

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-67992147-6799 www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(4s), 509–516 | 509

ElitGA : Elitism Based Genetic Algorithm for Evaluation of Mutation

Testing on Heterogeneous Dataset

Sandeep Kadam1 T. Srinivasarao2

Submitted: 10/11/2022 Accepted: 14/02/2023

Abstract: Manually generating test cases is a tedious and time-consuming task. Automation testing data production, may help in the

creation of a sufficient test suite that meets set objectives. The fault-finding behavior of a test suite determines its quality. For the creation

of test data, mutants have been extensively recognized for modelling synthetic faults that act identically to actual ones. The use of search-

based strategies to improve the quality of test suites has been widely covered in previous publications. Symmetry, on the other hand, might

have a negative influence on the complexities of a search-based technique, whose success is highly dependent on the developing and

evaluation of search process. In order to fulfil market expectations for quicker delivery and better-quality software, automation testing has

really become critical in the software business. In this work, we proposed a multi mutant evaluation technique using a genetic algorithm.

In this work, we carried out a generation of unique test mutants in the first section by using a random population generation algorithm. In

the second section vi define a genetic algorithm that performs crossover function, mutation, calculation of fitness and selecting the best

jeans according to the percentage of selection. We also define an algorithm for the selection of unique test suites. In the extensive

experimental analysis, we evaluate 10 mutants on four different test suites. The proposed genetic algorithm validates all test methods to

each test suite and obtains the results whether the mutant has been killed or live. According to this experimental analysis finally, we

conclude the effectiveness of the written test suit. The proposed system provides higher efficiency who was the traditional mutation testing

evaluation techniques on the heterogeneous datasets.

Keywords: Software testing, automation resting, fault detection, computer languages, programming languages, source code analysis.

1. INTRODUCTION

Mutation-based testing [1] is a test method that

intentionally incorporates defects into a System Under

Test (SUT). A mutant is a replica of a component that has

undergone a modification that, in most situations, results

in performance that is not intended. The mutation

controllers are used to produce the various mutants

efficiently. We have discovered mutation operators inside

the state - of - art, both general intent and tailored to

distinct technologies, languages, and frameworks [2].

When it comes to testing software, characteristics linked

with certain domains, these operations are insufficient.

The discovery of comparable and duplicate mutants is one

of the most difficult open challenges in mutation. As

we've previously covered, there are a variety of

approaches for dealing with this issue, both directly and

indirectly, but the problem remains mostly unsolved.

Overall, the present study findings reveal that only around

5% of the mutants created are practically helpful. The rest

adds to the process's noise, which has serious effects [6].

Overall, instead of blind grammatical mutations, mutation

testing needs models that direct mutations toward minor

semantic differences that are in some ways discontinuous.

However, there is also no clear explanation or agreement

on which mutant kinds and instances should be used.

According to preliminary findings, virtually all mutant

operations are useful in some way. The fact that most

available tools are confined to a small number of mutation

operators is constraining and arbitrary to some extent. As

a result, in the next, mutation might be targeted toward a

small number of "useful" mutants that provide value to the

tester (independent of the operators employed) [7].

Another key feature is the automated development of test

cases and test oracles based on mutations. Despite

substantial improvements in this field of study over the

previous ten years, the issue persists. The majority of

automated procedures fail to kill a significant proportion

of mutants, and new empirical assessments suggest that

automated test generation techniques fall short of covering

the majority of essential programme regions. As a result,

there isn't much effort being done to improve test suites

__
1Department of Computer Engineering Gitam

University,Visakhapattnaam, India
2Department of Computer Engineering Gitam University,

Visakhapattnaam India
1sukadam.bscoer@gmail.com
2sthamada@gitam.edu

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(4s), 509–516 | 510

utilising mutants. This might be due to a lack of

knowledge and modelling of the error propagation. Recent

study has shown that unsuccessful mutant multiplication

is the key factor in mutation testing's effectiveness [8].

There is still a lot of work to be done before we can

dynamically create massive test cases using high-quality

mutants.

Terminologies of Mutation Testing using optimization

Techniques

Software Testing: It is the method of changing a

programme with the goal of detecting errors [1]. When the

actual output and anticipated output of performing a test

case disagree, it is assumed that a defect exists.

Test Case: A test case is an input to a programme with an

anticipated outcome that is used to evaluate the program's

operation [1]. A test script is a set of test cases; for

example, a test case may be T1 = 7 for an input data issue,

while T1 = (8, 4) considering two input problems.

Mutation Testing: It is a test automation approach that

introduces programme flaws or defects with a prerequisite

of the updated program's syntactic and semantic

competence [4].

Mutants: Mutants are the defective versions of a

software. A standard mutant is defined as one with only

one flaw, while elevated variants have more than just

error.

Mutation Operators: Mutants are created utilising

metagenic rules [2], which methodically disseminate the

program's weakness. In mutation testing, certain

metagenic principles are referred to as evolutionary

algorithms, and a few instances of such individuals are

shown.

Killing a Mutant: If the performance of t can identify the

behaviour of the original programme s and mutant

programme m, a test t T (Test Suite) kills a variant m M

(set of Mutants). It may be written as: m =m(t) is killed by

t: 6= m(t) m(t) (t)

Mutation Score: The mutation score (percentage) for a

test t that kills KM genotypes out of M variants is

computed as MS[t]: 100/|M| = |KM|.

GA and its Operators: GA is an optimization algorithm

that is based just on biological evolution of reproductive

paradigm [5]. It begins with a random beginning

population P, fitness assessment of P, selection,

reproducing (crossover and mutation), and ends re-

iterating whenever an optimum solution is identified in a

repetition of computation. A binary-encoded GA is

created by representing each the individual population as

a chromosome or set of gens and encoding it in binary.

Crossover joins two persons and generates two new

individuals (offspring) in the evolution of individuals;

mutation, on the other hand, flips a bit in the gene of a

chromosome [3]. The chromosomal is allocated to the

concatenation value of test values in this study, and a

population of GA is allocated to the set of instances.

2. REVIEW OF LITERATURE

This section proposes a genetic algorithm-based mutation

testing paradigm. Theoretical fault-based testing

foundations. This assumption means that testers will

detect mutations classified as common programming

faults. Hence, we may detect frequent faults. Mingzhu

Zhang et al. [1] present a new elitist-based differential

evolution method for multi objective grouping in 2020,

converting the issue with an undetermined number of

groups into a multi objective optimization issue

(EDEMC). Its goal is to reduce the number of groups

while concurrently increasing cluster compactness, and it

produces a Pareto-optimal collection of multiple grouping

solutions for a wide range cluster counts. These two

objective goals are critical for grouping to work. EDEMC

generates and preserves an elitist archive, storing

historical better methods for every number of clusters, and

continuously improves the populace using freshly devised

genetic procedures and replenishment strategies. Finally,

users might choose among initial solution one optimum

splitting of a specified number of groups based on some

chosen parameters. The suggested scheme can produce

highly converging and diversified answers in less time,

according to test findings on numerous databases.

Suilen H. Alvarado et al. [2] mutation-based testing is a

testing method that involves generating defects into a

System Under Test artificially (SUT). A variant is a

replica of a machine that has undergone a modification

that, in most situations, results in performance that is not

intended. The mutation functions are used to produce the

various variants mechanically. Mutation operators are

discovered in the state of art that are both generally useful

and particular to various techniques, Languages, and

paradigms. Such procedures, on the other hand, are

insufficient for testing software characteristics connected

with certain areas. The research provides mutation

operators that are peculiar to the area of Geographic

Information Systems (GIS) apps, and which recreate

programming faults that are probable to appear during the

creation of these processes. In particular, the execution of

these operators is described, and mutants are produced

using these operations in 2 real-world GIS systems as

proof of concept.

Either general or specialized mutation operations can be

discovered in current approaches. These, nevertheless, are

insufficient to address faults in certain areas. It has

developed unique GIS-specific operators as well as how

to deploy these to an SUT. In furthermore, the operators

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(4s), 509–516 | 511

developed in two GIS software are put to the test. System

plans to apply this method to certain other areas in the

future, as well as to use the established procedures to

automatically enhance sets of test scenarios.

Vladislav Skorpil et al. [3] present a parallel processing of

GA implementation in 2022. The Fine grained GA, the

Master–Slave GA, the Coarse-Grained GA are three

versions of parallelized evolutionary algorithm given.

These methods are also determined by the standard serial

evolutionary algorithm paradigm. Among several

parallelization alternatives in Python, Parallel processing

and Efficient Parallel Operation in Python have been

studied. Because the Efficient Parallel Operation in

Python was chosen as the best alternative, the models were

developed with the Python programming language as well

as SCOOP. An analysis of the equipment usage of every

implemented system is defined depending on the

execution outcomes and testing completed. Three

components of the results' execution with SCOOP were

studied. The parallelization and incorporation of the

SCOOP component into the final Python module was the

initial element. The second was interaction inside the

architecture of the GA. The efficiency of the parallel

evolutionary technique model in relation to the equipment

was the third consideration.

The goal of the study was to monitor the efficiency of

various parallelized genetic technique models utilizing

SCOOP as the Python module of choice. The principal

storage use analysis got the predicted findings. As the

population rises, so did the amount of storage used.

Interestingly, the Master–Slave paradigm produced

findings that were comparable to those of previous

parallel GA systems. It didn't have to process information

from other processes, though, because the Master–Slave

architecture doesn't allow for inter-process

communication. As anticipated, the Serial model used the

least amount of RAM. The CPU consumption did not

improve as substantially as the memory usage as the

population grew. Further distinction between the Master–

Slave model and other concurrent genetic algorithm

approaches was the much reduced CPU utilization of the

Master–Slave paradigm.

The Serial model, on the other hand, had the smallest load,

as anticipated. In rare circumstances, an operating system

constraint was detected when parallelizing with several

desktops. During evaluation on one desktop, the

computing time, maximum iteration, and equipment usage

were all recorded. The findings demonstrated the

advantages of parallel processing for evolutionary

algorithm, as all three methods of parallel GA

outperformed the Sequential method in terms of speed and

accuracy. As per the findings, the Fine-Grained method

and Coarse-Grained method were more effective in terms

of efficiency in relation to the number of repetitions since

they required far fewer repetitions than the sequential

model. In the long term, the system's goals will be to

parallelize evolutionary algorithms dispersed in groups

with the ability to control them selectively.

Shweta Rani et al. [4] discuss manually creating test cases

is a laborious and time-consuming task. Test automation

data production, on the other hand, may help in the

creation of a sufficient test suite that meets set objectives.

The defect-finding performance of a testing process

determines its quality. For the creation of test data,

mutations have been extensively recognized for modeling

artificial flaws that act identically to realistic ones.

Through use of search-based strategies to enhance the

quality of test suites has been covered extensively in

previous publications. Symmetric, on the other hand,

might have a negative influence on the functioning of a

search-based method, whose success is highly dependent

on the growing population violating the "symmetry" of

search area. This research uses an elitist Genetic

Algorithm with a better fitness value to disclose the most

flaws while reducing the cost of assessment by producing

less complicated and unbalanced test cases. It employs a

selective mutation technique to generate low-cost

synthetic defects with fewer duplicate and similar

variants. For development, the records of test performance

and mutant identification direct replication operator

selection, which determines whether to vary or strengthen

the prior population of test instances. The size of the test

suite is further reduced by iteratively eliminating

superfluous test cases. This report examines the

effectiveness of the suggested technique to Initial Random

testing and a commonly used evolutionary paradigm in

academics, specifically Evosuite, using 14 Java programs

of notable sizes. Experimentally, the method is found to

be more accurate, with a considerable increase in the

improved test suite's test scenario effectiveness.

In 2019, Drazen Draskovic et al. [5] introduced a novel

categorization method that recognizes basic techniques

and is based on a review of the open literature. It examines

these methods and considers their possibilities,

particularly in the area of hybridization, or the

development of new methodologies that combine the best

features of one or more existing systems. Two hybrid

techniques are detailed, and their efficiency potentials are

explored in a manner that brings new research directions.

The ability of GAs was utilized to developing the suitable

number of groups and giving appropriate grouping by

Rahila H. Sheikh et al. [6] in 2008. Several GA-based

clustering techniques have been investigated. Some are

used on tiny data sets, while others are used on massive

data sets, Production simulation, picture segmentation,

text grouping, data compression, evaluation of gene

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(4s), 509–516 | 512

expression, text categorization, and other applications can

all benefit from GA-based clustering approaches.

Clustering techniques such as K-means and fuzzy c-

means, which are generally distance-based grouping

methods, were subjected to genetic algorithm. Several

clustering algorithms have yet to be subjected to genetic

algorithm.

The current state of genetic algorithm driven grouping

approaches is presented in this assessment. Clustering is a

commonly used and essential strategy for comprehending

and analyzing a data set. Clustering has lately gained

popularity as a result of the introduction of various new

areas of application, such as data gathering,

bioinformatics, online use analysis of the data, picture

analysis, and so on. Genetic algorithm is employed to

clustering techniques in order to get better. The most well-

known evolution approaches are genetic algorithms. GAs

is used to evolve the required amount of groups and to

provide necessary grouping. This study examines various

existing GA-based clustering technique as well as their

applicability to various issues and areas.

Engineering uses of genetic programming are focused

primarily on traditional systems challenges such as

modeling, control, and optimization, according to M. J.

Willis et al. [7]. While software engineers have focused

on getting a basic knowledge of the program (and

enhancing its performance), engineers are tackling

practical concerns, frequently by adding recognized

systems engineering concepts and processes.

To ensure method generalization, for example, local hill

climbing is employed for parameter optimization and

cross validation approaches are applied. The use of

genetic programming approaches to engineering design

challenges seems to be the most promising direction for

future research. While computing constraints presently

limit the intricacy of design applications that may be

handled, as processor rates grow, these constraints will

surely be overcome. Various possible research directions

include looking into other methods that can conduct

structural optimization. For example, O'Reilly and

Oppacher (1994) used a populace of one and simulated

annealing type genetic operators in their structure

annealing process, which is comparable to GP. This has

been claimed to perform similarly to genetic

programming, and so needs more examination. It is

emphasized that genetic programming is a very new field

of study, with professionals still learning about its

possibilities and limits. As a result, the writers think that

the future holds a ton of potential.

In 2018, Jia Luo et al. [8] published a paper describing

how to use genetic algorithms to find the best possible

solution to shop scheduling difficulties. The runtime

expense is extremely high to the NP difficulty. With the

rise of high-performance computation in recent years,

parallel genetic algorithms for shop scheduling conflicts

have piqued interest. The state of the art is provided in this

research article with regard to current developments on

handling shop scheduling challenges utilizing parallel

genetic algorithms. It categorizes parallel genetic

algorithms and examines their designs using frameworks

to highlight the most relevant articles in this subject.

Utilizing parallel genetic algorithms to solve shop

scheduling issues has attracted a lot of attention in the

previous few decades as one type of major topic in

combinatorial optimization techniques. The studies were

categorized by the most prevalent parallel genetic

categories: master-slave systems, fine-grained designs,

and island method in this survey, which covered several

of the most typical articles in this subject. Because there

was little related work, a separate category for hybrid

methods integrating two of these techniques was not

created. As per their major designs, the study is thought to

have been allocated to one of the three fundamental

models. The island GA now manages the majority of

concurrent GAs' activity to find best outcomes for

scheduling difficulties in manufacturing techniques.

Nevertheless, the development of current computing

accelerators with much more parallel threads promises a

bright future for adopting some other two simultaneous

approaches in this industry.

Asim Munawar et al. [9] conducted a study investigated

the effects of new concurrent or distributed computing

concepts on Parallel Genetic Algorithms in 2008. The

main motivation for this study is to assist the GA group

become more acquainted with the growing parallel

concepts and to identify some topics of investigation for

the High-Performance Computing community. It has only

compared two main topics in recent parallel computing

concepts that have progressed extremely swiftly in the last

few decades, namely multicore computing and

Computation. It examines the issues at hand as well as

possible solutions to these issues. It also presents a

hierarchical PGA that is appropriate for Grid

environments with multicore computing resources.

The study provides a brief overview of GAs in the future

parallel/distributed computing paradigm. It analyses the

influence of new concurrent framework. Algorithms

(particularly GAs), which are absurdly parallel and

modular, making GAs an attractive candidate for

execution in recent parallel frameworks. It also included a

flow chart of a potential multilevel genetic algorithm that

may be used in the Grid. The GAs is thought to be able to

cope with all of the issues that current parallel computing

concepts provide to technique development. However, the

high performance computing group faces huge hurdles

that will necessitate an amount of studies in the future

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(4s), 509–516 | 513

years. It has brought to light several of the most pressing

Grid as well as multicore computing concerns. The most

essential of these is the installation issue, as well as the

construction of a uniform paradigm for method

development. It also offers potential alternatives to a few

of the issues rose in the study. Virtual machines, in

particular, are used to create virtual workstations. This

appears to be a highly practical and feasible answer to the

distribution problem. Throughout the same way, several

alternative solutions are highlighted in this study.

Enrique Alba et al. [10] published a current view of

evolutionary algorithm parallel processing strategies in

2002. (EAs). The task is inspired by two basic points: first,

distinct kinds of EAs have innately congregated in the last

decade, whilst also parallel EAs (PEAs) appear to still lack

cohesive research, and foremost, there have been a large

number of advantages in these methodologies and their

parallelization, necessitating a detailed study. All

throughout work, it emphasizes the distinctions between

both the EA concept and its concurrent execution. The

benefits and cons of PEAs are discussed. Main

applications are also acknowledged, as well as open

issues. We present prospective answers to these issues and

categorize the various ways in which new theoretical and

practical findings are assisting in their resolution. Finally,

we present a well-structured foundation on PEAs to help

scholars understand the advantages of decentralizing and

parallelizing an evolutionary algorithm..

3. PROPSOED SYSTEM DESIGN

The effectiveness of our suggested technique pop gen,

which starts by reading the entire program's source code

and returns a list of procedures in the original programme,

as well as the number of independent variables for the

technique under testing for populations randomization.

The sample refers to a set of test cases that are sent to the

synthetic mutants (the defective version of a given

programme) for fitness assessment, and the faults matrix

is modified in each iteration. The method then moves on

to selecting parent test instances for replication, which, if

not convergent, applies acceleration and heterogeneity.

When there is a likelihood of enhancement in the test case

temporarily, we execute escalation (crossover);

alternatively, we perform variety in the form of mutation,

which aims to diversify the answer worldwide. If pop gen

converges at the conclusion of each cycle, it stops working

and gives mutation coverage statistics to the quasi-test

suite.

Table 1 : No. of test suites and set of mutant classes

for single input

Test cases T1 T2 T3 T4

Mutants M1 M2 M3 Mn

Our technique pop gen, as described in Algorithm 1,

generates a random solution of test inputs, i.e., pop, which

is originally empty. Each test input in this article may have

a value between 0 and 110. We execute crossover and

mutation on the binary string using a binary-coded

Genetic Algorithm. As a result, for replication, the integer

test inputs are transformed to binary utilising (8 number

of inputs) bits (8 bits are sufficient to represent each test

input in the range 0 to 110). In GA, there are many

chromosomal encoding types, such as grey, binary, and

real, each with its own set of benefits and drawbacks [5].

Binary encoding is useful for incorporating a quick shift

in the population of solutions, which is desired in the

present investigation to diversify the population and

increase the likelihood of discovering living mutants. We

assess the test suite's quality by running it against the

mutants (each test case is run against each mutation in the

set), and the fitness of each test case is documented in the

details (Table 1). For example, we have n mutants (M1

Mn) and 4 test cases (T1 T4) that are uniquely recognised

by test case IDs. Each test case contains its own fitness,

complexity, and mutant detection information in the form

of 0 and 1, respectively, expressing living and dead

mutant.

Assessment of Physical Fitness We want to make test

cases that are as effective as possible (measured by

mutation score, which is a test case's fault-finding

capabilities) while still being as simple as possible (TCC).

As a result, the inverse of TCC is used to assess fitness.

Furthermore, there is no link between test case

effectiveness and TCC, since efficacy is solely determined

by the value of the test case used for programme execution

and mutation identification. The fitness function and

mutation score are calculated using Algorithm 2.

Fitness_Calc = TCE + (1 / TCC)

TCE (Test Case Effectiveness and Measured Using

Mutation Score (MS)) is calculated based on a test case's

fault-finding capacity, i.e. mutation score, which is widely

used in the literature. TCC (Test Case Complexity in

Microseconds) is the test case complexity assessed in

microseconds using a Java in-built library

(java.lang.Method). TCC does not refer to source code

complexity or cyclomatic complexity in this context. The

latter is used to generate mutant coverage tests while the

former is used for path coverage. We anticipate that a

more complicated test case will take longer to execute

than a simpler one. Two test cases may identify the same

errors and have the same mutation score, but they will

undoubtedly vary in complexity (for example, a test case

with a value of 100 would run "for-loop" 100 times and

require more steps to execute than a test case with a value

of 1 or less than 100). If both test cases identify the

identical problems, the test case with the shorter execution

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(4s), 509–516 | 514

time-steps is chosen first to be maintained in the fault

matrix. The fitness function was created with the goal of

selecting superior tests at a low cost. When fitness is

evaluated, redundant tests are deleted, and the fault matrix

is changed as a result.

A redundant test case identifies flaws that have already

been discovered by another test. These test cases don't

help with testing and just add to the expense [15]. Let's

look at an example to help you grasp the idea. Assume T1

and T2 are two test cases. M1 and M2 are identified by

T1. If only defect M2 is detected by test case T2. Then we

claim that T2 is not necessary since both defects can be

eliminated by performing just T1; hence, T2 is redundant

and can be removed from the test suite without

compromising the test suite's efficacy. The elimination of

such tests results in a more efficient test suite. Algorithm

3's pseudocode shows how redundant tests are detected

and deleted.

Search-based algorithms (evolutionary algorithms)

undertake two actions when producing solutions:

intensification and diversification [12–14]. It examines

the neighbourhood search space and exploits the solution

by picking the best of these local solutions during

intensification. Diversification, on the other hand, looks at

the whole search space and attempts to diversify the

answer. In this research, the present population of tests

evolves with each iteration depending on whether it can

be enhanced in the local optimum (intensification) or

requires global diversification. In GA, intensification

favours the present population while crossover is used to

discover the fittest offspring [5]. At a random point, two

chromosomes swap characteristics and produce two new

children. In this work, we use 0.5 random probability to

accomplish uniform crossover (Algorithm 1) on the parent

population (this type of crossover is recommended for the

chromosomes with moderate or no linkage among its

genes [17], which suits to this study).

We also make sure that each test case pair only

participates in this occurrence once. As a result, n parent

test cases produce n new offspring, reducing time and

space complexity. Equation is then used to assess each

offspring's fitness (1). We then look for children capable

of killing living mutants or outperforming their parent

population. The preceding population is combined with

these crossover test cases, and the procedure is repeated

until convergence is achieved. Diversification in the form

of one-point mutation (Algorithm 1) is chosen to raise the

chance of detecting live faults while reducing the danger

of finding an already dead fault if crossover test cases fail

to kill certain living mutants or is not better than its parent.

All crossover test cases are subjected to mutation. A single

bit is switched from 0 to 1 or vice versa at a random point

on the chromosome between 0 and the length of the gene.

The goal of this intensification and diversification

technique is to incrementally increase the test suite's

efficacy. To help you comprehend the concept, we've

included an example. The outcome of this approach we

describe in result section in briefly.

4. ALGORITHM DESIGN

Algorithm 1: Generate random population for testing

dataset (pop_gen)

Input: Java program under test data test_set, The

initial population size pop_size, Max iteration size

Max_itr, selection criteria for GA in %, Produced

unique mutants uM

Output :Generated Unique testing dataset uTest_data

T  ∅

Population ∅

Generate_pop ← Initialize_Population(pop_size)

Mutate_Score =0.0

Mutate_Score ← Fitness_Evaluation(Population, uM)

No_of_iteration ← 0

while No_of_iteration < Max_itr or Mutate_Score <

max_size

pop ← pop ∪ Initialize_Population(pop_size −

Generate_pop ())

MS ← Fitness_Evaluation(pop, uM)

Parent_pop ← select best fit according to % in

selection phase

offspring ← Crossover(parent_pop)

Offspring  mutation(parent_pop)

Pop  pop ∪ offspring

Mutate_Score ← Fitness_Evaluation(Population, uM)

iteration ← iteration + 1

uTest_data  pop_pop

return uTest_data

Algorithm 2: Calculate the fitness of each

chromosome

Input :No. of test cases for calculation of fitness as

TC, Unique mutant generated classes uM

Output :Generated Mutation score M_Score

1 MSS ← 0.05

n ← TC.size()

x ← uM.size()

all_killed_Mutants ← ∅

foreach t ∈ (TC1.....TCn) do

if Fitness[tc] == null

killed_Mutants[t] ← ∅

TCC[t] ← Current_Method.invoke(S, TC)

foreach m ∈ (uM1....uMx) do

if Current_Method.invoke(m, t) 6=

Current_Method.invoke(S, t) then

killed_Mutants[t] ← killed_Mutants[t] ∪ m;

MSS[t] ← killed_Mutants[tc].size() × 100/uM.size()

Fitness_score[t] ← MSS[t] + 1/TCC[t]

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(4s), 509–516 | 515

Else

All_killed_Mutants ← all_killed_Mutants ∪

killed_Mutants[t];

MS ← all_killed_Mutants.size() × 100/uM.size()

return M_Score

Algorithm 3 : Generation of Unique test cases TC

Input :The generated set of test cases

Output : selected unique test NewTC

TC ← Collections.sort(TC);

foreach t ∈ (TC1....TCn) do

All_Killed_Mutants ← ∅

set New_flag ← False

foreach p ∈ (TC1....TCn)

if

!TC.get_killed_Mutants().contains(p.get_killed_Muta

nts())

&!p.get_killed_Mutants().contains(TC.get_killed_Mut

ants()) then

All_Killed_Mutants ← TC.get_killed_Mutants()

else if

p.get_killed_Mutants().contains(t.get_killed_Mutants(

)) & p.get_killed_Mutants().size() >

TC.get_killed_Mutants().size() then

All_Killed_Mutants ← p.get_killed_Mutants()

if All_Killed_Mutants.size()>0 &

(All_Killed_Mutants.contains(t.get_killed_Mutants())

||

TC.get_killed_Mutants().contains(All_Killed_Mutant

s)) then

set New_flag ← True

break;

if New_flag then

remove t from TC

return T

5. RESULTS AND DISCUSSION

In his research to assess the suggested work, we have

carried out an experiment with a variety of different

settings. JDK 1.8 and NetBeans 8.0 have been used in the

open-source environment. The processing speed is 2.7

GHz, and there are 8 gigabytes of Memory in use. All of

the trials were carried out separately in an atmosphere that

was comparable, and the results of the experiments are

shown in table 2. The validation of proposed system we

build some experiment in first scenarios, T1 and T2, with

their corresponding dead mutants (M1, M2, M6) and (M2,

M4). Consider instance 1, in which parent test cases T1,

T2 benefit from intensification (crossover); yet, children

from crossover (C1, C2) are not more successful than

parent test cases, but C1, C2 kill live mutant M8 and M5

correspondingly. It raises the value of C1 and C2 in the

general population. Meanwhile, in example 2, C1 and C2

do not improve the overall efficacy of the test suite,

therefore C1, C2 are diversified by mutation. This might

result in useful test scenarios.

We use the example of producing tests for a single input

issue to demonstrate how the technique works for test

creation (Table 2). Let's say the population size is 8, and

there are 10 non-equivalent mutations (M1 M10).

Initially, eight test cases (T1–T8) are generated at random

and run against all mutants (M1–M10). Fitness and

mutation score are assessed for each test case (T1–T8).

Test T1 discovers 5 mutations out of 10 in iteration 1,

resulting in a mutation score of 50. Each test case's status

as redundant (R) or non-redundant (N) was also examined

(N). Following a fitness review, the best tests (T1, T7) are

chosen for crossover (intensification) and the generation

of two additional offspring (C1, C2). Test case C1 is

redundant, whereas test case C2 is non-redundant,

according to their fitness assessment. In this scenario, we

believe that intensification is worthwhile and that it

introduces a new test case into the population. Non-

redundant crossover test cases are combined with the

preceding non-redundant solution at the conclusion of the

iteration, yielding a total of five test cases (T1, T5, T6, T7,

C2). We next verify for convergence; the full test suite's

mutation score is 90%, or 100. We then repeat the whole

procedure one again. The population size is maintained at

the start of each iteration, and in iteration 2, three extra

random test cases are introduced. T1 and T7 are then

crossed, resulting in C3, C4, and C5. Both crossover test

scenarios are determined to be redundant and incapable of

killing any living mutant.

Table 2 : Evaluation a test suite on different mutants

and using proposed GA

Test Case

Suite

Input

Mutant

classes

size

Mutation

score

Fitness

score

Killed Mutants

from

(MT1….MT10)

Test_case_1 5 57 57.23 MT2, MT9,

MT7, MT3,

MT1

Test_case_1 5 44 44.25 MT1, MT3

Test_case_1 5 31 31.60 MT3. MT5,

MT8

Test_case_1 5 26 26.85 MT 2,MT5,

MT7

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(4s), 509–516 | 516

Figure 2 : Evaluation a test suite on different mutants and using proposed GA

According to experimental analysis and Figure 2, we

emphasize that intensification will not provide useful test

cases. As a result, we use mutation to diversify the

crossover population, i.e., C3, C4, with the goal of

obtaining the appropriate test cases. As a result, only MT1

and MT2 are determined to be non-redundant. This new

progeny MT1 kills the last living mutant M10. All non-

redundant new offspring and prior populations are now

stored together, and it has been discovered that all

mutations may now be recognised using these test cases

(T1, T5, T7, C2, MT1). When our technique pop gen

reaches convergence, it terminates and returns the non-

redundant test suite.

6. Conclusion

generation and validation of test data is a very tedious

task and important activity that may be streamlined by

using various search-based algorithms that meet certain

coverage criteria. Mutation prevalence is thought to be

more effective than other metrics in the literature. Using

mutation completeness as a termination condition, on the

other hand, may result in a lengthy test suite. For

producing the testing data, a GA with the goal of low-cost

mutations coverage (pop gen) is used in this article. A

optimization algorithm is also provided to construct the

extremely competent test for defect detection, which

increases the efficacy while minimising the complication

of each test case. Each testing phase inside the solution set

kills the defects in a unique and non-redundant way. The

principles of 'elitism,' 'intensification,' and

'diversification,' as well as 'elitism,' are used to maintain

the important test scenarios in each iteration, speeding

faster convergence process. To set the control

performance and limit the consequences of random

generating, a large number of tests are carried out on

widely used numerous Java applications. A conclusion the

system provide effectives results and traditional GA even

when system deals with heterogenous dataset. The

implement the collaboration of ensemble statistical

algorithms will be future direction for this research to

deals with high dimensional data and reduce the time

complexity.

References

[1] Mingzhu Zhang, Jie Cao. “An Elitist-Based Differential

Evolution Algorithm for Multiobjective Clustering”,

2020, 3rd International Conference on Artificial

Intelligence and Big Data, IEEE.

[2] Suilen H. Alvarado. “Design of Mutation Operators for

Testing Geographic Information Systems”, 2019, IEEE.

[3] Vladislav Skorpil and Vaclav Oujezsky. “Parallel

Genetic Algorithms’ Implementation Using a Scalable

Concurrent Operation in Python”, 2022, IEEE.

[4] Shweta Rani, Bharti Suri and Rinkaj Goyal. “On the

Effectiveness of Using Elitist Genetic Algorithm in

Mutation Testing”, 2019, IEEE.

[5] Drazen Draskovic and Veljko Milutinovic. “Hybrid

Approaches to Mutation in Genetic Search Algorithms”,

2019, IEEE.

[6] Rahila H. Sheikh, M. M.Raghuwanshi and Anil N.

Jaiswal. “Genetic Algorithm Based Clustering: A

Survey”, 2008, First International Conference on

Emerging Trends in Engineering and Technology,

IEEE.

[7] M. J. Willis, H.G Hiden, P. Marenbach, B. McKay and

G.A. Montague. “Genetic Programming: An

Introduction and Survey of Applications”, 1997, IEEE.

[8] Jia LUO and Didier ELBAZ. “A Survey on Parallel

Genetic Algorithms for Shop Scheduling Problems”,

2018, International Parallel and Distributed Processing

Symposium Workshops, IEEE.

[9] Asim Munawar, Mohamed Wahib, Masaharu

Munetomo and Kiyoshi Akama. “A Survey: Genetic

Algorithms and the Fast Evolving World of Parallel

Computing”, 2008, 10th International Conference on

High Performance Computing and Communications,

IEEE.

[10] Enrique Alba and Marco Tomassini. “Parallelism and

Evolutionary Algorithms”, 2002, Transactions on

Evolutionary Computation, IEEE.

5 5 5 5

57

44

31
26

57.23

44.25

31.6 26.85

0

20

40

60

80

Test_case_1 Test_case_1 Test_case_1 Test_case_1

Input Mutant classes size Mutation score Fitness score

