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Abstract: High performance computing have a high number of constituent components used to facilitate data movement. Key 

characteristics of these systems include parallel processing, large memory, multiprocessor or multimode communication, and parallel 

file systems. Though they can turnaround computing in scenarios that need maximum processing power, HPCs face many challenges, 

key among them being fault tolerance. Today, most applications deal with faults by noting checkpoints frequently. Whenever a fault 

occurs, all the processes are terminated, and the task is loaded once again from the last checkpoint. Most applications deal with faults by 

noting checkpoints frequently. Whenever a fault occurs, all the processes are terminated, and the task is loaded once again from the last 

checkpoint. Key fault tolerance techniques used on HPC applications (reactive and proactive) were evaluated in this paper. Reactive 

protocols discussed include checkpointing/ restarting, replication, retry, and SGuard, while proactive techniques include preemptive 

migration, software rejuvenation, and self-healing strategy. As seen from the discussion on the drawbacks of each approach, efficient 

management of faults can best be achieved by using a hybrid system applying proactive and reactive measures simultaneously. 
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1. Introduction 

High Performance Computing (HPC) includes advanced 

machines that utilize components similar to computers 

used on a daily basis. HPCs use memory, data storage, 

central processing units, communication, and software in 

a speedy manner [1]–[3]. A key feature of this type of 

computing is in the scale of use and the number of 

constituent components used to facilitate data 

movement. Faster communication is used in HPC 

applications, facilitated by highly proprietary 

communication schemes that attain speeds 4-100 times 

faster than common Ethernet [1]. These applications use 

parallel and simultaneous data paths to push and pull data 

from the central processing unit to storage and memory, 

and back [1]. Other terms that are used interchangeably 

with HPC include supercomputing and advanced 

computing. 

The four basic characteristics of HPCs include: parallel 

processing, large memory, multiprocessor or multinode 

communication, and parallel file systems. For parallel 

processing, HPC applications consist of various 

computers with various cores in each CPU and many 

CPUs in a single computer. Most HPCs have CPUs 

ranging typically between 8 and 32 cores, but recent 

general purpose graphics processing units (GPUs) use 

hundreds of cores [4], [5]. Each supercomputer holds 

between 32, 64, 256, or more gigabytes of memory, and  

the quantity of memory depends on the science or 

engineering used. Multinode communication allows the 

use of a group of computers in one application [1], [4], 

[5]. Special software techniques, such as Message 

Passing Interface (MPI) may be used to share an 

application on more than one computer [6]. Lastly, the 

parallel file systems capability of HPCs allows the 

movement of data between compute nodes and storage 

facilities across many channels at the same time. HPCs 

run on an operating system – mostly Linux – and often 

require a machine-management software referred to as 

middleware[1]. Due to the peculiarities of different 

vendor platforms, processors, and storage disks among 

other options, HPCs add a lot of complexity for its users.  

HPCs are useful for capability or turnaround computing 

in situations that require the highest processing power to 

be utilized on one problem. However, these applications 

often face various challenges, key among them being 

fault tolerance [7], [8]. The many processors on modern 

computing applications mean that components such as 

virtual instances, communication links, integrated circuit 

sockets, and processors are likely to fail. A concerning 

issue with machines of this magnitude is the mean time 

between failures. Recent estimates show that a system 

operating with 100,000 processors is likely to report a 

letdown every few minutes [7], [9], [10]. A primary issue 

arising from this observation is how to use a machine 

with over 100,000 processors effectively. The main issue 

with HPC machines running on thousands of processors 

is that their peak power might be in the petaflops range, 
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yet the most effective power may be a few teraflops [10]. 

To minimize such challenges, it is necessary to design 

and develop scientific algorithms that can help 

supercomputers efficiently use their thousands of 

processor machines. Fault tolerance, therefore, must 

ensure that HPC applications operate smoothly and 

simultaneously with minimal overheads and a detailed 

outlook of the environment. 

Today, most applications deal with faults by noting 

checkpoints frequently. Whenever a fault strikes, all the 

processes are terminated, and the task is loaded once 

again from the last checkpoint [11], [12]. In line with this 

approach, this paper evaluates major reactive and 

proactive fault tolerance techniques used on high 

performance computing applications. The rest of the 

paper is organized as follows. Section II discusses 

different types of faults and failures associated with high 

performance computing. Key categories highlighted 

include hardware and software faults and failures. 

Section III classifies fault tolerance techniques into 

reactive and proactive protocols. Reactive techniques 

discussed include checkpointing/ restarting, replication, 

retry, and SGuard, while proactive include preemptive 

migration, software rejuvenation, and self-healing. 

Section IV contains the conclusion.    

  

2. Faults And Failures 

A failure refers to an event that happens when a service 

diverges from the rightful operation or at the bare 

minimum when a single outward state of the system 

strays from the rightful state [13], [14]. In high-

performance computing, various errors, faults, or failures 

occur. Some are often momentary, while others are 

irrecoverable [8]. Some of the faults and failures cause 

irreversible effects immediately they strike, while others 

can result in the corruption of data after a very long 

delay. Irrecoverable faults and failures are usually the 

worse since they interfere with the execution of the 

application, a case in example being the fail-stop failures. 

All in all, faults mostly arise as a result of complicated 

interactions between internal and external factors that 

happen infrequently and are less likely to reproduce [8], 

[13]. 

Most scholarly studies divide faults and failures into two 

primary categories: software and hardware [8], [13], 

[14]. Each of these categories has their separate 

subcategories. Hardware faults and failures represent 

most of failures for all HPC systems. Most of the 

hardware failures constitute errors in memory and 

processor [14]. On the contrary, software errors represent 

close to 30% of the faults and failures in HPCs. The 

general principle is that as a system becomes bigger and 

complex, the number of software failures increases. 

Some contributing factors to software failures include 

filesystem problems, failures of the job scheduler, and 

challenges with the operating system [7], [13]–[16]. 

Nonetheless, failures with an unknown root cause can 

also be significant in some sites [14]. Most of the failures 

resulting from unidentified root causes often arise from 

human errors, environmental factors, or challenges with 

the network [14]. Overall, hardware failures are much 

easier to diagnose than software faults.   

Hardware 

root causes 

(%) 

Software 

root causes 

(%) 

Environmental 

root causes (%) 

CPU                                 

42.8 

Memory Dimm                

21.4 

Node Board                       

6.8 

Other                                 

5.1 

Power Supply                   

4.4 

Interconnect 

Interface      3.1 

Disk Drive                       

2.0 

Interconnect 

Soft Error    1.3 

System Board                   

0.9 

PCI Backplane                 

0.8 

Other 

software                 

30.0 

OS                                    

26.0 

Parallel File 

System        

11.8 

Kernel 

software                

6.0 

Scheduler 

Software          

4.9 

Cluster File 

System          

3.6 

Resource 

Mgmt 

System   3.2 

Network                           

2.7 

User code                         

2.4 

NFS                                 

1.6 

Power Outage                  

48.4 

UPS                                 

21.2 

Power Spike                    

15.1 

Chillers                             

9.8 

Environment                     

5.3 

Fig 1. Detailed data on the root cause of faults and 

failures [14]. 

 

3. Fault Tolerance Techniques  

Fault tolerance in computing systems is an area that has 

been enriched through many years of research. Issues 

relating to fault tolerance have been highlighted in 

different areas of computing systems, including 

operating systems, computer architecture, mobile 

computing, distributed systems, and computer networks. 

Even though advances have been made in tolerating 

faults, each new area presents new challenges for which 

past techniques have restricted applicability [17]. This 

section discusses existing fault tolerance techniques 

which exist in two major categories: reactive and 

proactive fault tolerance techniques.  

 

a. Reactive fault tolerance techniques 

Reactive fault tolerance techniques minimize the impact 

of failures on the application once the failure has 
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happened [7], [18]–[21]. Examples of policies under this 

category include checkpointing, replication, retry, and 

SGuard.  

i) Checkpointing/ Restart 

The checkpointing/ restart technique allows the system 

to restart a task from the most recent check point instead 

of the first phase [20]. Checkpointing can be performed 

in coordinated and uncoordinated protocols and involves 

saving a snapshot image of the current state of the 

application [8], [22]. The snapshot image is later used for 

reinitiating the execution in the event of failure. 

Checkpointing also involves recomputing the 

unaccounted-for parts of the execution. Due to the 

capability that this technique offers, it is useful in long 

running and big applications. Checkpointing can be of 

various types, including process checkpointing, 

coordinated checkpointing, uncoordinated 

checkpointing, and hierarchical checkpointing.  

One type often used in HPCs is process checkpointing 

[8], [23]. In most HPC applications, a process features 

various threads (could be at the user or system level), 

making the process a comparable application on its own. 

Process checkpointing seeks to mark and save the current 

state of a process within HPCs. The technique relies on 

coarse grain locking mechanism to fleetingly disrupt the 

implementation of all process threads. The interruption 

provides the checkpointing mechanism with the ability 

to have a global view of the current state and minimize 

the challenge of saving the state of the process to a 

subsequent problem. Most modern process checking 

protocols can depend on an operating system extension 

[24]1, dynamic libraries [24], [25], compilers [26], [27], 

user-level API [28], [29], or routines defined by the user 

to create an application specific checkpoint [11]. 

Coordinated checkpointing is another popular method 

used to achieve fault tolerance, more so in distributed 

systems. The main goal of this approach is to establish a 

coherent distributed view of the distributed system [8], 

[30]–[32]. During the period free of failures, a 

coordinated checkpoint protocol records the status of the 

application and messages that pass through the network 

in stable storage. Whenever a failure happens, the 

recovery process entails resetting the application to the 

last available status and reinitiating the execution 

process. Compared to other checkpointing methods, the 

coordinated technique is much simpler and the system 

can tolerate concurrent failures [32], [33]. Besides, the 

garbage collection process is much easier and efficient in 

coordinated checkpointing since only the last checkpoint 

of each process is required [34]. Though advantageous, 

coordinated checkpointing has certain drawbacks. First, 

 
1 The Berkeley Lab Checkpoint/ Restart (BLCR) 

operating system extension provides an entirely open 

checkpoint of the whole process. It is possible to restore 

the checkpoint on the same hardware, with the same 

the protocol is expensive in terms of the consumption of 

energy since one failure can make all the processes 

rollback to their previous checkpoint [34], [35]. Second, 

the protocol’s approach of having all processes write 

their checkpoints concurrently creates an eruption of 

access to the I/0 system, and this may affect the speed of 

executing the system [34], [36]. 

Another family of checkpointing protocols is 

uncoordinated checkpointing. This technique does not 

rely on synchronization between the processes during 

checkpoints [34], [35]. Due to its capabilities, 

uncoordinated checkpointing can be used to address the 

issue of burst accesses to the input and output system by 

providing room for better scheduling of checkpoints 

[34], [35]. HPCs using uncoordinated checkpoints must, 

however, be aware of its potential drawback. If none of 

the set checkpoints create a coherent global state, the 

application would need restarting from the beginning 

whenever failures happen [8], [23], [34], [35], [37], [38]. 

This domino effect increases the cost of recovery and 

complicates the garbage collection process. 

Hierarchical checkpointing techniques also exist 

alongside the above protocols. These approaches attempt 

to put together coordinated and rollback processes 

alongside uncoordinated checkpointing with message 

logging [8], [23], [39]. Stated otherwise, hierarchical 

checkpointing tries to keep the best of the two 

approaches. The protocol distributes processes in groups. 

Processes in the same group link up their checkpoints 

and rollbacks, while uncoordinated checkpointing is 

effected between groups [8], [23], [39]. This also means 

that the status of one process depends on the exchanges 

between groups, and with other processes inside the 

group. 

ii) Replication 

Apart from checkpointing, HPC systems can also cope 

through replication. Replication operates on the basis of 

reproducing all computations [8], [23], [40]. The 

protocol groups the processors in pairs, in a manner that 

allows every processor to have a replica. In this case, a 

replica refers to another processor carrying out similar 

computations and receiving analogous messages [8], 

[23]. When the processor is affected by a fault, the 

replica remains unimpacted and the implementation of 

the application can still go on until the replica itself is 

affected by a fault later on. The operational process of 

replication often seems expensive since half of the 

resources are usually wasted, along with the overhead 

costs involved in maintaining a reliable state between the 

two processors of each pair [8], [23], [41]–[43]. Another 

challenge with replication is the selection and placement 

software environment. The checkpointing application 

saves the whole state from CPU registers to the virtual 

memory map, guaranteeing that the function call stack 

is saved and restored without much intervention.  
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of the replica since the system used for storage is often 

large and complicated in nature. This means that replicas 

occupy unnecessary storage space and do not necessarily 

improve the operation of the system [19], [44]. While 

replication can be used independently, it is also possible 

for HPC systems to use them in combination with 

checkpointing protocols as demonstrated in [8], [23], 

[45]. 

Iii) Retry 

Transient type of faults in HPCs can also be managed 

using a ‘Retry’ protocol [19], [46]. Upon the detection of 

a fault in the system, the protocol applies a retry 

mechanism in an attempt to recuperate from the effect of 

the fault. Once the retry mechanism has been activated, 

the defective module attempts its activity once again for 

a certain time period [19], [46]–[48]. In the event that the 

fault persists much longer than the retry period set in the 

system, it is considered as an irreversible fault. In such 

cases, a faulty node has to be replaced [19], [46]. If a fault 

recedes in between the retry period, it is categorized as a 

transient fault and the system resumes its normal 

functioning upon recovery. For this protocol to work 

effectively, the retry period must tarry long enough to 

allow the fault to go, as well as short enough to prevent 

the intersecting of faults [19], [46]–[48]. 

iv) SGuard 

The SGuard protocol is a relatively recent rollback and 

recovery-based technique [19], [49], [50]. It is suitable 

for instantaneous video streaming and experiences much 

less turbulence since it is developed by a combination of 

reactive fault techniques, such as checkpointing, 

rollback, recovery and replication [49]. The approach has 

mostly been applied to deal with faults affecting stream 

processing engines (SPEs) that are installed in various 

clusters. SGuard initiates checkpoints asynchronously as 

the system is running [49], [50]. The protocol rolls back 

and restores the failed servers using the last well-known 

functional checkpoint. Checkpointing, together with the 

other processes such as rollback and recovery of failed 

servers happens asynchronously without encountering 

interruptions [49], [50]. SGuard saves the checkpointed 

states on distributed file systems (DFS), such as GFS, 

HDFS, or Amazon EC2 [50]. Besides, it masks failures 

using the replication approach. The protocol can manage 

both hardware crashes and software failures and is 

classified as a less troublesome solution for HPCs that 

facilitate instantaneous video streaming [49], [50].              

 

b. Proactive fault tolerance techniques 

Proactive fault tolerance techniques are protocols used to 

avoid imminent failure through prediction. These 

measures suggest that it is possible for HPCs to 

anticipate failures and take proactive action before the 

failure happens. This is beneficial since it reduces the 

impact of failure and increases the chances of successful 

execution of applications [7], [51]–[53]. Examples of 

processes, which are further discussed below, include 

software rejuvenation, self-healing, and preemptive 

migration. 

i) Software rejuvenation 

A software is prone to aging as it runs for long periods of 

time and as internal errors accumulate [54]–[56]. The 

aging phenomenon can potentially lead to a degradation 

in performance and depletion of progressive resources. 

Eventually, these factors lead to software crash [56]. 

Some of the consequences of software aging include data 

inconsistency, exhaustion of the resources within an 

operating system, and numerical errors [57], [58]. As 

such, software aging is one of the major obstacles to 

achieving high availability of HPCs. The aging obstacle 

can, however, be countered through software 

rejuvenation techniques. These protocols are designed to 

reduce the chances of future erratic HPC application 

outages [54]–[56], [59]. 

Software rejuvenation involves two major processes. 

The first is to forecast a state when errors are likely to 

occur in a system and the amount of time that would be 

needed to resolve the error [54], [60], [61]. The second 

process is to get the software from a state prone to failure 

to one that is free from faults. To apply software 

rejuvenation protocols, the aging process must be 

modeled. The models would provide a decent estimate of 

the current or estimated progress of the failure state of a 

system. Models can also help plan optimal rejuvenation 

times or the management of system administrator tasks, 

such as notifying the operators in case of expected 

crashes [8], [23]. This is a key reason why software 

rejuvenation is classified as an adaptive or proactive fault 

tolerance technique. Examples of this approach include 

software restart or system reboot. While these 

approaches are efficient, they can lead to service 

downtime when the application becomes unavailable 

[57], [62].  

During this phase, the most insightful and widely 

adopted approach is to cease software transiently. The 

protocol also cleans up the internal runtime states and 

restarts it [54], [63], [64]. While using this protocol, 

some scholars [55] have suggested a time based approach 

that uses symbolic algebraic tactics. At the same time, 

other researchers [57] have suggested pre-checking and 

live migration techniques which have the ability to 

improve the availability of the system significantly. In 

general, software rejuvenation protocols have been 

examined in the context of application replication in an 

attempt to minimize service outages [8], [23], [65]. 

ii) Preemptive migration 

The preemptive migration protocol relies on a feedback-

loop control mechanism [66], [67]. The protocol 

monitors the health of every application and starts 

precautionary measures when failure threats are 

imminent. Once a potential failure is diagnosed, the 

system reallocates running application parts from the 
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detrimental to the healthy compute nodes [67], [68]. A 

feedback loop develops through the progressive 

monitoring of the health of the application, reallocation 

of application parts, and reflection of the impact of the 

allocation on application health [67], [68]. 

The protocols involved in preemptive migration monitor 

the health of an application using hardware and software 

components [66]–[68]. Some of the monitoring 

approaches may include examining fan speeds, the 

temperature of the processor, and a processor’s rate of 

utilization [67]. The health of software can be monitored 

by watching their progress (for instance, their input and 

output patterns), in the same manner as performance 

monitoring. Filters are used to monitor data and trends, 

patterns, correlations, indications of imminent failure, 

and potential future threads identified through online 

reliability analysis [18], [19], [67], [69], [70]. Apart from 

reliability, the feedback-loop mechanism may consider 

performance factors and the application together with the 

health of the system may be examined based on 

performability [67], [71]. 

The reallocation process removes parts of an application 

from a single or more nodes and discounts them from 

future use [19], [67], [72]. The number of nodes reduces, 

and migration is implemented to idle nodes, reserved 

spares, or those already allocated. The system 

administrator manually inspects the eliminated nodes 

before adding them back to the pool. Though useful, 

reliance on the feedback-loop control mechanism can 

present a real-time challenge. The reallocation process 

must be completed before the projected failure happens. 

If not, the application will encounter the faults and that 

would require reactive techniques to be initiated [18], 

[19], [67], [70], [73]. The types of failures covered, and 

the accuracy or timeliness of migration determine the 

quality of a feedback-loop control mechanism. Another 

shortcoming is that not all failures can be forecasted, and 

preemptive migration may not cover all types of failures. 

Due to this shortcoming, combining proactive and 

reactive fault tolerance techniques has been shown to 

provide efficient coverage for both certain and uncertain 

failures [67], [74]. 

[67] classifies proactive fault tolerance using preemptive 

migration into four groups. Type 1 is the most basic form 

and constitutes a monitor in each node regularly 

observing the health parameters of the system. The 

monitor notifies the resource manager after noticing 

faults in operational parameters. The resource manager 

gets ride of all parts of the application from the compute 

node before redistributing it, and forewarning the 

runtime environment [67], [75], [76]. Type 2 features a 

few enhancements to the basic form of proactive fault 

tolerance. Rather than just notifying the resource 

manager after detecting faults, Type 2 uses a filter on 

every node to organize raw sensor data [67]. Type 3 is 

much more advanced than Types 1 and 2, and 

accumulated data from all filters is processed using 

reliability analysis [67], [77]. Reliability analysis helps 

model the system and each of the running applications. 

Type 4 is much more enhanced, and its reliability 

analysis approach uses a History Database to record 

reliability patterns. Type 4 provides a high quality of 

service with improved accuracy of predicting failures.        

iii) Self-healing 

The self-healing strategy refers to an attempt to minimize 

the effects of system degradation by automatically 

recovering from a fault or a sequence of faults [78]–[81]. 

The protocol can initiate with the help of local 

architecture features or through the implementation of 

certain fault recovery procedures. Some procedures that 

could be applied feature periodically applied supervision 

tasks. When initiated correctly, a HPC system should 

recover from both temporary or perpetual faults [81]. 

This approach also suggests that HPC systems can self-

heal whether or not accurate diagnosis of faults is done. 

However, systems that diagnose faults come with extra 

advantages.  

[81] illustrates the functioning of a self-healing 

procedure. The system first evaluates its fitness against a 

pattern image as part of the fault diagnosis process. Fault 

diagnosis happens concurrently with scrubbing activity 

to occasionally recover from Single-Event-Upsets 

(SEUs) [82], [83]. Where permanent faults are detected 

after reconfiguration, another evolutionary run is 

initiated. SEU detection happens quickly since the 

process evaluates the pattern of an image Recoveries 

from temporary faults happen very quickly. Adaptation 

or re-evolution of the system is only necessary when new 

permanent faults are reported [81]. The speed of these 

processes yields a recovery time of less than one minute.         

           

4. Conclusion 

Fault tolerance happens often in HPCs, and various 

techniques have been developed to deal with them. The 

paper provides a foundation for major reactive and 

proactive fault tolerance techniques used on high 

performance computing applications. Reactive protocols 

discussed include checkpointing/ restarting, replication, 

retry, and SGuard, while proactive techniques include 

preemptive migration, software rejuvenation, and self-

healing strategy. Proactive protocols are considered a 

much better option since they predict and avoid failure 

before it happens. However, proactive measures can also 

fail, hence the need for reactive techniques. Efficient 

management of faults can also be achieved by using a 

hybrid system applying proactive and reactive measures 

simultaneously.      
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