migration.

i) Software rejuvenation

A software is prone to aging as it runs for long periods of

time and as internal errors accumulate [54]–[56]. The

aging phenomenon can potentially lead to a degradation

in performance and depletion of progressive resources.

Eventually, these factors lead to software crash [56].

Some of the consequences of software aging include data

inconsistency, exhaustion of the resources within an

operating system, and numerical errors [57], [58]. As

such, software aging is one of the major obstacles to

achieving high availability of HPCs. The aging obstacle

can, however, be countered through software

rejuvenation techniques. These protocols are designed to

reduce the chances of future erratic HPC application

outages [54]–[56], [59].

Software rejuvenation involves two major processes.

The first is to forecast a state when errors are likely to

occur in a system and the amount of time that would be

needed to resolve the error [54], [60], [61]. The second

process is to get the software from a state prone to failure

to one that is free from faults. To apply software

rejuvenation protocols, the aging process must be

modeled. The models would provide a decent estimate of

the current or estimated progress of the failure state of a

system. Models can also help plan optimal rejuvenation

times or the management of system administrator tasks,

such as notifying the operators in case of expected

crashes [8], [23]. This is a key reason why software

rejuvenation is classified as an adaptive or proactive fault

tolerance technique. Examples of this approach include

software restart or system reboot. While these

approaches are efficient, they can lead to service

downtime when the application becomes unavailable

[57], [62].

During this phase, the most insightful and widely

adopted approach is to cease software transiently. The

protocol also cleans up the internal runtime states and

restarts it [54], [63], [64]. While using this protocol,

some scholars [55] have suggested a time based approach

that uses symbolic algebraic tactics. At the same time,

other researchers [57] have suggested pre-checking and

live migration techniques which have the ability to

improve the availability of the system significantly. In

general, software rejuvenation protocols have been

examined in the context of application replication in an

attempt to minimize service outages [8], [23], [65].

ii) Preemptive migration

The preemptive migration protocol relies on a feedback-

loop control mechanism [66], [67]. The protocol

monitors the health of every application and starts

precautionary measures when failure threats are

imminent. Once a potential failure is diagnosed, the

system reallocates running application parts from the

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(3s), 320–328 | 324

detrimental to the healthy compute nodes [67], [68]. A

feedback loop develops through the progressive

monitoring of the health of the application, reallocation

of application parts, and reflection of the impact of the

allocation on application health [67], [68].

The protocols involved in preemptive migration monitor

the health of an application using hardware and software

components [66]–[68]. Some of the monitoring

approaches may include examining fan speeds, the

temperature of the processor, and a processor’s rate of

utilization [67]. The health of software can be monitored

by watching their progress (for instance, their input and

output patterns), in the same manner as performance

monitoring. Filters are used to monitor data and trends,

patterns, correlations, indications of imminent failure,

and potential future threads identified through online

reliability analysis [18], [19], [67], [69], [70]. Apart from

reliability, the feedback-loop mechanism may consider

performance factors and the application together with the

health of the system may be examined based on

performability [67], [71].

The reallocation process removes parts of an application

from a single or more nodes and discounts them from

future use [19], [67], [72]. The number of nodes reduces,

and migration is implemented to idle nodes, reserved

spares, or those already allocated. The system

administrator manually inspects the eliminated nodes

before adding them back to the pool. Though useful,

reliance on the feedback-loop control mechanism can

present a real-time challenge. The reallocation process

must be completed before the projected failure happens.

If not, the application will encounter the faults and that

would require reactive techniques to be initiated [18],

[19], [67], [70], [73]. The types of failures covered, and

the accuracy or timeliness of migration determine the

quality of a feedback-loop control mechanism. Another

shortcoming is that not all failures can be forecasted, and

preemptive migration may not cover all types of failures.

Due to this shortcoming, combining proactive and

reactive fault tolerance techniques has been shown to

provide efficient coverage for both certain and uncertain

failures [67], [74].

[67] classifies proactive fault tolerance using preemptive

migration into four groups. Type 1 is the most basic form

and constitutes a monitor in each node regularly

observing the health parameters of the system. The

monitor notifies the resource manager after noticing

faults in operational parameters. The resource manager

gets ride of all parts of the application from the compute

node before redistributing it, and forewarning the

runtime environment [67], [75], [76]. Type 2 features a

few enhancements to the basic form of proactive fault

tolerance. Rather than just notifying the resource

manager after detecting faults, Type 2 uses a filter on

every node to organize raw sensor data [67]. Type 3 is

much more advanced than Types 1 and 2, and

accumulated data from all filters is processed using

reliability analysis [67], [77]. Reliability analysis helps

model the system and each of the running applications.

Type 4 is much more enhanced, and its reliability

analysis approach uses a History Database to record

reliability patterns. Type 4 provides a high quality of

service with improved accuracy of predicting failures.

iii) Self-healing

The self-healing strategy refers to an attempt to minimize

the effects of system degradation by automatically

recovering from a fault or a sequence of faults [78]–[81].

The protocol can initiate with the help of local

architecture features or through the implementation of

certain fault recovery procedures. Some procedures that

could be applied feature periodically applied supervision

tasks. When initiated correctly, a HPC system should

recover from both temporary or perpetual faults [81].

This approach also suggests that HPC systems can self-

heal whether or not accurate diagnosis of faults is done.

However, systems that diagnose faults come with extra

advantages.

[81] illustrates the functioning of a self-healing

procedure. The system first evaluates its fitness against a

pattern image as part of the fault diagnosis process. Fault

diagnosis happens concurrently with scrubbing activity

to occasionally recover from Single-Event-Upsets

(SEUs) [82], [83]. Where permanent faults are detected

after reconfiguration, another evolutionary run is

initiated. SEU detection happens quickly since the

process evaluates the pattern of an image Recoveries

from temporary faults happen very quickly. Adaptation

or re-evolution of the system is only necessary when new

permanent faults are reported [81]. The speed of these

processes yields a recovery time of less than one minute.

4. Conclusion

Fault tolerance happens often in HPCs, and various

techniques have been developed to deal with them. The

paper provides a foundation for major reactive and

proactive fault tolerance techniques used on high

performance computing applications. Reactive protocols

discussed include checkpointing/ restarting, replication,

retry, and SGuard, while proactive techniques include

preemptive migration, software rejuvenation, and self-

healing strategy. Proactive protocols are considered a

much better option since they predict and avoid failure

before it happens. However, proactive measures can also

fail, hence the need for reactive techniques. Efficient

management of faults can also be achieved by using a

hybrid system applying proactive and reactive measures

simultaneously.

References

[1] A. Osseyran and M. Giles, Eds., Industrial

Applications of High-Performance Computing: Best Global

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(3s), 320–328 | 325

Practices. New York: Chapman and Hall/CRC, 2015. doi:

10.1201/b18322.

[2] J. Xie, Z. Chen, C. C. Douglas, W. Zhang, and Y.

Chen, Eds., High performance computing and applications:

Third International Conference, HPCA 2015 Shanghai, China,

July 26-30, 2015 Revised Selected Papers. Springer, 2015.

[3] W. Zhang, W. Tong, Z. Chen, and R. Glowinski,

Eds., Current trends in high performance computing and its

applications: proceedings of the International Conference on

High Performance Computing and Applications, August 8-10,

2004, Shanghai, P.R. China. Berlin; New York: Springer,

2005. Accessed: Feb. 16, 2022. [Online]. Available:

http://site.ebrary.com/id/10143448

[4] M. A. Acuna and T. Aoki, “Real-time Tsunami

simulation on multi-node GPU cluster,” ACMIEEE Conf.

Supercomput., p. 2009.

[5] M. G. Xavier, M. V. Neves, F. D. Rossi, T. C.

Ferreto, T. Lange, and C. A. F. De Rose, “Performance

Evaluation of Container-Based Virtualization for High

Performance Computing Environments,” in 2013 21st

Euromicro International Conference on Parallel, Distributed,

and Network-Based Processing, Feb. 2013, pp. 233–240. doi:

10.1109/PDP.2013.41.

[6] X. Zhang, S. E. Wong, and F. C. Lightstone,

“Message passing interface and multithreading hybrid for

parallel molecular docking of large databases on petascale high

performance computing machines,” J. Comput. Chem., vol. 34,

no. 11, pp. 915–927, 2013, doi: 10.1002/jcc.23214.

[7] I. P. Egwutuoha, S. Chen, D. Levy, and B. Selic, “A

Fault Tolerance Framework for High Performance Computing

in Cloud,” in 2012 12th IEEE/ACM International Symposium

on Cluster, Cloud and Grid Computing (ccgrid 2012), May

2012, pp. 709–710. doi: 10.1109/CCGrid.2012.80.

[8] T. Herault and Y. Robert, Fault-Tolerance

Techniques for High-Performance Computing. Cham: Springer

International Publishing, 2015. Accessed: Feb. 16, 2022.

[Online]. Available:

https://link.springer.com/book/10.1007/978-3-319-20943-2

[9] G. Gibson, B. Schroeder, and J. Digney, “Failure

tolerance in petascale computers,” CTWatch Q., vol. 3, no. 4,

Nov. 2007.

[10] A. Geist and C. Engelmann, “Development of

naturally fault tolerant algorithms for computing on 100,000

processors.” Oak Ridge National Laboratory. Accessed: Feb.

16, 2022. [Online]. Available:

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.6.8

335&rep=rep1&type=pdf

[11] J. Hursey, J. M. Squyres, T. I. Mattox, and A.

Lumsdaine, “The Design and Implementation of

Checkpoint/Restart Process Fault Tolerance for Open MPI,” in

2007 IEEE International Parallel and Distributed Processing

Symposium, Mar. 2007, pp. 1–8. doi:

10.1109/IPDPS.2007.370605.

[12] S. Chakravorty and L. V. Kale, “A Fault Tolerance

Protocol with Fast Fault Recovery,” in 2007 IEEE

International Parallel and Distributed Processing Symposium,

Mar. 2007, pp. 1–10. doi: 10.1109/IPDPS.2007.370310.

[13] A. Gainaru and F. Cappello, “Errors and Faults,” in

Fault-Tolerance Techniques for High-Performance

Computing, T. Herault and Y. Robert, Eds. Cham: Springer

International Publishing, 2015. Accessed: Feb. 16, 2022.

[Online]. Available:

https://link.springer.com/book/10.1007/978-3-319-20943-2

[14] B. Schroeder and G. A. Gibson, “A Large-Scale

Study of Failures in High-Performance Computing Systems,”

IEEE Trans. Dependable Secure Comput., vol. 7, no. 4, pp.

337–350, Oct. 2010, doi: 10.1109/TDSC.2009.4.

[15] A. Geist and D. A. Reed, “A survey of high-

performance computing scaling challenges,” Int. J. High

Perform. Comput. Appl., vol. 31, no. 1, pp. 104–113, Jan. 2017,

doi: 10.1177/1094342015597083.

[16] C. Engelmann and T. Naughton, “Toward a

Performance/Resilience Tool for Hardware/Software Co-

design of High-Performance Computing Systems,” in 2013

42nd International Conference on Parallel Processing, Oct.

2013, pp. 960–969. doi: 10.1109/ICPP.2013.114.

[17] S. Chetan, A. Ranganathan, and R. Campbell,

“Towards fault tolerance pervasive computing,” IEEE Technol.

Soc. Mag., vol. 24, no. 1, pp. 38–44, 2005, doi:

10.1109/MTAS.2005.1407746.

[18] A. Bala and I. Chana, “Fault tolerance - Challenges,

techniques and implementation in cloud computing,” Int. J.

Comput. Sci. Issues, vol. 9, no. 1, pp. 288–294, Jan. 2012.

[19] A. Kumar and D. Malhotra, “Study of various

reactive fault tolerance techniques in cloud computing,” Int. J.

Comput. Sci. Eng., vol. 6, no. 5, Jun. 2018, [Online]. Available:

https://www.ijcseonline.org/spl_pub_paper/IJCSE-ETACIT-

2K18-010.pdf

[20] P. K. Patra, H. Singh, and G. Singh, “Fault tolerance

techniques and comparative implementation in cloud

computing,” Int. J. Comput. Appl., vol. 64, no. 14, pp. 37–42,

Feb. 2013.

[21] G. R. Kalanirnika and V. M. Sivagami, “Fault

tolerance in cloud using reactive and proactive techniques,” Int.

J. Comput. Sci. Eng. Commun., vol. 3, no. 3, pp. 1159–1164,

2015.

[22] G. Aupy, A. Benoit, M. E. M. Diouri, O. Gluck, and

L. Lefevre, “Energy-aware checkpointing strategies,” in Fault-

Tolerance Techniques for High-Performance Computing, T.

Herault and Y. Robert, Eds. Cham: Springer International

Publishing, 2015. Accessed: Feb. 16, 2022. [Online].

Available: https://link.springer.com/book/10.1007/978-3-319-

20943-2

[23] J. Dongarra, T. Herault, and Y. Robert, “Fault

tolerance techniques for high-performance computing,” in

Fault-Tolerance Techniques for High-Performance

Computing, T. Herault and Y. Robert, Eds. Cham: Springer

International Publishing, 2015. Accessed: Feb. 16, 2022.

[Online]. Available:

https://link.springer.com/book/10.1007/978-3-319-20943-2

[24] P. H. Hargrove and J. C. Duell, “Berkeley Lab

Checkpoint/ Restart (BLCR) for Linux Clusters.” Ernest

Orlando Larence Berkeley National Laboratory, 2006.

[25] H. Takizawa, K. Sato, K. Komatsu, and H.

Kobayashi, “CheCUDA: A Checkpoint/Restart Tool for

CUDA Applications,” in 2009 International Conference on

Parallel and Distributed Computing, Applications and

Technologies, Dec. 2009, pp. 408–413. doi:

10.1109/PDCAT.2009.78.

[26] G. Rodríguez, M. J. Martín, P. González, J. Touriño,

and R. Doallo, “CPPC: a compiler-assisted tool for portable

checkpointing of message-passing applications,” Concurr.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(3s), 320–328 | 326

Comput. Pract. Exp., vol. 22, no. 6, pp. 749–766, 2010, doi:

10.1002/cpe.1541.

[27] C.-C. J. Li, E. M. Stewart, and W. K. Fuchs,

“Compiler-assisted full checkpointing,” Softw. Pract. Exp., vol.

24, no. 10, pp. 871–886, 1994, doi: 10.1002/spe.4380241002.

[28] K. Sato et al., “A User-Level InfiniBand-Based File

System and Checkpoint Strategy for Burst Buffers,” in 2014

14th IEEE/ACM International Symposium on Cluster, Cloud

and Grid Computing, May 2014, pp. 21–30. doi:

10.1109/CCGrid.2014.24.

[29] J. C. Sancho, F. Petrini, K. Davis, R. Gioiosa, and S.

Jiang, “Current practice and a direction forward in

checkpoint/restart implementations for fault tolerance,” in 19th

IEEE International Parallel and Distributed Processing

Symposium, Apr. 2005, p. 8 pp.-. doi:

10.1109/IPDPS.2005.157.

[30] G. Cao and M. Singhal, “On coordinated

checkpointing in distributed systems,” IEEE Trans. Parallel

Distrib. Syst., vol. 9, no. 12, pp. 1213–1225, Dec. 1998, doi:

10.1109/71.737697.

[31] L. Wang et al., “Modeling coordinated

checkpointing for large-scale supercomputers,” in 2005

International Conference on Dependable Systems and

Networks (DSN’05), Jun. 2005, pp. 812–821. doi:

10.1109/DSN.2005.67.

[32] N. Neves and W. K. Fuchs, “Coordinated

checkpointing without direct coordination,” in Proceedings.

IEEE International Computer Performance and Dependability

Symposium. IPDS’98 (Cat. No.98TB100248), Sep. 1998, pp.

23–31. doi: 10.1109/IPDS.1998.707706.

[33] R. E. Strom, D. F. Bacon, and S. A. Yemini, “Volatile

logging in n-fault-tolerant distributed systems,” in [1988] The

Eighteenth International Symposium on Fault-Tolerant

Computing. Digest of Papers, Jun. 1988, pp. 44–49. doi:

10.1109/FTCS.1988.5295.

[34] A. Guermouche, T. Ropars, E. Brunet, M. Snir, and

F. Cappello, “Uncoordinated Checkpointing Without Domino

Effect for Send-Deterministic MPI Applications,” in 2011

IEEE International Parallel Distributed Processing

Symposium, May 2011, pp. 989–1000. doi:

10.1109/IPDPS.2011.95.

[35] E. N. (Mootaz) Elnozahy, L. Alvisi, Y.-M. Wang,

and D. B. Johnson, “A survey of rollback-recovery protocols in

message-passing systems,” ACM Comput. Surv., vol. 34, no. 3,

pp. 375–408, 2002.

[36] R. A. Oldfield et al., “Modeling the Impact of

Checkpoints on Next-Generation Systems,” in 24th IEEE

Conference on Mass Storage Systems and Technologies (MSST

2007), San Diego, CA, USA, Sep. 2007, pp. 30–46. doi:

https://doi.org/10.1109/MSST.2007.4367962.

[37] Y.-M. Wang, P.-Y. Chung, I.-J. Lin, and W. K.

Fuchs, “Checkpoint space reclamation for uncoordinated

checkpointing in message-passing systems,” IEEE Trans.

Parallel Distrib. Syst., vol. 6, no. 5, pp. 546–554, May 1995,

doi: 10.1109/71.382324.

[38] A. Mostefaoui and M. Raynal, “Efficient message

logging for uncoordinated checkpointing protocols,” in

Dependable Computing — EDCC-2, Berlin, Heidelberg, 1996,

pp. 353–364. doi: 10.1007/3-540-61772-8_48.

[39] H. S. Paul, A. Gupta, and R. Badrinath, “Hierarchical

cordinated checkpointing protocol.” Indian Institute of

Technology. Accessed: Feb. 16, 2022. [Online]. Available:

https://www.angelfire.com/linux/badri/papers/PDCS-hier.pdf

[40] P. Wang, K. Zhang, R. Chen, H. Chen, and H. Guan,

“Replication-Based Fault-Tolerance for Large-Scale Graph

Processing,” in 2014 44th Annual IEEE/IFIP International

Conference on Dependable Systems and Networks, Jun. 2014,

pp. 562–573. doi: 10.1109/DSN.2014.58.

[41] J. P. Walters and V. Chaudhary, “Replication-Based

Fault Tolerance for MPI Applications,” IEEE Trans. Parallel

Distrib. Syst., vol. 20, no. 7, pp. 997–1010, Jul. 2009, doi:

10.1109/TPDS.2008.172.

[42] R. Guerraoui and A. Schiper, “Software-based

replication for fault tolerance,” Computer, vol. 30, no. 4, pp.

68–74, Apr. 1997, doi: 10.1109/2.585156.

[43] E. B. Tchernev, R. G. Mulvaney, and D. S. Phatak,

“Investigating the Fault Tolerance of Neural Networks,”

Neural Comput., vol. 17, no. 7, pp. 1646–1664, Jul. 2005, doi:

10.1162/0899766053723096.

[44] A. Rajalakshmi, D. Vijayakumar, and K. G.

Srinivasagan, “An improved dynamic data replica selection and

placement in cloud,” in 2014 International Conference on

Recent Trends in Information Technology, Apr. 2014, pp. 1–6.

doi: 10.1109/ICRTIT.2014.6996180.

[45] M. Chtepen, F. H. A. Claeys, B. Dhoedt, F. De Turck,

P. Demeester, and P. A. Vanrolleghem, “Adaptive Task

Checkpointing and Replication: Toward Efficient Fault-

Tolerant Grids,” IEEE Trans. Parallel Distrib. Syst., vol. 20,

no. 2, pp. 180–190, Feb. 2009, doi: 10.1109/TPDS.2008.93.

[46] A. M. Saleh and J. H. Patel, “Transient-fault analysis

for retry techniques,” IEEE Trans. Reliab., vol. 37, no. 3, pp.

323–330, Aug. 1988, doi: 10.1109/24.3763.

[47] J. Sosnowski, “Transient fault tolerance in digital

systems,” IEEE Micro, vol. 14, no. 1, pp. 24–35, Feb. 1994,

doi: 10.1109/40.259897.

[48] Y. Huang, P. Jalote, and C. Kintala, “Two techniques

for transient software error recovery,” in Hardware and

Software Architectures for Fault Tolerance, Berlin,

Heidelberg, 1994, pp. 159–170. doi: 10.1007/BFb0020031.

[49] Y. Kwon, M. Balazinska, and A. Greenberg, “Fault-

tolerant system processing using a distributed, replicated file

system,” Proc VLDB Endow., vol. 1, no. 1, pp. 574–585, Aug.

2008.

[50] M. A. Mukwevho and T. Celik, “Toward a Smart

Cloud: A Review of Fault-Tolerance Methods in Cloud

Systems,” IEEE Trans. Serv. Comput., vol. 14, no. 2, pp. 589–

605, Mar. 2021, doi: 10.1109/TSC.2018.2816644.

[51] G. Vallee et al., “A Framework for Proactive Fault

Tolerance,” in 2008 Third International Conference on

Availability, Reliability and Security, Mar. 2008, pp. 659–664.

doi: 10.1109/ARES.2008.171.

[52] J. Liu, S. Wang, A. Zhou, S. A. P. Kumar, F. Yang,

and R. Buyya, “Using Proactive Fault-Tolerance Approach to

Enhance Cloud Service Reliability,” IEEE Trans. Cloud

Comput., vol. 6, no. 4, pp. 1191–1202, Oct. 2018, doi:

10.1109/TCC.2016.2567392.

[53] S. Chakravorty, C. L. Mendes, and L. V. Kale,

“Proactive fault tolerance in large systems”, [Online].

Available:

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.644

.7952&rep=rep1&type=pdf

[54] J. Liu, J. Zhou, and R. Buyya, “Software

Rejuvenation Based Fault Tolerance Scheme for Cloud

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(3s), 320–328 | 327

Applications,” in 2015 IEEE 8th International Conference on

Cloud Computing, Jun. 2015, pp. 1115–1118. doi:

10.1109/CLOUD.2015.164.

[55] D. Bruneo, S. Distefano, F. Longo, A. Puliafito, and

M. Scarpa, “Workload-Based Software Rejuvenation in Cloud

Systems,” IEEE Trans. Comput., vol. 62, no. 6, pp. 1072–1085,

Jun. 2013, doi: 10.1109/TC.2013.30.

[56] D. Cotroneo, R. Natella, R. Pietrantuono, and S.

Russo, “Software Aging and Rejuvenation: Where We Are and

Where We Are Going,” in 2011 IEEE Third International

Workshop on Software Aging and Rejuvenation, Nov. 2011, pp.

1–6. doi: 10.1109/WoSAR.2011.15.

[57] M. Melo, J. Araujo, R. Matos, J. Menezes, and P.

Maciel, “Comparative Analysis of Migration-Based

Rejuvenation Schedules on Cloud Availability,” in 2013 IEEE

International Conference on Systems, Man, and Cybernetics,

Oct. 2013, pp. 4110–4115. doi: 10.1109/SMC.2013.701.

[58] M. Grottke, R. Matias, and K. S. Trivedi, “The

fundamentals of software aging,” in 2008 IEEE International

Conference on Software Reliability Engineering Workshops

(ISSRE Wksp), Nov. 2008, pp. 1–6. doi:

10.1109/ISSREW.2008.5355512.

[59] R. Matias and P. J. F. Filho, “An Experimental Study

on Software Aging and Rejuvenation in Web Servers,” in 30th

Annual International Computer Software and Applications

Conference (COMPSAC’06), Sep. 2006, vol. 1, pp. 189–196.

doi: 10.1109/COMPSAC.2006.25.

[60] T. Thein, S.-D. Chi, and J. S. Park, “Improving Fault

Tolerance by Virtualization and Software Rejuvenation,” in

2008 Second Asia International Conference on Modelling

Simulation (AMS), May 2008, pp. 855–860. doi:

10.1109/AMS.2008.75.

[61] Y. Huang, C. M. R. Kintala, L. Bernstein, and Y.-M.

Wang, “Components for software fault tolerance and

rejuvenation,” T Tech. J., vol. 75, no. 2, pp. 29–37, Mar. 1996,

doi: 10.15325/ATTTJ.1996.6771126.

[62] J. Araujo, R. Matos, P. Maciel, F. Vieira, R. Matias,

and K. S. Trivedi, “Software Rejuvenation in Eucalyptus Cloud

Computing Infrastructure: A Method Based on Time Series

Forecasting and Multiple Thresholds,” in 2011 IEEE Third

International Workshop on Software Aging and Rejuvenation,

Nov. 2011, pp. 38–43. doi: 10.1109/WoSAR.2011.18.

[63] K. Vaidyanathan and K. S. Trivedi, “A

comprehensive model for software rejuvenation,” IEEE Trans.

Dependable Secure Comput., vol. 2, no. 2, pp. 124–137, Apr.

2005, doi: 10.1109/TDSC.2005.15.

[64] A. Pfening, S. Garg, A. Puliafito, M. Telek, and K. S.

Trivedi, “Optimal software rejuvenation for tolerating soft

failures,” Perform. Eval., vol. 27–28, pp. 491–506, Oct. 1996,

doi: 10.1016/S0166-5316(96)90042-5.

[65] G. Aupy, Y. Robert, F. Vivien, and D. Zaidouni,

“Checkpointing Strategies with Prediction Windows,” in 2013

IEEE 19th Pacific Rim International Symposium on

Dependable Computing, Dec. 2013, pp. 1–10. doi:

10.1109/PRDC.2013.9.

[66] D. Kochhar, A. Kumar, and J. Hilda, “An approach

for fault tolerance in cloud computing using machine learning

technique,” Int. J. Pure Appl. Math., vol. 117, no. 22, pp. 345–

351, 2017.

[67] C. Engelmann, G. R. Vallee, T. Naughton, and S. L.

Scott, “Proactive Fault Tolerance Using Preemptive

Migration,” in 2009 17th Euromicro International Conference

on Parallel, Distributed and Network-based Processing, Feb.

2009, pp. 252–257. doi: 10.1109/PDP.2009.31.

[68] S. Prathiba and S. Sowvarnica, “Survey of failures

and fault tolerance in cloud,” in 2017 2nd International

Conference on Computing and Communications Technologies

(ICCCT), Feb. 2017, pp. 169–172. doi:

10.1109/ICCCT2.2017.7972271.

[69] A. Polze, P. Tröger, and F. Salfner, “Timely Virtual

Machine Migration for Pro-active Fault Tolerance,” in 2011

14th IEEE International Symposium on

Object/Component/Service-Oriented Real-Time Distributed

Computing Workshops, Mar. 2011, pp. 234–243. doi:

10.1109/ISORCW.2011.42.

[70] P. D. Kaur and K. Priya, “Fault tolerance techniques

and architectures in cloud computing - a comparative analysis,”

in 2015 International Conference on Green Computing and

Internet of Things (ICGCIoT), Oct. 2015, pp. 1090–1095. doi:

10.1109/ICGCIoT.2015.7380625.

[71] A. Ganesh, M. Sandhya, and S. Shankar, “A study on

fault tolerance methods in Cloud Computing,” in 2014 IEEE

International Advance Computing Conference (IACC), Feb.

2014, pp. 844–849. doi: 10.1109/IAdCC.2014.6779432.

[72] A. Ledmi, H. Bendjenna, and S. M. Hemam, “Fault

Tolerance in Distributed Systems: A Survey,” in 2018 3rd

International Conference on Pattern Analysis and Intelligent

Systems (PAIS), Oct. 2018, pp. 1–5. doi:

10.1109/PAIS.2018.8598484.

[73] S. L. Scott et al., “A tunable holistic resiliency

approach for high-performance computing systems,” in

Proceedings of the 14th ACM SIGPLAN symposium on

Principles and practice of parallel programming, New York,

NY, USA, Feb. 2009, pp. 305–306. doi:

10.1145/1504176.1504227.

[74] T. Tamilvizhi and B. Parvathavarthini, “A novel

method for adaptive fault tolerance during load balancing in

cloud computing,” Clust. Comput., vol. 22, no. 5, pp. 10425–

10438, Sep. 2019, doi: 10.1007/s10586-017-1038-6.

[75] M. Hasan and M. S. Goraya, “Fault tolerance in cloud

computing environment: A systematic survey,” Comput. Ind.,

vol. 99, pp. 156–172, Aug. 2018, doi:

10.1016/j.compind.2018.03.027.

[76] M. Nazari Cheraghlou, A. Khadem-Zadeh, and M.

Haghparast, “A survey of fault tolerance architecture in cloud

computing,” J. Netw. Comput. Appl., vol. 61, pp. 81–92, Feb.

2016, doi: 10.1016/j.jnca.2015.10.004.

[77] E. AbdElfattah, M. Elkawkagy, and A. El-Sisi, “A

reactive fault tolerance approach for cloud computing,” in 2017

13th International Computer Engineering Conference

(ICENCO), Dec. 2017, pp. 190–194. doi:

10.1109/ICENCO.2017.8289786.

[78] L. Guan, H. Chen, and L. Lin, “A Multi-Agent-Based

Self-Healing Framework Considering Fault Tolerance and

Automatic Restoration for Distribution Networks,” IEEE

Access, vol. 9, pp. 21522–21531, 2021, doi:

10.1109/ACCESS.2021.3055284.

[79] J. Nikolić, N. Jubatyrov, and E. Pournaras, “Self-

Healing Dilemmas in Distributed Systems: Fault Correction vs.

Fault Tolerance,” IEEE Trans. Netw. Serv. Manag., vol. 18, no.

3, pp. 2728–2741, Sep. 2021, doi:

10.1109/TNSM.2021.3092939.

[80] R. Frei, R. McWilliam, B. Derrick, A. Purvis, A.

Tiwari, and G. Di Marzo Serugendo, “Self-healing and self-

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(3s), 320–328 | 328

repairing technologies,” Int. J. Adv. Manuf. Technol., vol. 69,

no. 5, pp. 1033–1061, Nov. 2013, doi: 10.1007/s00170-013-

5070-2.

[81] R. Salvador, A. Otero, J. Mora, E. de la Torre, L.

Sekanina, and T. Riesgo, “Fault Tolerance Analysis and Self-

Healing Strategy of Autonomous, Evolvable Hardware

Systems,” in 2011 International Conference on Reconfigurable

Computing and FPGAs, Nov. 2011, pp. 164–169. doi:

10.1109/ReConFig.2011.37.

[82] B. Navas, J. Öberg, and I. Sander, “The upset-fault-

observer: A concept for self-healing adaptive fault tolerance,”

in 2014 NASA/ESA Conference on Adaptive Hardware and

Systems (AHS), Jul. 2014, pp. 89–96. doi:

10.1109/AHS.2014.6880163.

[83] B. Navas, J. Öberg, and I. Sander, “On providing

scalable self-healing adaptive fault-tolerance to RTR SoCs,” in

2014 International Conference on ReConFigurable Computing

and FPGAs (ReConFig14), Dec. 2014, pp. 1–6. doi:

10.1109/ReConFig.2014.7032541.

