
International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(2s), 328–336 | 328

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-6799 www.ijisae.org Original Research Paper

Evaluation of OO Software Quality by Using Predictive Object Points

(POP) Metric

Vijay Yadav1, Raghuraj Singh2, Vibhash Yadav3

Submitted: 25/10/2022 Revised: 24/12/2022 Accepted: 21/01/2023

Abstract— Software quality assessment is essential as it reduces costs associated with the allocation of testing and maintenance

resources. Software quality metrics based on object-oriented technologies will become increasingly important as object-oriented

technologies become more prevalent. This paper examines how Predictive Object Point software sizing metrics can help designers assess

an OO system's quality during the planning phase. By combining high-level quality attributes such as extendibility, reusability,

flexibility, understandability, functionality, and effectiveness, POPs Metric makes it easy to make quality decisions. Different versions

of three OO software were tested for the exact necessities and aimed to evaluate the proposed quality assessment model. Various design

metrics have been measured using a quality metric tool to assess the quality of the projects under study. We compare POP counts with

these quality attributes to see what's trending. Analysis and presentation of the results demonstrate that the POP Count can be used to

assess the quality of OO software.

Keywords—Quality measurement, quality model, quality attributes, Object Orientation, Object-Oriented Software Metrics, Predictive

Object Point Metric.

1. Introduction

With the increasing demand for quality software in today's

software development environment, Software engineering

practices have increasingly been dominated by object-

oriented technologies (OO).

Software developers and managers were forced to rethink

the parameters or elements used to estimate the size of and

assess software's quality as object-oriented analysis and

design methodologies gained popularity. Because different

metrics measure different parameters, the way they

measure, and the application of those metrics varies, the

results vary from metric to metric.

The introduction and subsequent application of metrics for

predicting software quality is an area that is particularly

well suited for predictive analysis. [2].

It's hard to test the practicality and effectiveness of some

metrics in an industrial setting because most have not been

validated or tested with small data sets. An external quality

attribute and a measured metric value should be mapped

together to ensure the software develops a high level of

external quality. OO software analysis models tend to be

applicable only during the implementation phase of a

project and therefore do not assist in improving the

software characteristics before the project's completion. To

ensure that software end products are of high quality, it is

imperative to assess software quality early in the

development process.

A fundamentally different concept embodied in object

orientation is inheritance, encapsulation, and

polymorphism, which should be emphasized instead of

traditional metrics evaluating product characteristics such

as size, performance, quality, and complexity. [1].

With an Object-Oriented approach, it is naturally

possible to evaluate and assess the project at an early stage

[1]. As a result, different scientists have developed and

used a variety of metrics related to product quality in order

 to meet the requirements [[5][6][7][8]].
1Department of CSE,

Dr. A. P. J Abdul Kalam Technical University, Lucknow,

Uttar Pradesh, India vijayyadavuiet@gmail.com
2Department of C.S.E,

Harcourt Butler Technical University, Kanpur, Uttar

Pradesh, India.

raghurajsingh@rediffmail.com
3Department of I.T,

Rajkiya Engineering College,

Banda, Uttar Pradesh, India.

vibhashds10@gmail.com

However, it is essential to note that the results can vary

from metric to metric due to the difference in parameters,

the method by which they measure, and the timeframe in

which they are applied.

A quality model is generally applicable to the analysis

and development of OO software, but it is not applicable to

the improvement of its characteristics prior to its

completion. Numerous researchers have suggested that

http://www.ijisae.org/
mailto:vijayyadavuiet@gmail.com
mailto:raghurajsingh@rediffmail.com
mailto:vibhashds10@gmail.com

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(2s), 328–336 | 329

different methods can be used to measure software quality.

For example, object-oriented design assessment can be

assessed using a hierarchical model called QMOOD [1].

This tool maps source code metrics to abstract quality

attributes such as understandability, extendibility,

flexibility, reusability, functionality and effectiveness,

As long as these purposes and aims do not overlap, we

can use a variety of quality attributes to represent them. It

is not possible to directly observe these quality attributes

since they are abstract concepts. [1].

Using the QMOOD quality model, Table 1 summarizes

the computation formula for quality attributes according to

design properties.

Table 1: Defining Quality Attributes based on Formulas [1]

Quality Attribute Equation for calculating the index

Reusability minus (25/100) x coupling plus (25/100) x

cohesion plus (5/10) x messaging plus (5/10) x

design size

Flexibility minus (25/100) x encapsulation minus (25/100)

x coupling plus (5/10) x composition plus (5/10)

x polymorphism

Understandability minus (33/100) x abstraction plus (33/100) x

encapsulation minus (33/100) x coupling plus

(33/100) x cohesion minus (33/100) x

polymorphism minus (33/100) x complexity

minus (33/100) x design size

Functionality (12/100) x cohesion plus (22/100) x

polymorphism plus (22/100) x messaging plus

(22/100) x design size plus (22/100) x

hierarchies

Extendibility (5/10) x abstraction minus (5/10) x coupling

plus (5/10) x inheritance plus (5/10) x

polymorphism

Effectiveness (2/10) x abstraction plus (2/10) x encapsulation

plus (2/10) x composition plus (2/10) x

inheritance plus (2/10) x polymorphism

In addition, it is important to note that the metrics

employed to assess messaging, coupling, cohesion,

encapsulation, complexity, polymorphism, hierarchies,

abstraction, and design size are not fixed and can instead

be replaced with their alternatives. [1].

A comparison of QMOOD design metrics and

corresponding replacement metrics is presented in Table 2.

Table 2: A Description of QMOOD Design Metrics and some alternatives.

Design

Properties

Metrics in QMOOD[1] Equivalent Metric

Computed

Encapsulation (DAM) -

Polymorphism NOP NMO [14]

Abstraction ANA TLC [2]

Cohesion CAM -

Coupling DCC Ce [13]

Inheritance MFA -

Complexity NOM WMC [4]

Messaging CIS NPM [16]

Composition MOA -

Design Size DSC NOC [15]

Hierarchies NOH DIT [4]

In the above table, DAM stands for Data Access Metrics.

NOP stands for Number Of Polymorphic Methods, NMO

stands for the Number Of Method Overridden, ANA stands

for Average Number Of Ancestors, TLC stands for Top

Level Class, CAM stands for Cohesion Among Method In

Class, DCC stands for Direct class coupling, Ce stands for

Efferent Coupling, MFA stands for Measure Of Functional

Abstraction, NOM stands for Number Of Methods, WMC

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(2s), 328–336 | 330

+

stands for Weighted Method per Class, CIS stands for Class

Size Interface, NPM stands for Number Of Public

Methods, MOA stands for The measure of Aggregation,

DSC stands for Design Size In Class, NOC stands for

Number Of Class, NOH stands for Number Of Hierarchies,

DIT stands for Depth Of Inheritance respectively.

ANALYSIS OF QUALITY USING

PREDICTIVE OBJECT POINT METRICS

A method for determining the effort needed to develop an

object-oriented software system was introduced by

Minkiewicz in 1998[3]. A POP is designed to improve

upon FPs. It consists of counting two metrics: the number

of TLC and the WMC, along with adjustments for the

average DIT and the average NOC.

Based on the MOOSE metrics suite developed by

Chidamber and Kemerer, the WMC, DIT, and NOC are

derived [6].

It is important to note that POPs [3] incorporate three

dimensions of OO systems: the number of functions

provided by the software, communication between objects,

and reuse through inheritance. To indicate how much work

is involved in the development of a software system, these

aspects were combined into one metric.

Fig 1 - Object-oriented systems: aspects and characteristics [3]

Since POPs are based on objects and their features, they

fulfill most of the criteria that must be met by OO concepts.

Methodology for measuring: As a method of calculating

the Overall system size, the following formula was

proposed [2].

testability. DIT has an emphasis on efficiency and reuse

and also relates to testability and understandability. [12].

As part of the quality assessment through the POP count,

the data set may be viewed as a group of projects with

identical requirements and objectives to ascertain if the

POP metrics can predict the quality of software across

object-oriented languages.

f 1(TLC, NOC, DIT) = TLC * (1 + ((1 +

f 2(NOC, DIT) = 1.0

1.01 .01
NOC) * DIT) (| NOC − DIT |))

2. Details of the Empirical Study

POPs(WMC, NOC, DIT , TLC)=

(1)

WMC * f 1(TLC, NOC, DIT)

7.8

* f 2(NOC, DIT)

POP Count is a model for quality measurement based on

POPs. Therefore, the validation designs were selected

F1 attempts to estimate the overall system size, while F2

considers how inheritance affects reuse.

In most cases, estimation begins with the creation of a size

estimate for the software to be developed. A reasonable

size estimate is essential to accurately estimating the

amount of effort, schedule, and quality. The POP metrics

validated through the APA tool provide a good indication

of the size of the software to be produced. [4].

POP Count's software measurement metrics incorporate

almost all design metrics used in QMOOD's assessment of

high-level quality attributes [1]. As part of the POP count

formula, WMC consists of functionality and inter-object

communication [3]. WMC analyzes the class structure, and

the results have a bearing on how understandable,

maintainable, and reusable the system is as a whole [12].

Generally, the reuse of a system is accomplished through

inheritance and overall system size by the average DIT,

TLC, and NOC. [3]. It also evaluates efficiency, reuse, and

based on similar requirements and objectives.

A. Set of projects taken

In this study, several versions of three projects, JaimBot[9],

JCommon[10], and proguard[11], are analyzed. JaimBot

[9] provides a generic AIM library that can be used by a bot

to provide services such as Lists, Stock Quotes, Weather,

Headlines, Offline Messaging, and Artificial Intelligence

chatterbots. JFreeChart, Pentaho Reporting, and a few

other projects use JCommon [10], a Java class library

containing packages such as date, IO, layout, resources,

and user interface. ProGuard[11] is also a command-line

utility that shrinks, optimizes, obfuscates, and pre-verifies

Java classes. Java class files are also pre-verified for Java

6 or higher or Java Micro Edition in addition to detecting

and removing unused classes, fields, methods, attributes,

and instructions. Each of these designs has multiple

versions that are widely used in real-life software-based

development, and they all work. Based on the metrics of

design in Table 2 and the attributes for quality in Table 1,

four versions of JaimBot [9], three versions of JCommon

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(2s), 328–336 | 331

[10] , and three versions of proguard [11] were evaluated.

B. A Method for Normalizing Measured Metric Values

The QMOOD quality attribute values are calculated by

combining actual metric values in different ranges.

Therefore a normalization of the results of various metrics

before normalization, then that metric value is not

normalized as it falls between [min, max], where zero is

considered the min value, avoiding the 0/0 form. In the case

of projects of different types, the above normalization

technique cannot be implemented.

is performed in the first version of the specification. C. A Tool For Automating The Process

However, as the comparison is between different versions

of the same project, this is acceptable as it is calculated by

dividing the metric values by the metric value in the first

version. As per consideration, if a metric value is zero

A tool has been developed to analyze the above designs. A

total of eleven metrics from Table 2 have been collected for

each of the four versions of JaimBot[9], three versions of

JCommon[10], and three versions of Proguard[11].

Fig 2: The values of the sample quality attributes

Figure 2 illustrates the snapshot of the quality tool, which

evaluates the quality attributes and POP count of the

software.

3. Results Of Analysis

New versions of existing software usually add new features

or fix bugs found in previous versions. Most software is

modified early on to improve functionality that meets

additional needs or add new functionalities.

As a result, Software that is released early may be more

user-friendly and easier to use. In terms of quality, they're

APA. [4].

It's important that the evaluated quality characteristics of

the three projects match the overall trends derived from

QMOOD's half-a-dozen extraordinary-level quality

attributes for validation of the proposed model.

It's estimated that reusable, flexible, functional,

extendible, and effective features will increase with each

release, while understandability should decrease with an

increase in complexity.

way better than the previous generation. The improvements D. Jaimbot Project Versions Evaluation Results
aren't that big for higher versions.

For several designs, QMOOD quality attributes are

computed using an automation tool, and the trends of these

attributes are compared with POP counts computed with

Using an automated tool, we have gathered the values for

eleven metrics in Table 2 for the four versions of JaimBot

[9]. Then, we normalized the values and presented them in

Table 3.

Table 3: Metric Values for JaimBot Project Versions: Actual and Normalized.

Project Actual Metric Values Normalized Metric Values

Versions

Metric

1.2 1.2.1 1.3 1.4 1.2 1.2.1 1.3 1.4

Design Size 162 173 182 249 1 1.07 1.12 1.54

Hierarchies 10 10 10 0 1 1 1 1

Coupling 84 88 94 120 1 1.05 1.12 1.43

Cohesion 10.28 10.71 10.88 12.39 1 1.04 1.06 1.21

Abstraction 20 21 23 33 1 1.05 1.15 1.65

Encapsulation 13.17 13.61 14.46 18.17 1 1.03 1.09 1.37

Messaging 153 164 178 251 1 1.03 1.12 1.58

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(2s), 328–336 | 332

Polymorphism 51 55 59 84 1 1.07 1.16 1.64

Complexity 210 219 239 345 1 1.04 1.14 1.64

Composition 2 2 2 2 1 1 1 1

Inheritance 0 0 0 0 0 0 0 0

POP COUNT 458.60 522.50 584.58 968.71 1 1.07 1.20 1.99

For the different versions of JaimBot, Table 4 shows the

computed values of the six quality attributes based on

normalization.

Table 4: Versions of JaimBot Projects with QMOOD Quality Attribute Values and POP Counts.

Version

Quality Attribute

1.2

1.2.1

1.3

1.4

Reusability 1 1.05 1.10 1.50

Flexibility 1 1.03 1.07 1.31

Understandability -0.99 -1.05 -1.16 -1.75

Functionality 0.99 1.04 1.09 1.41

Extendibility 1 1.07 1.19 1.93

Effectiveness 1 1.04 1.12 1.53

POP COUNT 1 1.07 1.20 1.99

Based on the values listed above for all four versions of

Jaimbot, it is evident that the attributes which measure

quality, such as that reusable, flexible, functional,

extendible, and effective metrics, will increase with each

release, whereas understandability decreases as complexity

increases in higher versions.

Furthermore, based on the graph below, it is evident that

effectiveness, reusability, flexibility, functionality, and

extendibility factors increase with higher versions while

understandability factors decrease.

There was also an increase in the POP count of all four

versions of JaimBot.

Fig 3: Plot of JaimBot Project Version's computed quality attributes & POP count

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(2s), 328–336 | 333

E. Results Of The Evaluation Of Jcommon Project Versions The automated tool collects eleven metrics for three

different versions of Jcommon [10]. The values measured

are normalized and presented in Table 5.

Table 5: Jcommon Projects Metric Values: Actual and Normalized

Project Actual Metric Values Normalized Metric Values

Versions

Metric

0.8.0 0.9.0 1.0.0 0.8.0 0.9.0 1.0.0

Design Size 357 419 483 1 1.17 1.35

Hierarchies 184 201 214 1 1.09 1.16

Coupling 74 81 93 1 1.09 1.26

Cohesion 41.09 45.85 51.22 1 1.12 1.25

Abstraction 75 84 99 1 1.12 1.32

Encapsulation 42.33 48.23 59.66 1 1.14 1.41

Messaging 378 428 525 1 1.13 1.39

Polymorphism 5 7 7 1 1.4 1.4

Complexity 457 531 647 1 1.16 1.42

Composition 7 43 55 1 6.14 7.86

Inheritance 35.53 36.89 37.75 1 1.04 1.06

POP COUNT 1792.79 2082.55 2560.36 1 1.16 1.43

As a result of normalizing the POP counts, Table 6 shows the six quality attributes for each version of Jcommon.

Table 6: Jcommon Project Versions with QMOOD Quality Attribute Values.

Version

Quality Attribute

0.8.0 0.9.0 1.0.0

Reusability 1 1.16 1.36

Flexibility 1 3.78 4.67

Understandability -0.99 -1.21 -1.34

Functionality 1 1.18 1.32

Extendibility
1 1.24 1.26

Effectiveness 1 2.17 2.61

POP COUNT 1 1.16 1.43

For all three versions of Jcommon, the values listed above

indicate an increase in effectiveness, reusability, flexibility,

functionality, and extendability and a decrease in

understandability.

The graph below indicates that effectiveness, reusability,

flexibility, functionality, and extendability increase with

higher versions, but the understandability factors decrease.

In addition, all three versions of Jcommon increased their

POP count.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(2s), 328–336 | 334

Fig 4: Plot of computed quality attributes & POP Count for Jcommon Project Versions

F. Results Of Evaluation for Proguard Project Versions

The values of the 11 metrics of Table 2 for the three

varieties of Proguard[11] are measured by the automated

tool. The measurements are normalized and presented in

Table 7.

Table 7: Proguard Project Version Metric Values: Actual and Normalized

Project Actual Metric Values Normalized Metric Values

Version

Metrics
1.7.2 4.0 4.9 1.7.2 4.0 4.9

Design Size
257 497 556 1 1.93 2.16

Hierarchies
23 45 44 1 1.96 1.91

Coupling
284 594 690 1 2.09 2.43

Cohesion
8.06 26.03 29.26 1 3.23 3.63

Abstraction
33 89 107 1 2.69 3.24

Encapsulation
16.8 46.75 50.75 1 2.78 3.02

Messaging
167 299 331 1 1.79 1.98

Polymorphism
4 8 8 1 2 2

Complexity
253 405 482 1 1.60 1.91

Composition 4 5 8 1 1.25 2

Inheritance 1 1 1 1 1 1

POP COUNT 1142.71 2102.89 2531.81 1 1.84 2.22

In Table 8, the six quality attributes, along with POP Count

based on the normalization, have been computed for each

version of the project Proguard.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(2s), 328–336 | 335

Table 8: Proguard Project Versions with QMOOD Quality Attributes and POP

Counts

Version

Quality Attribute

1.7.2

4.0

4.9

Reusability 1 2.14 2.37

Flexibility
1

1.79 2.15

Understandability -0.99 -1.42 -1.68

Functionality 1 2.07 2.21

Extendibility
1

1.8 1.9

Effectiveness 1 1.94 2.25

POP COUNT 1 1.84 2.22

In all three versions of Proguard, the attributes which

measure quality such as that reusable, flexible, functional,

extendible, and effective metrics will increase with each

release, whereas understandability decreases as complexity

increases in higher versions.

According to the graph below, with higher versions, the factors of effectiveness, reusability, flexibility, functionality,

and extendability increase while those related to understandability decrease.

Fig 5: A Plot depicting the computed quality attributes and POP count for each version of the Proguard project.

The above results demonstrate that as different versions are

released, the effectiveness, reusability, flexibility,

functionality, and extendability factors increase, and the

understandability factor decreases.

POP counts for all three versions of the projects were also

found to have increased.

5. Conclusion And Future Work

A tool for measuring software quality has been developed.

With this tool, the trend of QMOOD quality attributes was

measured for three Java projects and compared to the trend

shown by the POP count values for all the identical

versions. Quality was analyzed.

From this study, it is evident that the POP metric is a

good indicator of Software Quality, as demonstrated by

comparing the results obtained.

Based on the results of the study, we can conclude that

the POP count is an appropriate method for estimating

Effectiveness, Reusability, Flexibility, Functionality, and

Extendability quality attributes. As a result of the POP

count, however, understandability is indirectly

proportional to the POP count.

In this manner, it is possible to estimate the quality of

projects by comparing their POP counts. The increase in

POP count value corresponds to an increase in the quality

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(2s), 328–336 | 336

attributes of effectiveness, reusability, flexibility,

functionality, and extendability, as well as a decrease in

understandability.

Predictive Object Point Metrics and Quality are related to

the data studied. However, the data studied has not covered

many software projects exhaustively.

Further research is required to determine if this

relationship exists by obtaining additional projects

developed for similar requirements and objectives.

Validation is key to making sure such predictions are

accurate, and software quality assessment is effective.

Since it has already been demonstrated that the POP

metrics set is also a good predictor of size, it is possible to

follow up this study with another in which the POP metrics

will be mapped to measure the cost and schedule of

software development.

References
[1] J.Bansiya and C.G.Davis, "A Hierarchical Model for

Validation of Object Oriented Design Quality Assessment", IEEE

Transactions on Software Engineering, Vol.28, No 1, January

2002.

[2] N. Kayarvizhy, S. Kanmani," Analysis of Quality of

Object Oriented Systems using Object Oriented Metrics", in

proceedings of 3rd International Conference on Electronics

Computer Technology (ICECT), Volume 5, pg 203-206, April

2011.

[3] Arlene F. Minkiewicz, "Measuring Object Oriented

Software with Predictive Object Points" PRICE Systems, LLC

609-866-6576.

[4] Jain Shubha, Yadav Vijay and Singh Raghuraj. "OO

Estimation through Automation of the Predictive Object Point

Sizing Metric", International Journal Of Computer Engineering

and Technology(IJCET), Volume 4, Issue 3, May-June (2013),

pp. 410-418.

[5] J. Bansiya," A Hierarchical Model for Quality

Assessment of Object Oriented Designs", Ph.D. Dissertation,

Univ. Of Alabama in Huntsville, 1997.

[6] S. R. Chidamber and C. F. Kemerer. A Metrics Suite for

Object-Oriented Design. IEEE Transactions on Software

Engineering, vol.20, No 6, pp. 476 - 493, June 1994.

[7] M. Hintz and B. Montazeri," Chidamber and Kemerer's

Metrics Suite: A Measurement Theory Perspective ", IEEE Trans.

Software Eng, vol. 22, No. 4, pp. 67-271, Apr.1996.

[8] W. Li and S. Henry, "Object Oriented Metrics that

Predict Maintainability," The J. Systems and software vol.23, no.

21, pp. 929-994, Dec. 1995.

[9] JaimBot : URL http://sourceforge.net/projects/jaimbot/

[10] Jcommon : URL

http://www.jfree.org/jcommon/download

[11] Proguard : URL http://proguard.sourceforge.net

[12] Software Quality Metrics for Object Oriented System

Environments, National Aeronautics and Space Administration

Goddard Space Flight Center, Greenbelt Maryland 20771, June

1995.

[13] Mandeep K. Chawla, Dr. Indu Chhabra," Capturing OO

Software Metrics to attain Quality Attributes – A case study",

International Journal of Scientific & Engineering Research,

Volume 4, Issue 6, June-2013 ISSN 2229-5518

[14] Objecteeering Metrics User Guide available at:

http://support.objecteering.com/objecteering6.1/help/us/metrics/t

oc.htm [accessed 25 June 2013].

[15] User Guide for CCCC available at :

http://www.stderr.org/doc/cccc/CCCC%20User%20Guide.html

[accessed 25 June 2013]

[16] CKJM extended manual," An extended version of Tool

for Calculating Chidamber and Kemerer Java Metrics (and many

other metrics), " available at:

http://gromit.iiar.pwr.wroc.pl/p_inf/ckjm/intro.html [accessed 3

May 2013]

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5934630
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5934630
http://sourceforge.net/projects/jaimbot/
http://www.jfree.org/jcommon/download
http://proguard.sourceforge.net/
http://support.objecteering.com/objecteering6.1/help/us/metrics/t
tp://www.stderr.org/doc/cccc/CCCC%20User%20Guide.html%20%5b
http://gromit.iiar.pwr.wroc.pl/p_inf/ckjm/intro.html

