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Abstract: In this study, a deep neural network (DNN)-based vision-based navigation for autonomous vehicles is proposed. This novel 

DNN-based system obtains the data from a single camera to provide vehicle control outputs that modify both the steering wheel angle 

and the vehicle’s velocity. In addition, it plays a major role in safely navigating the vehicle in a road traffic environment. Numerous 

autonomous driving algorithms use end-to-end DNN, where camera data is fed into complex machine learning algorithms exclusively to 

estimate the steering angle value, but this research proposes a light-novel network model that controls both steering and speed values 

with much more simplicity. Various neural blocks are organized with the ultimate objective of producing control actions to achieve the 

aim of the research. Experimental modifications are made to parameters such as the number of convolutional layers, the model size, 

padding, stride, and the number of neurons in fully-connected layers to make the model simpler and lighter to execute during inference. 

Using an embedded system called Jetson Nano 2GB, the designed model was trained and tested using the images collected along two 

different paths. Our DNN-based autonomous driving system successfully predicts speed and steering values with a mean error of 1.58% 

and maintains performance, allowing for highly efficient autonomous driving. Furthermore, the suggested DNN network maintains 

performance, attaining autonomous driving success with comparable efficacy to the other autonomous driving models. The lightweight 

end-to-end architecture with superb performance is especially suited for autonomous driving. 
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1. Introduction 

The popularity of machine learning applications in 

embedded systems, mobile phones, and other Internet of 

Things (IoT) devices is on the rise. This encourages the 

development of new hardware platforms capable of 

processing the data required for machine learning, 

lightweight machine learning architectures and model 

designs, and implementations optimized for low- 

performance hardware. Machine learning also has a 

significant effect on the manufacturing industry, especially 

in the development of self-driving cars [1]. 

The Sequential autonomous driving system generally 

consists of four stages: sensors, perception, path planning, 

and vehicle control. The data from the sensors is processed 

by the perception stage, which combines the sensor data 

into meaningful information. The path planning stage then 

uses the output of the perception stage to plan the behavior. 

Lastly, vehicle control guarantees that the vehicle follows 

the path determined by the planning stage [2]. 

 

 

Fig. 1. Sequential and End-to-end Autonomous Driving 
Systems 

An end-to-end deep neural network was designed for 

autonomous driving, which uses camera images as input 

and steering angle and speed prediction as outputs. End-to- 

end learning describes the training of neural networks 

without human intervention from beginning to end, as 

shown in figure 1. The primary objective of end-to-end 

learning is to train the system's internal representation of 

the essential processing stages, such as the recognition of 

valuable road characteristics based on input signals 

   exclusively [3]. 
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The objective of this study is to design a lightweight deep 

neural network (DNN), which is an end-to-end neural 

network that can carry out the task of autonomous driving 

on two different tracks. The proposed model is anticipated 

to be implemented on an embedded device with low- 

performance hardware. The findings of the suggested 
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model indicate that its size and complexity are smaller in 

comparison with well-known models such as ReNet18 or 

AlexNet while achieving a higher level of autonomous 

driving efficiency; moreover, the new proposed model not 

only controls the steering angle but also estimates the 

values of the vehicle's speed and enables the vehicle to 

stop in the presence of an obstacle, pedestrians, or stop 

traffic signs. In addition, the importance of a 

computationally light solution for DNN used for 

autonomous driving is to execute the model on an 

embedded system, such as the one used in this research 

(Jetson Nano 2GB). This is because state-of-the-art deep 

learning models may not be able to run on embedded 

systems that might have hardware limitations. 

The relevant literature is presented in the following 

section. In Section 3, we discuss the methodology, tools, 

data sources, model architecture, and training procedure. 

Results and discussion of using the novel model and 

inference while driving autonomously are presented in 

Section 4. The final part of the paper includes the 

conclusion. 

 

2. Related work 

With advancements in technology, such as the embedded 

system Jetson Nano, and an increase in available datasets, 

deep learning techniques for autonomous driving have 

gained popularity [4], where they are used for both end-to- 

end driving approaches and the application of deep 

learning in individual subsystems[5]. 

[6] Proposed using a convolutional neural network (CNN) 

(PilotNet) to immediately steer a car by tracking raw pixels 

from a single camera. The CNN was able to learn 

important road features with only a few samples of training 

data. However, it was difficult to see how the network's 

internal processing steps worked and the network was not 

sufficiently robust. 

In the same manner, Multichannel Convolutional Neural 

Networks (M-CNNs) were used to determine the vehicle's 

steering angle and speed by the authors of [7]. The inputs 

to the model are (227x227x3) front-view camera images 

and feedback speed sequences. To test the effectiveness of 

the proposed method, researchers used both the publicly 

available Udacity dataset and the collected SAIC dataset. 

The proposed idea was compared to the Cg Network and 

PilotNet. With a mean absolute error (MAE) of 1.26 

degrees for steering angle and 0.19 meters per second for 

speed values, the M-CNNs did better than the implemented 

PilotNet and the Cg Network. 

The use of convolutional neural networks (CNN) to predict 

the steering angle was proposed in reference [8]. The CNN 

was developed with the goal of reducing the number of 

necessary training parameters. The final layer's output was 

used as the steering angle prediction value, and the 

network was constructed from a series of convolutional 

and dense layers. CNN was able to predict steering angles 

with a 78.5% accuracy while simultaneously reducing a 

large number of parameters, avoiding overfitting, and 

improving model generalization. There was a lot of 

variation, though, because the dataset was so small. 

CNN-based closed-loop feedback control to regulate the 

steering angle of the vehicle was examined using a driving 

simulation environment[9]. Input images to the first 

convolutional layer of the proposed models have a size of 

(90x160x3).Using the Caffe framework for deep learning, 

the authors of [9] designed and tested their CNN model 

(DAVE-2SKY) in a lane-keeping simulation. Although the 

results were to some extent promising, technical issues 

occurred as the distance between was smaller than 9 

meters. 

Reference [10] proposed a CNN-LSTM network that 

would improve vehicle control by predicting steering angle 

and speed end-to-end. Networks were tested in both real- 

world and simulated environments to ensure their efficacy. 

A visualization analysis is also used to demonstrate the 

impact of multi-auxiliary tasks on network performance, 

with an average assistance rate of two times per 10 km. 

In another paper [11], researchers compared Nvidia's 

steering angle control model to the Visual Geometry 

Group (VGG16), ResNet-152, and Densely Connected 

Convolutional Networks (DenseNet-201). All models used 

an input image size of (66x200x3). Twenty-five minutes of 

driving time was used to train the models with a Raspberry 

Pi camera at 30 frames per second. With an MSE of 

0.3521, Nvidia's model significantly outperformed the 

competition. To demonstrate Nvidia's model's efficacy, the 

authors selected videos at random from YouTube. 

In this paper, a single light-weight CNN model with an 

input image size of (66x200x3) is proposed to achieve the 

task of end-to-end self-driving in terms of steering angle, 

speed, and automatic braking. The model is employed on 

low-cost and low-performance hardware, the Jetson Nano, 

and evaluated online on a dataset collected from two 

outdoor tracks. Visual analysis has been implemented to 

show the performance and repeatability of the model 

output compared to the MPU sensor during inference. 

 

3. Method 

This section provides a brief description of the hardware 

and software setup as well as a thorough explanation of the 

proposed approach, data collection, model architecture, 

and training operation for this work. 

3.1. Hardware and Software Setup 

The main components of the JetRacer 2GB include an 
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8MP HD resolution 160° FOV wide-angle camera, 

powered by the Jetson Nano 2GB, two DC gear motors 

with an idle speed of 740RPM, one MG996R servo motor, 

three 18650 lithium-ion batteries, and the JetRacer 

Expansion Board. An Arduino is connected to Jason Nano 

through the I2C Bus and is powered by the Jetson Nano. A 

MPU sensor is connected to the Arduino board as shown in 

figure 2. After the assembly of the robot hardware is 

accomplished, the software setup takes place. The image of 

JetPack version 4.5.1 is downloaded from the NVIDIA-AI- 

IOT website, which includes the bootloader Linux kernel, 

cuDNN 8.0, TensorRT 7.1.3, and OpenCV 4.1.1. The next 

step is to install Python packages like torch2trt, JetCam, 

and JetRacer on Jetson Nano, with the aim of preparing the 

environment for executing the model. 

 

 

 

Fig. 2. Jetracer Self driving car 
Platform 

 

3.2. The overall flow of proposed work 

The block diagram of the overall flow of the proposed 

work is shown in figure 3. As a first step, we drove the car 

around the representative tracks, recording the steering 

angle and the speed value manually to get the data we 

needed. Second, the images were fed into the CNN models 

for training after undergoing some data preprocessing and 

data augmentation. After estimating the mean square error 

between the expected and predicted measurements, the 

network makes adjustments to the error via 

backpropagation and the modification of weights. As a 

final step, we transferred the trained model to the Jetson 

Nano embedded system so that it could analyze unlabeled 

images and make predictions about the commands to be 

given to the Jetracer robot during inference. The model 

was deemed successful and self-sufficient when it could 

drive on the centerline and both tracks while avoiding the 

orange bolder lines. 

3.3. Dataset 

Data are an essential part of an end-to-end DNN-based 

self-driving system, in this research dataset was obtained 

from two separate tracks. The initial 2*3 meters path was 

utilized for data collecting, whereas the second 4*2 meters 

path with curvatures in the middle was employed for 

testing and evaluation. The track edges are defined with 

orange lines, while dashed white lines outline its center. 

Usually, the inference path is more shaded than the data 

collection track. The dataset is an organized collection of 

images with steering angles and speed values as labels. 

The Jetracer mobile robot was placed in this research on 

the typical route to acquire the necessary data for a training 

procedure. Rather than employing three cameras, we used 

a single camera attached to the robot’s chassis to gather 

images from three distinct angles (center, left, and right). 

The objective was to keep the mobile robot in the center of 

the route, thus images from the camera positioned in the 

middle and on the left and the right were captured with 

identical speed and steering readings. During capturing 

images procedure, the measurements (steering angles and 

speed values) are entered directly from a remote computer 

by selecting the appropriate position XY coordinates on 

each frame. The servo motor attached to the robot’s frontal 

wheels controls the X-axis, latitude, which indicates the 

degree of angle from left to right and is in the range of (- 

1.0 to +1.0). The required speed for such an image is 

defined along the Y-axis, the longitude, and the entire 

range of the throttle from backward to forward, which is 

controlled by two DC motors, is from (-1.0 to +1.0), 

producing a unique training dataset. To acquire high- 

quality findings, images and measurements should be 

captured during manual driving in the way expected during 

the inference phase. To enhance training effectiveness and 

allow    for    clockwise    and    counter-clockwise    robot 
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movement, we utilized data augmentation. 

“Augmentation” describes the method of improving 

training data without changing its fundamental features. In 

our study, the augmentation process consists of flipping the 

images horizontally. The steering angle must be inverted 

for each frame to be flipped, resulting in a new value of: 

 

 
681 image samples were collected from the first track as 

shown in figure (4a), while 83 image samples were taken 

from the second track as shown in figure (4b). It is evident 

from the figures that the first track doesn’t contain inside 

turns, while on the contrary, the second track has. The size 

of captured images was 224x224x3 (224 widths, 224 

heights, 3 number channels). Once data augmentation was 

performed, the number of the dataset samples increased to 

1528. 80% of the dataset was used for training purposes, 

while 18% and 2% of the dataset were used for validation 

and testing respectively. 

3.4. Network architecture 

The main idea of the research was to develop a lightweight 

model capable of performing autonomy while 

simultaneously achieving the best feasible performance. 

The lightweight model is often the one with the fewest 

parameters affecting its memory footprint and calculations. 

Consequently, the computational performance is affected 

by the number of extracted features, the size of kernels, 

and the depth of layers. Two separate tracks were used to 

evaluate the capabilities of the self-driving model. 

In the beginning step of the design process for this new 

model, the input image was resized from 224*224*3 to 

200*66*3 to reduce the amount of input image parameters. 

Generally, the model is composed of a single batch 

normalization layer, five convolutional layers, four max- 

pooling layers between each convolutional layer, and five 

fully-connected layers. 

 

 

Fig. 5. Network architecture 

 

In more detail, Ensuring that each input to the model has 

the same range of values can be performed through data 

normalization; this can provide consistent convergence of 

weights (w) and biases. As a means to enhance feature 

extraction, we have settled on five convolutional layers to 

even further develop the features that have already been 

extracted; Equation (2). 

 

   

The outcome of the convolution stage is the feature maps, 

denoted by , that focus on a specific feature in the 

input image irrespective of where those features are 

located. The number of extracted features is proportional to 

their locations in the networks. Since the input layers 

acquire raw data, which is always noisy, the layers closest 

to the input images use fewer features, whereas the layers 

closest to the outputs use a large number of features for 

training. 

 

(a) (b) 

Fig. 4. a. First track b. Second track 

Table 1. Network parameters 
 

Layer (type) Output Shape Parameters 

BatchNorm2d-1 [-1, 3, 66, 200] 6 

Conv2d-2 [-1, 24, 60, 194] 3,552 

MaxPool2d-3 [-1, 24, 31, 98] 0 

Conv2d-4 [-1, 36, 27, 94] 21,636 

MaxPool2d-5 [-1, 36, 14, 48] 0 

Conv2d-6 [-1, 64, 12, 46] 20,800 

MaxPool2d-7 [-1, 64, 7, 24] 0 

Conv2d-8 [-1, 64, 5, 22] 36,928 

MaxPool2d-9 [-1, 64, 3, 12] 0 

Conv2d-10 [-1, 64, 1, 10] 36,928 

Linear-11 [-1, 720] 461,520 

Linear-12 [-1, 100] 72,100 

Linear-13 [-1, 50] 5,050 

Linear-14 [-1, 10] 510 

Linear-15 [-1, 2] 22 

 
Steering angle and 

Speed 

 

 

As depicted in figure 5, the first convolutional layer's filter 

size was 7 × 7 with 24 feature maps, making the number of 
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parameters at this stage 3552 as shown in table 1. The 

second stage of the model was the max-pooling layer 

which featured the stride of two, which plays a significant 

role in down sampling the parameters of the model. 

Implementing the max-pooling procedure to reduce the 

size of the subsequent layer’s network of nodes and, as a 

result, the number of trainable parameters. A pooling layer 

is typically used to reduce the output size and prevent 

overfitting. The Max Pooling layer is a layer inserted after 

the activation function that minimizes spatial variance in 

pixel values by choosing the maximum value. The most 

common benefit of using the max-pooling approach is that 

this operation doesn’t require the addition of new 

parameters, hence it is parameter-free. 

To obtain a two-dimensional vector of parameters, the 

flattened layers were added. Adding the flattened layers 

did not introduce any new parameters; it only rearranged 

the pre-existing parameters in one dimension layer. The 

five flattened layers reorganized the parameters from 650 

to two, which were the predicted values for steering angle 

and speed. 

3.5. Training the model 

The designed model was trained in python language on the 

Google Colab platform. In addition to data normalization, 

color jitter data pre-processing was applied to both 

different tracks due to the disparity in color brightness. 

Adam optimizer [12]was employed with a learning rate of 

; this learning rate should be maintained to a 

minimum value since it is more stable, which will help to 

prevent missing local optima. The model was trained for 

70 epochs, where it was stopped if no changes occurred in 

validation loss within 10 epochs. Mean Square Error 

(MSE)[13] was chosen as appropriate for the regression 

network to reduce the discrepancy between the estimate 

and the measurements of both speed and steering angle 

values. 
 

The vector  represents the values of    forecasts and     is 

a vector that contains true values. 

The performance of the model was accessed based on its 

capability to guide the mobile robot along the two 

specified tracks. It was considered effective when the 

model was capable to drive the robot autonomously on 

both specified tracks. 

 

4. Results and discussion 

The Performance of the proposed architectures on the 

validation dataset was measured using MSE in this 

research. The validation loss of a model trained with the 

above-mentioned data was 0.0158, and the model's 

estimated size was 6.77 MB, with a total of 607182 

parameters. 

Showing the efficiency measure of the proposed model, 

Figure 6 displays the results of recoding the predicted 

steering angle and speed values with frames for the 

proposed model along the first track. The figure also 

illustrates the partitions of the first driving path which are: 

(A) long end turns. (B) straight-forward paths. It is evident 

that the normalized steering angle value peaked (0.5) 

halfway through the long end turns (a); where the 

normalized speed values started rapidly decreasing to 

prevent the mobile robot from deviating away from the 

track center, as shown in figure 9 by the red circles. As the 

mobile reached the straightforward path (b), the response 

of the normalized steering angle then gradually decreased. 

additionally, the values of the normalized steering angle 

and speed along the straightforward path were within the 

ranges of (-0.4 to -0.6) and (0.4 to 0.6) respectively, 

implying that the deviation of the mobile robot from the 

center of the first track was smaller than what observed 

during long end turns in section (A), meanwhile, the 

velocity of the robot was moderate. 

 

Fig. 6. Normalized Speed and Steering angle values per one 

full lap of autonomous driving on first track 
(A) Long-end turns 

(B) Straightforward path 

A second track with various surface textures was 

implemented to evaluate the model performance. Findings 

from the experiment were satisfactory, which showed that 

the designed model was able to maintain the mobile 

robot’s movement within a small range of departure from 

its intended path. Specifically, both short inside and long 

end turns of the second track were completed by modifying 

the robot’s speed and steering angle accordingly to avoid 

the mobile robot from deviating out of the track’s center. 

The red circles shown in figure 7 represent the behavior of 

the proposed model whenever the robot approaches the 

sharp turns; as can be seen, the robot’s speed dropped 

rapidly in an attempt to avoid drifting off the track. 
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In addition, histograms are used to display statistical 

analysis of autonomous driving. This kind of descriptive 

statistic has implications for testing the performance of the 

autonomous vehicle within a longer period. Figure 8 shows 

histograms of the relative deviations from the center of the 

trajectory obtained from the designed model and the MPU 

sensor alike during one complete lap of autonomous 

driving for both tracks. The difference in the sampling rate 

between the model and the MPU sensor resulted in the 

frequency value discrepancy of the dominating steering 

value shown in Figure 8. The MPU sensor recorded 

measurements five times greater than the model per second 

for both tracks. Negative readings of the steering angle 

were caused by the mobile robot’s movement in a counter- 

clockwise direction. 

According to Figures 8 (a) and (b), the mobile robot was 

typically maintained in the middle of the first track, as 

indicated by the dominant steering angle (-0.4) computed 

by the designed model and MPU sensor. On the other 

hand, in the second track histograms shown in Figures 8 

(c) and (d), the dominant steering angles were most 

frequently (-0.2 and -0.4) when the mobile robot was 

performing the short inside turns denoted by figure 7(A). 

Similarly, the MPU sensor also showed that these angle 

values were dominant. Hence, the actual steering angle 

values observed by the MPU sensor were approximately 

equal to the estimated steering angles that were calculated 

by the developed model for both tracks. 
 

Fig. 8. Histogram of deviation from the center of track (A) 

Designed model, First Track (B) MPU Sensor, First Track 

(C) Designed Model, Second Track (D) MPU Sensor, 

Second Track 

Five full laps of the second track were used to verify the 

model’s repeatability. As shown in figure 9, the readings of 

the steering angle calculated by both the model and the 

map sensor for the experimental laps were nearly identical. 

This indicates that the mobile robot completed all required 

laps of driving on the designated track without any 

departure from the track. 
 

 

 
For this research, one objective was to train the novel 

model to completely stop the vehicle when either traffic 

stop signs or pedestrians come into view in front of the 

mobile robot’s track. The robot’s throttle was lowered to 

approximately zero to avoid a collision once a pedestrian 

came into sight directly ahead of the robot’s pathway as 

depicted in figure 10. 

[14] Contains a video that demonstrates our test vehicle's 

performance on both of the tracks. 

 

 

 

 
 

Fig. 10. Full stop at pedestrian detection by front camera 

5. Conclusion 

Using a lightweight model is critical to success in 

industrial applications that frequently demand machine 

learning solutions that can be implemented on 

computationally inexpensive and memory-demanding 

embedded platforms with low costs and sizes like the one 
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utilized in this research. In this paper, the challenging task 

of developing a lightweight deep neural network capable 

of handling all vehicle control actions, including steering 

wheel angle, speed, and braking, is addressed. 

Furthermore, the article presents an unexplored issue in 

computer vision: estimating steering angle and speed 

values solely from visual input from the camera. The 

stages and detailed design of the developed end-to-end 

model have been presented. The proposed model has been 

tested on two different tracks and with an MPU sensor. 

The presence of lightweight DNN is critical for controlling 

the speed of a self-driving car. Despite the fact that the 

camera used has a frame rate of 65 frames per second. We 

reduced the frame rate to 10 frames per second in order to 

synchronize the capture of quick movements with vehicle 

control commands. As a result, the lightweight DNN 

network reduces synchronization time. The results show 

that the model can predict the steering angle and speed 

with a high degree of accuracy and consistency. 

Applications such as warehouse and delivery vehicle robot 

cars could benefit from the end-to-end learning network's 

output. 
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