
International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(2s), 354–359 | 354

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-6799 www.ijisae.org Original Research Paper

Transformation from CIM to PIM for Querying Multi-Paradigm

Databases

Simmi Bagga1, Dr. Anil Sharma2

Submitted: 22/10/2022 Revised: 21/12/2022 Accepted: 20/01/2023

Abstract: In model-driven engineering, the modeling process is prioritized above any other part of the software development cycle.

This paradigm shifts the focus squarely onto the model for those working in design and analysis. Several standards, such as OMG's MDA

method, have been provided in this respect. Model-Driven Architecture (MDA) is a software development paradigm that was standardized

in 2003 by the Object Management Group (OMG). It is based on MDE concepts (Model-Driven Engineering). Through the power of

abstraction, the MDA approach simplifies complex systems and the world around you. This core overview is expanded upon by the

Object Management Group's conceptual framework, as well as by supplementary standards such as the Unified Modeling Language

(UML), the Meta Object Facility (MOF), and the eXtensible Metadata Interchange (XMI) (XML Metadata Interchange). Once the

foundational requirements of the system are laid down, transformation rules are applied to convert them into Platform Independent and

further platform specific models.

Keywords: MDA, CIM, PIM, PSM, UML

1. Introduction

Within the realm of software engineering, a variety of

different approaches to software development have been

investigated and found to be successful. The procedural, object-

oriented, component-oriented, and service-oriented paradigms

are some examples of these methodologies. All of these methods

set out to guarantee high-quality computer systems while also

making their implementation on execution platforms easier.

These systems for carrying out orders are constantly developing,

diversifying, and increasing in complexity. One recommended

strategy for decoupling business logic from platform

characteristics is to extend the effectiveness of models beyond

their traditional role as a technique of representation and

documentation. Model-Driven Engineering, a relatively new

engineering approach, depends on it heavily (MDE). Therefore,

model-driven engineering is a software development process that

places an emphasis on the models themselves, therefore

preparing the conceptual foundation for code generation via the

regular modification of the models. To that aim, we have been

putting the MDA technique to work in order to create an

application architecture with many layers: presentation,

business, and data access.

In model-driven engineering, the modeling process is prioritized

above any other part of the software development cycle. This

paradigm shifts the focus squarely onto the model for those

working in design and analysis. Several standards, such as

OMG's MDA method, have been provided in this respect. Model-

Driven Architecture (MDA) is a software development paradigm

1Research Scholar, Lovely Professional University, Phagwara,

(Punjab), India
2Professor, Lovely Professional University, (School of

Computer Application) Phagwara, (Punjab), India
1simmibagga12@gmail.com, 2anil.19656@lpu.co.in

that was standardized in 2003 by the Object Management Group

(OMG). Through the power of abstraction, the MDA approach

simplifies complex systems and the world around you. This core

overview is expanded upon by the Object Management Group's

conceptual framework, as well as by supplementary standards

such as the Unified Modeling Language (UML), the Meta Object

Facility (MOF), and the eXtensible Metadata Interchange (XMI)

(XML Metadata Interchange). Therefore, model-driven

engineering is a software development process that places an

emphasis on the models themselves, therefore preparing the

conceptual foundation for code generation via the regular

modification to the models. To that aim, we have been putting the

MDA technique to work in order to create an application

architecture with many layers: presentation, business, and data

access.

2. Model Driven Architecture

An offshoot of MDE, "Model Driven Architecture" (MDA) was

first offered by the Object Management Group in 2001. Portability,

interoperability, and reusability are the three primary aims of MDA,

all of which are realised via the practise of concern separation. The

MDA is built on the idea of decoupling the design of a system from

the specifics of how that system will be implemented on a certain

platform. Platform-blind specification occurs when a system is

specified without taking into account the platform on which it will

run. After designing this Platform-blind specification, next steps

include:

• Establish platforms.

• Determine the platform for your system.

• Transform a current system definition into a new specification that

is optimised for the platform that has been selected. Modelling and

model transformation approaches are mostly used. Conversions can

be horizontal (PIM to PIM) or vertical (CIM to PIM) (PIM to PSM

or PSM to PIM).

http://www.ijisae.org/
mailto:1simmibagga12@gmail.com
mailto:2anil.19656@lpu.co.in

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(2s), 354–359 | 355

2.1 CIM (Computational Independent Model)

Computational-Independent Model (CIM) is a framework

for expressing requirements regardless of the underlying

architecture. A CIM is a simple demonstration of a system

that can be understood by ordinary people without detailed
information on how it is implemented. It just shows the business

logic of the system represented as models. CIM should be

developed in such a way that it can further use in the development

of PIM and PSM.CIM clears the functional and non-functional

requirements of the system.

2.2 Platform Independent Model (PIM)

A Platform Independent Model (PIM) is a high-level abstraction

model in the context of Model-Driven Architecture (MDA) that

disregards implementation-technical issues. The transformation of

PIM, PSM is developed by implementing it to specific platform.

The advantages of this approach are to drive one or more PSM

from single PIM. The main benefit of this approach stems from the

possibility to derive different alternative PSMs from the same PIM

depending on the target platform, and to partially automate the

model transformation process and the realization of the distributed

application on specific target platforms

2.3 Platform Specific Model (PSM)

A good example of a model that defines the technical method for

resolving an issue is the Platform Specific Model (PSM). It's the

vehicle via which news and analysis about PIM tools may be

shared with the world.

3. Related Work

Since the standardization of MDA in 2003, it is widely being used

in development of systems that range in a wide variety of tech

domain. Below are some of the related researches from recent

years.

Lachgar [4] suggests using MDA technique on mobile platforms

to create a model that adheres to the n-tier design. In this work, the

authors provide the meta-models required for constructing the

display, business, and data access layers. It has been determined

which model-to-model translation rules apply to which models.

These transformation rules were translated using the ATL model

transformation language, which the authors chose. However, the

ATL language transformation mechanism was not described in any

detail.

Bezivin et al.[1] recommend using the MDA technique to web

service-based systems. The authors were successful in generating

both a meta-model for a web service platform and a meta-model

using the UML language. Citations of the many rules were done

using the language of ATL.

Using the QVT (Query / View / Transformation) model

transformation language, Srai et al.[2] detail a process for creating

a PSM model that conforms to the multi-tier architecture of e-

learning platforms. This method was developed to set up a PSM

model that is consistent with the hierarchical structure of modern

e-learning platforms.

According to Srai et al. [3], the work to develop a PSM model for

EJB systems has only recently reached this degree. Castro et al. [6]

demonstrated a service transformation from CIM to PIM. The

authors show the CIM level by modelling business processes with

BPMN and identifying services from the beginning with a value

model [5].

The authors extend the use case model and the activity diagram to

reach the PIM level, which is achieved with the help of ATL. Using

this approach, you can pinpoint the CIM services and enterprise

processes that will steer your transition to PIM automation. The

authors' PIM-level analysis is confined to use case diagrams and

activity diagrams, without offering the structural viewpoint (class

diagram) that would reveal this level's ultimate function.

To represent business perspective in CIM, Rodrguez et al. [7]

describe a CIM-to-PIM transformation approach based on security

criteria. BPMN is used by the authors to represent business

processes in CIM, while QVT [12] is used to convert CIM into

PIM class diagrams and use cases. This technique opens up

exciting opportunities for transforming CIM into PIM-based

security. This method makes advantage of safe information

systems.

Model-driven engineering is used by Hahn et al. [9]. In ATL, the

authors describe CIM using BPMN and PIM using SoaML models.

This technique models services using SoaML, the most recent

OMG standard, however it is not the end aim of PIM level, which

employs structural diagrams (as class diagram). The representation

of CIM and PIM as features and components is described by Zhang

et al. [10]. This model's responsibilities link its features and

components in a way that facilitates the transition of CIM and PIM.

DSL is used for traceability by Grammel and Kastenholz [11].

Both methods provide conversion solutions for CIM to PIM but do

not define CIM and PIM models. Gutierrez et al. [12] offer a

method for transforming use case diagrams into activity diagrams

that is based on MDA by making use of QVT transformations.

Although the authors define use case functional requirements in

CIM, their technique changes CIM to PIM utilising explicit

principles.

Mazon et al. [13] develop a UML profile based on the modelling

framework to determine CIM level. The authors built PIM on the

conceptual modelling of a data warehouse developed by QVT.

Only in data warehousing does this method transform CIM to PIM.

As described by Kherraf et al. [8], a CIM-to-PIM methodology is

a method

that "transitions" between the two models. The authors start with a

business process model and use case diagram to model the business

processes, and then end with a thorough activity diagram defining

the system requirements.

As a result of this process, the requirements are mapped onto the

various parts of the system. The diagram represents the first PIM

parts. Finally, business archetypes transfer class diagram nodes to

system components. Useful suggestions for making the change

from CIM to PIM are provided by this technique. This approach

uses a use case diagram at the CIM level, despite the fact that it

depicts system functionality. Many CIM to PIM transition methods

[14], [15], [16], [17] rely on BPMN to generate CIM levels, hence

we are limited when translating CIM to PIM[18].

Post studying the usage of MDA is systems designing throughout

the years; it was applied on a system that queries Multiparadigm

databases. Multiparadigm databases are databases that support

multiple data model paradigms, such as document, key-value,

graph, and object-relational. These databases can handle a diverse

range of data types and structures and provide flexibility in

terms of querying and data manipulation.

4. CIM for Querying Multiparadigm Databases

CIM was made by gathering all the requirements that come under

the spec of Multiparadigm database. As per the OMG standards,

Activity Diagram, Sequence Diagram and Use Case Diagrams

were constructed as part of it. These all diagram clears the

functional and non-functional requirements of the system. CIM

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(2s), 354–359 | 356

should be developed in such a way that can be further used for

developing the PIM and PSM. It simply demonstrates the

requirements of the system without any information about the

implementation. Various Diagram used to represent the CIM are:

• Use Case Diagram

• Activity Diagram

• Sequence Diagram

In this study main focus is on querying Multi-paradigm databases.

In this modern scenario, no single database can fulfil the

requirements of diverse variety of data so there is the need of time

to use multi-paradigm databases. Below is the CIM for querying

multiparadigm database.

4.1 Use Case Diagram

Use case diagram is the pictorial representation of requirements

and entity with their association specifications. Use case diagrams

indicate how a system's events and flows are represented. The use

case diagram does not specify implementation details. A very

much organized use case likewise depicts the pre-condition, post

condition, and exceptions. The objective of use case diagram is to

capture the dynamic aspect of a system. The following are some of

the goals of use case diagrams:

• Used to gather the system’s requirements

• Used to get an external perspective on a system

• Identify the system’s internal and external influences.

• Demonstrate the relationship between the requirements

and the actors.

2.4 Sequence Diagram

Sequence diagram is also known as interaction diagram that

depicts the interaction behavior of the system. This helps to

understand the overall functionality of the system. It explains the

various objects involved in the system and the sequence of

interaction among the objects needed to complete the functionality

of the system. The sequence diagram is expressed as parallel

vertical lines, different objects that exist simultaneously, and in the

form of horizontal arrows, the messages exchanged between object

according to order of occurrence.

2.5 Activity Diagram

The activity diagram expresses the flow from one activity to

another i.e. the dynamic behavior of the system. Start and end of

the user journey are shown by black circles in between which all

possible processes are defined. We also have some conditional

branches that make the system more dynamic

Fig 1: Use Case Diagram of Hospital System

Fig 2: Sequence Diagram of Hospital System

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(2s), 354–359 | 357

Fig 3: Activity Diagram of Hospital System

5. Transformation from CIM to PIM

Model Driven Architecture (MDA) consists of a collection of

models, where every successive model is developed on the basis

of its proceeding model using Model Transformation. Model

Transformation is a process of converting a source model into a

target model of the same system. Transformation may be done

manually, semi-automatically or automatically. There are two

varieties of model transformations: horizontal transformations and

Vertical transformation. When the source and target models

become at the same level of abstraction or at the same semantic

level are called horizontal transformation and in vertical

transformations, it is used when the considered models are

recorded into two levels of abstraction or on two different semantic

levels.

MDA provide ease to transform application to new platform

because this approach separates the requirement logic, business

logic and implementation details of an application. This separation

is represented by number of models of MDA. The requirement

analysis is describes in the first level of MDA i.e.

CIM(Computational Independent Model), the business logic is

expressed by the PIM(Platform Independent Model) and

PSM(Platform Specific Model describes the implementation detail

in some particular platform. This separation of implementation

detail from the logic helps to reuse PIM to create one or more PSM.

This will reduce the overall cost of developing the application.

6. PIM for Querying Multi-Paradigm Databases

Combining the requirements gathered in the form of CIM with the

transformation methodologies, the Platform Independent Model

for Querying Multiparadigm Databases was created. It was created

in the form of UML Activity Diagram where the four major units

were End User, Front End System, Back End System and

Databases. The system works when these units interact with each

other.

As soon as the system is turned on (which can be through hitting a

URL in browser or user logging in), Back End imports a library for

connecting to the Integrated Databases and makes the connection.

It is important to store each connection objects and reuse them

throughout the Query Journey to avoid any extra latencies. The

connection strings and database info can be hard coded or provided

through a configuration file. After connecting to the Databases, the

system needs to pull out the names of Tables/Collections and

display them to the End User. This should be the first screen made

visible to end user, From this step onwards, the end user drives the

journey by providing the database name and table that needs to be

queried. The selected data is then fetched and displayed to user.

Along with it the columns/fields are also shown so that user can

apply the required filters and project only the necessary fields.

These filters and projections are first validated from the data

previously obtained and passed to database only on successful

validation.

This sums up the basic flow of the application. Another important

feature when we talk about databases is the ability to get the data

from multiple tables at once i.e. via Joins. In our application, after

selecting the table to be queried, a list of eligible tables that can

form a join are also displayed. The user can select and achieve the

required join result and can further apply filters/projections to the

joined result.

Features:

1. The system is scalable with respect to number/type of database

in use.

2. Each database can provide features that it specializes in. The

system just adds an extra layer on top of querying database and

thus leaves the root functionalities unaffected. Thus, all the

intrinsic features of Database will be inherited by the system.

3. The system is completely Platform Independent as it does not

restrict developer to the use of any specific Programming

Language / Database.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(2s), 354–359 | 358

7. Conclusion

Fig 4: PIM for Querying Multi-Paradigm Databases

[4] M. Lachgar, “Approche MDA pour automatiser la

Platform Independent model is the key step in creating an

Application System following MDA approach as it lays a model

depicting how each functionality is implemented. Since there is no

dependency on the underlying platform, there is plenty of scope for

extending this model to any platform, which results in the

formation of PSM (Platform Specific Model). MDA approach

helped us solve a complex problem of Querying Multiparadigm

databases. First we created a Computational Independent model

where we focused more on requirement gathering and

understanding the business logics involved. After that we construct

the PIM as discussed in this research. Post PIM, the next step is to

extend PIM by addition of the application development platforms

which will result in formation of PSM. Thus the process of

application development becomes very systematic and

standardized which was the objective of OMG for bringing MDA.

References
[1] J. Bezivin, S. Hammoudi, D. Lopes, F. Jouault,

“Applying MDA approach for web service platform,” EDOC’04

preceedings of the 8th IEEE International Entreprise Distributed

Object Computing Conference, pp. 58-70, 2004.

[2] A. Srai, F. Guerouate, N. Berbiche, H. Drissi,

“Generated PSM Web Model for E-learning Platform

Respecting n-tiers Architecture,” International Journal of

Emerging Technologies in Learning (iJET), vol. 12, no. 10, pp.

212-220, 2017.

[3] A. Srai, F. Guerouate, N. Berbiche, H. Drissi, “MDA

Approach for EJB Model,” 6th IEEE International Conference on

Multimedia Computing and Systems (ICMCS’18). DOI:

10.1109/ICMCS.2018.8525924

génération de code natif pour les applications mobiles

multiplateformes,” Thèse de Doctorat, 2017.

[5] J. Gordijn, and J. M. Akkermans, “Value based

requirements engineering: exploring innovative e-commerce

idea,” Requirements Engineering Journal 8 (2), 2003, pp. 114–134.

[6] V. D. Castro, E. Marcos, and J. M. Vara, “Applying

CIM-to-PIM model transformations for the service-oriented

development of information systems,” presented at 2nd

Information and Software Technology, 2011, pp. 87–105.

[7] A. Rodríguez, I. García-Rodríguez de Guzmán, E.

Fernández Medina, and M. Piattini, “Semi-formal transformation

of secure business processes into analysis class and use case

models: an MDA approach,” presented at 9th Information and

Software Technology 52, 2010, pp. 945–971.

[8] S. Kherraf, E. Lefebvre, and W. Suryn, “Transformation

from CIM to PIM using patterns and archetypes,” presented at 19th

Australian Conference on Software Engineering, 2008,pp. 338-

346.

[9] C. Hahn, P. Dmytro, and K. Fischer, “A model-driven

approach to close the gap between business requirements and

agent-based execution,” presented at Proceedings of the 4th

Workshop on Agent-based Technologies and applications for

enterprise interoperability, Toronto, Canada, 2010, pp. 13–24.

[10] W. Zhang, H. Mei, H. Zhao, and J. Yang,

“Transformation from CIM to PIM: a feature-oriented component-

based approach,” presented at MoDELS 2005, Montego Bay,

Jamaica, 2005.

[11] B. Grammel, and S. Kastenholz, “A generic traceability

framework for facet-based traceability data extraction in model-

driven software development,” presented at the 6th ECMFA

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(2s), 354–359 | 359

Traceability Workshop held in conjunction ECMFA 2010, Paris,

France, 2010, pp. 7–14.

[12] J. J. Gutiérrez, C. Nebut, M. J. Escalona, M. Mejías, and

I. M. Ramos, “Visualization of use cases through automatically

generated activity diagrams,” presented at 11th international

conference on Model Driven Engineering Languages and Systems,

France, 2008, pp. 83-96 .

[13] J. Mazón, J. Pardillo, and J. Trujillo, “A model-driven

goal-oriented requirement engineering approach for data

warehouses,” presented at the Conference on Advances in

Conceptual Modeling: Foundations and Applications, Auckland,

New Zealand, 2007, pp. 255–264.

[14] Y. Rhazali, Y. Hadi and A. Mouloudi, "Disciplined

approach for transformation CIM to PIM in MDA," Model-Driven

Engineering and Software Development (MODELSWARD), 2015

3rd International Conference on, Angers, 2015, pp. 312-320.

[15] Y. Rhazali, Y. Hadi and A. Mouloudi, "Transformation

approach CIM to PIM: from business processes models to state

machine and package models," Open Source Software Computing

(OSSCOM), 2015 International Conference on, Amman, 2015, pp.

1-6. doi: 10.1109/OSSCOM.2015.7372686

[16] Y. Rhazali, Y. Hadi and A. Mouloudi, (2016). Model

Transformation with ATL into MDA from CIM to PIM Structured

through MVC. Procedia Computer Science, 83, 1096-1101.

doi:10.1016/j.procs.2016.04.229

[17] Y. Rhazali, Y. Hadi and A. Mouloudi, A Methodology

of Model Transformation in MDA: from CIM to PIM, (2015)

International Review on Computers and Software (IRECOS),

10(12), pp. 1186-1201.

[18] H. Wijekoon, V. Merunka, “Transformation of Class

Hierarchies During Software Development in UML”, (2022) ICDS

2022 : The Sixteenth International Conference on Digital Society,

pp. 23-27.

[19] D. Gaspar, M. Mabić, T. Krtalić, “Integrating Two

Worlds: Relational and NoSQL”, (2017) Proceedings of the

Central European Conference on Information and Intelligent

Systems, pp. 11-18.

[20] Ken Ka-Yin Lee,Wai-Choi Tang, and Kup-Sze Choi.

Alternatives to Relational Database: Comparison of NoSQL and

XML approaches for Clinical Data Storage.Computer Methods

and Programs in Biomedicine, 110(1):99–109, 2013.

[21] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C

Hsieh, Deborah A Wallach,Mike Burrows, Tushar Chandra,

Andrew Fikes, and Robert E Gruber. Bigtable: A Distributed

Storage System for Structured Data. ACM Transactions on

Computer Systems (TOCS), 26(2):4, 2008.

[22] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani,

Gunavardhan Kakulapati, Avinash Lakshman, Alex Pilchin,

Swaminathan Sivasubramanian, Peter Vosshall, and Werner

Vogels. Dynamo: Amazon’s Highly Available Key-value Store.

41(6):205–220, 2007.

[23] Matthew Aslett. How will the Database Incumbents

Respond to NoSQL and NewSQL. The 451 Group, pages 1–5,

2011.

[24] Katarina Grolinger, Wilson A Higashino, Abhinav

Tiwari, and Miriam AM Capretz. Data Management in Cloud

Environments: NoSQL and NewSQL Data Stores. Journal of

Cloud Computing: Advances, Systems and Applications,2(1):22,

2013.

[25] Pramod J Sadalage and Martin Fowler. NoSQL

Distilled: A Brief Guide to the Emerging World of Polyglot

Persistence. Pearson Education, 2012.

[26] Christof Strauch, Ultra-Large Scale Sites, and Walter

Kriha. Nosql databases. Lecture Notes, Stuttgart Media University,

2011.

[27] Peter Membrey, Eelco Plugge, and DUPTim Hawkins.

The Definitive Guide to MongoDB: The NoSQL Database for

Cloud and Desktop Computing. Apress, 2010.

