
International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(2s), 366–372 | 366

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-6799 www.ijisae.org Original Research Paper

Real-Time End-to-End Self-Driving Car Navigation

Yahya Ghufran Khidhir*1, Ameer Hussein Morad 2

Submitted: 25/10/2022 Revised: 24/12/2022 Accepted: 23/01/2023

Abstract: In this study, a deep neural network (DNN)-based vision-based navigation for autonomous vehicles is proposed. This novel

DNN-based system obtains the data from a single camera to provide vehicle control outputs that modify both the steering wheel angle

and the vehicle’s velocity. In addition, it plays a major role in safely navigating the vehicle in a road traffic environment. Numerous

autonomous driving algorithms use end-to-end DNN, where camera data is fed into complex machine learning algorithms exclusively to

estimate the steering angle value, but this research proposes a light-novel network model that controls both steering and speed values

with much more simplicity. Various neural blocks are organized with the ultimate objective of producing control actions to achieve the

aim of the research. Experimental modifications are made to parameters such as the number of convolutional layers, the model size,

padding, stride, and the number of neurons in fully-connected layers to make the model simpler and lighter to execute during inference.

Using an embedded system called Jetson Nano 2GB, the designed model was trained and tested using the images collected along two

different paths. Our DNN-based autonomous driving system successfully predicts speed and steering values with a mean error of 1.58%

and maintains performance, allowing for highly efficient autonomous driving. Furthermore, the suggested DNN network maintains

performance, attaining autonomous driving success with comparable efficacy to the other autonomous driving models. The lightweight

end-to-end architecture with superb performance is especially suited for autonomous driving.

Keywords: Self-driving car, deep neural network, embedded systems, end-to-end learning.

1. Introduction

The popularity of machine learning applications in

embedded systems, mobile phones, and other Internet of

Things (IoT) devices is on the rise. This encourages the

development of new hardware platforms capable of

processing the data required for machine learning,

lightweight machine learning architectures and model

designs, and implementations optimized for low-

performance hardware. Machine learning also has a

significant effect on the manufacturing industry, especially

in the development of self-driving cars [1].

The Sequential autonomous driving system generally

consists of four stages: sensors, perception, path planning,

and vehicle control. The data from the sensors is processed

by the perception stage, which combines the sensor data

into meaningful information. The path planning stage then

uses the output of the perception stage to plan the behavior.

Lastly, vehicle control guarantees that the vehicle follows

the path determined by the planning stage [2].

Fig. 1. Sequential and End-to-end Autonomous Driving
Systems

An end-to-end deep neural network was designed for

autonomous driving, which uses camera images as input

and steering angle and speed prediction as outputs. End-to-

end learning describes the training of neural networks

without human intervention from beginning to end, as

shown in figure 1. The primary objective of end-to-end

learning is to train the system's internal representation of

the essential processing stages, such as the recognition of

valuable road characteristics based on input signals

 exclusively [3].
1 Department of Mechatronics Engineering, Al-Khwarizmi College of

Engineering, University of Baghdad, IRAQ

ORCID ID : 0000-0003-1850-3856
2 Department of Information and Communication Engineering, Al-

Khwarizmi College of Engineering, University of Baghdad, IRAQ

ORCID ID : 0000-0003-1700-8546

* Corresponding Author Email:

yahia.ghofran1202a@kecbu.uobaghdad.edu.iq

The objective of this study is to design a lightweight deep

neural network (DNN), which is an end-to-end neural

network that can carry out the task of autonomous driving

on two different tracks. The proposed model is anticipated

to be implemented on an embedded device with low-

performance hardware. The findings of the suggested

http://www.ijisae.org/
mailto:yahia.ghofran1202a@kecbu.uobaghdad.edu.iq

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(2s), 366–372 | 367

model indicate that its size and complexity are smaller in

comparison with well-known models such as ReNet18 or

AlexNet while achieving a higher level of autonomous

driving efficiency; moreover, the new proposed model not

only controls the steering angle but also estimates the

values of the vehicle's speed and enables the vehicle to

stop in the presence of an obstacle, pedestrians, or stop

traffic signs. In addition, the importance of a

computationally light solution for DNN used for

autonomous driving is to execute the model on an

embedded system, such as the one used in this research

(Jetson Nano 2GB). This is because state-of-the-art deep

learning models may not be able to run on embedded

systems that might have hardware limitations.

The relevant literature is presented in the following

section. In Section 3, we discuss the methodology, tools,

data sources, model architecture, and training procedure.

Results and discussion of using the novel model and

inference while driving autonomously are presented in

Section 4. The final part of the paper includes the

conclusion.

2. Related work

With advancements in technology, such as the embedded

system Jetson Nano, and an increase in available datasets,

deep learning techniques for autonomous driving have

gained popularity [4], where they are used for both end-to-

end driving approaches and the application of deep

learning in individual subsystems[5].

[6] Proposed using a convolutional neural network (CNN)

(PilotNet) to immediately steer a car by tracking raw pixels

from a single camera. The CNN was able to learn

important road features with only a few samples of training

data. However, it was difficult to see how the network's

internal processing steps worked and the network was not

sufficiently robust.

In the same manner, Multichannel Convolutional Neural

Networks (M-CNNs) were used to determine the vehicle's

steering angle and speed by the authors of [7]. The inputs

to the model are (227x227x3) front-view camera images

and feedback speed sequences. To test the effectiveness of

the proposed method, researchers used both the publicly

available Udacity dataset and the collected SAIC dataset.

The proposed idea was compared to the Cg Network and

PilotNet. With a mean absolute error (MAE) of 1.26

degrees for steering angle and 0.19 meters per second for

speed values, the M-CNNs did better than the implemented

PilotNet and the Cg Network.

The use of convolutional neural networks (CNN) to predict

the steering angle was proposed in reference [8]. The CNN

was developed with the goal of reducing the number of

necessary training parameters. The final layer's output was

used as the steering angle prediction value, and the

network was constructed from a series of convolutional

and dense layers. CNN was able to predict steering angles

with a 78.5% accuracy while simultaneously reducing a

large number of parameters, avoiding overfitting, and

improving model generalization. There was a lot of

variation, though, because the dataset was so small.

CNN-based closed-loop feedback control to regulate the

steering angle of the vehicle was examined using a driving

simulation environment[9]. Input images to the first

convolutional layer of the proposed models have a size of

(90x160x3).Using the Caffe framework for deep learning,

the authors of [9] designed and tested their CNN model

(DAVE-2SKY) in a lane-keeping simulation. Although the

results were to some extent promising, technical issues

occurred as the distance between was smaller than 9

meters.

Reference [10] proposed a CNN-LSTM network that

would improve vehicle control by predicting steering angle

and speed end-to-end. Networks were tested in both real-

world and simulated environments to ensure their efficacy.

A visualization analysis is also used to demonstrate the

impact of multi-auxiliary tasks on network performance,

with an average assistance rate of two times per 10 km.

In another paper [11], researchers compared Nvidia's

steering angle control model to the Visual Geometry

Group (VGG16), ResNet-152, and Densely Connected

Convolutional Networks (DenseNet-201). All models used

an input image size of (66x200x3). Twenty-five minutes of

driving time was used to train the models with a Raspberry

Pi camera at 30 frames per second. With an MSE of

0.3521, Nvidia's model significantly outperformed the

competition. To demonstrate Nvidia's model's efficacy, the

authors selected videos at random from YouTube.

In this paper, a single light-weight CNN model with an

input image size of (66x200x3) is proposed to achieve the

task of end-to-end self-driving in terms of steering angle,

speed, and automatic braking. The model is employed on

low-cost and low-performance hardware, the Jetson Nano,

and evaluated online on a dataset collected from two

outdoor tracks. Visual analysis has been implemented to

show the performance and repeatability of the model

output compared to the MPU sensor during inference.

3. Method

This section provides a brief description of the hardware

and software setup as well as a thorough explanation of the

proposed approach, data collection, model architecture,

and training operation for this work.

3.1. Hardware and Software Setup

The main components of the JetRacer 2GB include an

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(2s), 366–372 | 368

8MP HD resolution 160° FOV wide-angle camera,

powered by the Jetson Nano 2GB, two DC gear motors

with an idle speed of 740RPM, one MG996R servo motor,

three 18650 lithium-ion batteries, and the JetRacer

Expansion Board. An Arduino is connected to Jason Nano

through the I2C Bus and is powered by the Jetson Nano. A

MPU sensor is connected to the Arduino board as shown in

figure 2. After the assembly of the robot hardware is

accomplished, the software setup takes place. The image of

JetPack version 4.5.1 is downloaded from the NVIDIA-AI-

IOT website, which includes the bootloader Linux kernel,

cuDNN 8.0, TensorRT 7.1.3, and OpenCV 4.1.1. The next

step is to install Python packages like torch2trt, JetCam,

and JetRacer on Jetson Nano, with the aim of preparing the

environment for executing the model.

Fig. 2. Jetracer Self driving car
Platform

3.2. The overall flow of proposed work

The block diagram of the overall flow of the proposed

work is shown in figure 3. As a first step, we drove the car

around the representative tracks, recording the steering

angle and the speed value manually to get the data we

needed. Second, the images were fed into the CNN models

for training after undergoing some data preprocessing and

data augmentation. After estimating the mean square error

between the expected and predicted measurements, the

network makes adjustments to the error via

backpropagation and the modification of weights. As a

final step, we transferred the trained model to the Jetson

Nano embedded system so that it could analyze unlabeled

images and make predictions about the commands to be

given to the Jetracer robot during inference. The model

was deemed successful and self-sufficient when it could

drive on the centerline and both tracks while avoiding the

orange bolder lines.

3.3. Dataset

Data are an essential part of an end-to-end DNN-based

self-driving system, in this research dataset was obtained

from two separate tracks. The initial 2*3 meters path was

utilized for data collecting, whereas the second 4*2 meters

path with curvatures in the middle was employed for

testing and evaluation. The track edges are defined with

orange lines, while dashed white lines outline its center.

Usually, the inference path is more shaded than the data

collection track. The dataset is an organized collection of

images with steering angles and speed values as labels.

The Jetracer mobile robot was placed in this research on

the typical route to acquire the necessary data for a training

procedure. Rather than employing three cameras, we used

a single camera attached to the robot’s chassis to gather

images from three distinct angles (center, left, and right).

The objective was to keep the mobile robot in the center of

the route, thus images from the camera positioned in the

middle and on the left and the right were captured with

identical speed and steering readings. During capturing

images procedure, the measurements (steering angles and

speed values) are entered directly from a remote computer

by selecting the appropriate position XY coordinates on

each frame. The servo motor attached to the robot’s frontal

wheels controls the X-axis, latitude, which indicates the

degree of angle from left to right and is in the range of (-

1.0 to +1.0). The required speed for such an image is

defined along the Y-axis, the longitude, and the entire

range of the throttle from backward to forward, which is

controlled by two DC motors, is from (-1.0 to +1.0),

producing a unique training dataset. To acquire high-

quality findings, images and measurements should be

captured during manual driving in the way expected during

the inference phase. To enhance training effectiveness and

allow for clockwise and counter-clockwise robot

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(2s), 366–372 | 369

movement, we utilized data augmentation.

“Augmentation” describes the method of improving

training data without changing its fundamental features. In

our study, the augmentation process consists of flipping the

images horizontally. The steering angle must be inverted

for each frame to be flipped, resulting in a new value of:

681 image samples were collected from the first track as

shown in figure (4a), while 83 image samples were taken

from the second track as shown in figure (4b). It is evident

from the figures that the first track doesn’t contain inside

turns, while on the contrary, the second track has. The size

of captured images was 224x224x3 (224 widths, 224

heights, 3 number channels). Once data augmentation was

performed, the number of the dataset samples increased to

1528. 80% of the dataset was used for training purposes,

while 18% and 2% of the dataset were used for validation

and testing respectively.

3.4. Network architecture

The main idea of the research was to develop a lightweight

model capable of performing autonomy while

simultaneously achieving the best feasible performance.

The lightweight model is often the one with the fewest

parameters affecting its memory footprint and calculations.

Consequently, the computational performance is affected

by the number of extracted features, the size of kernels,

and the depth of layers. Two separate tracks were used to

evaluate the capabilities of the self-driving model.

In the beginning step of the design process for this new

model, the input image was resized from 224*224*3 to

200*66*3 to reduce the amount of input image parameters.

Generally, the model is composed of a single batch

normalization layer, five convolutional layers, four max-

pooling layers between each convolutional layer, and five

fully-connected layers.

Fig. 5. Network architecture

In more detail, Ensuring that each input to the model has

the same range of values can be performed through data

normalization; this can provide consistent convergence of

weights (w) and biases. As a means to enhance feature

extraction, we have settled on five convolutional layers to

even further develop the features that have already been

extracted; Equation (2).

The outcome of the convolution stage is the feature maps,

denoted by , that focus on a specific feature in the

input image irrespective of where those features are

located. The number of extracted features is proportional to

their locations in the networks. Since the input layers

acquire raw data, which is always noisy, the layers closest

to the input images use fewer features, whereas the layers

closest to the outputs use a large number of features for

training.

(a) (b)

Fig. 4. a. First track b. Second track

Table 1. Network parameters

Layer (type) Output Shape Parameters

BatchNorm2d-1 [-1, 3, 66, 200] 6

Conv2d-2 [-1, 24, 60, 194] 3,552

MaxPool2d-3 [-1, 24, 31, 98] 0

Conv2d-4 [-1, 36, 27, 94] 21,636

MaxPool2d-5 [-1, 36, 14, 48] 0

Conv2d-6 [-1, 64, 12, 46] 20,800

MaxPool2d-7 [-1, 64, 7, 24] 0

Conv2d-8 [-1, 64, 5, 22] 36,928

MaxPool2d-9 [-1, 64, 3, 12] 0

Conv2d-10 [-1, 64, 1, 10] 36,928

Linear-11 [-1, 720] 461,520

Linear-12 [-1, 100] 72,100

Linear-13 [-1, 50] 5,050

Linear-14 [-1, 10] 510

Linear-15 [-1, 2] 22

Steering angle and

Speed

As depicted in figure 5, the first convolutional layer's filter

size was 7 × 7 with 24 feature maps, making the number of

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(2s), 366–372 | 370

parameters at this stage 3552 as shown in table 1. The

second stage of the model was the max-pooling layer

which featured the stride of two, which plays a significant

role in down sampling the parameters of the model.

Implementing the max-pooling procedure to reduce the

size of the subsequent layer’s network of nodes and, as a

result, the number of trainable parameters. A pooling layer

is typically used to reduce the output size and prevent

overfitting. The Max Pooling layer is a layer inserted after

the activation function that minimizes spatial variance in

pixel values by choosing the maximum value. The most

common benefit of using the max-pooling approach is that

this operation doesn’t require the addition of new

parameters, hence it is parameter-free.

To obtain a two-dimensional vector of parameters, the

flattened layers were added. Adding the flattened layers

did not introduce any new parameters; it only rearranged

the pre-existing parameters in one dimension layer. The

five flattened layers reorganized the parameters from 650

to two, which were the predicted values for steering angle

and speed.

3.5. Training the model

The designed model was trained in python language on the

Google Colab platform. In addition to data normalization,

color jitter data pre-processing was applied to both

different tracks due to the disparity in color brightness.

Adam optimizer [12]was employed with a learning rate of

; this learning rate should be maintained to a

minimum value since it is more stable, which will help to

prevent missing local optima. The model was trained for

70 epochs, where it was stopped if no changes occurred in

validation loss within 10 epochs. Mean Square Error

(MSE)[13] was chosen as appropriate for the regression

network to reduce the discrepancy between the estimate

and the measurements of both speed and steering angle

values.

The vector represents the values of forecasts and is

a vector that contains true values.

The performance of the model was accessed based on its

capability to guide the mobile robot along the two

specified tracks. It was considered effective when the

model was capable to drive the robot autonomously on

both specified tracks.

4. Results and discussion

The Performance of the proposed architectures on the

validation dataset was measured using MSE in this

research. The validation loss of a model trained with the

above-mentioned data was 0.0158, and the model's

estimated size was 6.77 MB, with a total of 607182

parameters.

Showing the efficiency measure of the proposed model,

Figure 6 displays the results of recoding the predicted

steering angle and speed values with frames for the

proposed model along the first track. The figure also

illustrates the partitions of the first driving path which are:

(A) long end turns. (B) straight-forward paths. It is evident

that the normalized steering angle value peaked (0.5)

halfway through the long end turns (a); where the

normalized speed values started rapidly decreasing to

prevent the mobile robot from deviating away from the

track center, as shown in figure 9 by the red circles. As the

mobile reached the straightforward path (b), the response

of the normalized steering angle then gradually decreased.

additionally, the values of the normalized steering angle

and speed along the straightforward path were within the

ranges of (-0.4 to -0.6) and (0.4 to 0.6) respectively,

implying that the deviation of the mobile robot from the

center of the first track was smaller than what observed

during long end turns in section (A), meanwhile, the

velocity of the robot was moderate.

Fig. 6. Normalized Speed and Steering angle values per one

full lap of autonomous driving on first track
(A) Long-end turns

(B) Straightforward path

A second track with various surface textures was

implemented to evaluate the model performance. Findings

from the experiment were satisfactory, which showed that

the designed model was able to maintain the mobile

robot’s movement within a small range of departure from

its intended path. Specifically, both short inside and long

end turns of the second track were completed by modifying

the robot’s speed and steering angle accordingly to avoid

the mobile robot from deviating out of the track’s center.

The red circles shown in figure 7 represent the behavior of

the proposed model whenever the robot approaches the

sharp turns; as can be seen, the robot’s speed dropped

rapidly in an attempt to avoid drifting off the track.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(2s), 366–372 | 371

In addition, histograms are used to display statistical

analysis of autonomous driving. This kind of descriptive

statistic has implications for testing the performance of the

autonomous vehicle within a longer period. Figure 8 shows

histograms of the relative deviations from the center of the

trajectory obtained from the designed model and the MPU

sensor alike during one complete lap of autonomous

driving for both tracks. The difference in the sampling rate

between the model and the MPU sensor resulted in the

frequency value discrepancy of the dominating steering

value shown in Figure 8. The MPU sensor recorded

measurements five times greater than the model per second

for both tracks. Negative readings of the steering angle

were caused by the mobile robot’s movement in a counter-

clockwise direction.

According to Figures 8 (a) and (b), the mobile robot was

typically maintained in the middle of the first track, as

indicated by the dominant steering angle (-0.4) computed

by the designed model and MPU sensor. On the other

hand, in the second track histograms shown in Figures 8

(c) and (d), the dominant steering angles were most

frequently (-0.2 and -0.4) when the mobile robot was

performing the short inside turns denoted by figure 7(A).

Similarly, the MPU sensor also showed that these angle

values were dominant. Hence, the actual steering angle

values observed by the MPU sensor were approximately

equal to the estimated steering angles that were calculated

by the developed model for both tracks.

Fig. 8. Histogram of deviation from the center of track (A)

Designed model, First Track (B) MPU Sensor, First Track

(C) Designed Model, Second Track (D) MPU Sensor,

Second Track

Five full laps of the second track were used to verify the

model’s repeatability. As shown in figure 9, the readings of

the steering angle calculated by both the model and the

map sensor for the experimental laps were nearly identical.

This indicates that the mobile robot completed all required

laps of driving on the designated track without any

departure from the track.

For this research, one objective was to train the novel

model to completely stop the vehicle when either traffic

stop signs or pedestrians come into view in front of the

mobile robot’s track. The robot’s throttle was lowered to

approximately zero to avoid a collision once a pedestrian

came into sight directly ahead of the robot’s pathway as

depicted in figure 10.

[14] Contains a video that demonstrates our test vehicle's

performance on both of the tracks.

Fig. 10. Full stop at pedestrian detection by front camera

5. Conclusion

Using a lightweight model is critical to success in

industrial applications that frequently demand machine

learning solutions that can be implemented on

computationally inexpensive and memory-demanding

embedded platforms with low costs and sizes like the one

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(2s), 366–372 | 372

utilized in this research. In this paper, the challenging task

of developing a lightweight deep neural network capable

of handling all vehicle control actions, including steering

wheel angle, speed, and braking, is addressed.

Furthermore, the article presents an unexplored issue in

computer vision: estimating steering angle and speed

values solely from visual input from the camera. The

stages and detailed design of the developed end-to-end

model have been presented. The proposed model has been

tested on two different tracks and with an MPU sensor.

The presence of lightweight DNN is critical for controlling

the speed of a self-driving car. Despite the fact that the

camera used has a frame rate of 65 frames per second. We

reduced the frame rate to 10 frames per second in order to

synchronize the capture of quick movements with vehicle

control commands. As a result, the lightweight DNN

network reduces synchronization time. The results show

that the model can predict the steering angle and speed

with a high degree of accuracy and consistency.

Applications such as warehouse and delivery vehicle robot

cars could benefit from the end-to-end learning network's

output.

References

[1] Y. Tian et al., “Lane marking detection via deep

convolutional neural network,” Neurocomputing,

vol. 280, pp. 46–55, Mar. 2018, doi:

10.1016/j.neucom.2017.09.098.

[2] S. Z. Yong, D. Yershov, E. Frazzoli, B. Paden, and

M. Cáp, “A Survey of Motion Planning and

Control Techniques for Self-driving Urban

Vehicles,” IEEE Transactions on Intelligent

Vehicles, vol. 1, no. 1. pp. 1–27, 2016.

[3] S. Grigorescu, B. Trasnea, T. Cocias, and G.

Macesanu, “A survey of deep learning techniques

for autonomous driving,” J. F. Robot., vol. 37, no.

3, pp. 362–386, 2020, doi: 10.1002/rob.21918.

[4] L. Li, K. Ota, and M. Dong, “Humanlike Driving:

Empirical Decision-Making System for

Autonomous Vehicles,” IEEE Transactions on

Vehicular Technology, vol. 67, no. 8. pp. 6814–

6823, 2018, doi: 10.1109/TVT.2018.2822762.

[5] C. Chen, A. Seff, A. Kornhauser, and J. Xiao,

“DeepDriving: Learning affordance for direct

perception in autonomous driving,” Proceedings of

the IEEE International Conference on Computer

Vision, vol. 2015 Inter. pp. 2722–2730, 2015, doi:

10.1109/ICCV.2015.312.

[6] M. Bojarski et al., “End to End Learning for Self-

Driving Cars,” pp. 1–9, 2016, [Online]. Available:

http://arxiv.org/abs/1604.07316.

[7] Z. Yang, Y. Zhang, J. Yu, J. Cai, and J. Luo, “End-

to-end Multi-Modal Multi-Task Vehicle Control

for Self-Driving Cars with Visual Perceptions,” in

2018 24th International Conference on Pattern

Recognition (ICPR), Aug. 2018, pp. 2289–2294,

doi: 10.1109/ICPR.2018.8546189.

[8] M. V. Smolyakov, A. I. Frolov, V. N. Volkov, and

I. V. Stelmashchuk, “Self-Driving Car Steering

Angle Prediction Based On Deep Neural Network

An Example Of CarND Udacity Simulator,” in

2018 IEEE 12th International Conference on

Application of Information and Communication

Technologies (AICT), Oct. 2018, pp. 1–5, doi:

10.1109/ICAICT.2018.8747006.

[9] J. Jhung, I. Bae, J. Moon, T. Kim, J. Kim, and S.

Kim, “End-to-End Steering Controller with CNN-

based Closed-loop Feedback for Autonomous

Vehicles,” IEEE Intelligent Vehicles Symposium,

Proceedings, vol. 2018-June. pp. 617–622, 2018,

doi: 10.1109/IVS.2018.8500440.

[10] D. Wang, J. Wen, Y. Wang, X. Huang, and F. Pei,

“End-to-End Self-Driving Using Deep Neural

Networks with Multi-auxiliary Tasks,” Automot.

Innov., vol. 2, no. 2, pp. 127–136, Jun. 2019, doi:

10.1007/s42154-019-00057-1.

[11] M. K. Islam, M. N. Yeasmin, C. Kaushal, M. Al

Amin, M. R. Islam, and M. I. Hossain Showrov,

“Comparative Analysis of Steering Angle

Prediction for Automated Object using Deep

Neural Network,” in 2021 9th International

Conference on Reliability, Infocom Technologies

and Optimization (Trends and Future Directions)

(ICRITO), Sep. 2021, pp. 1–7, doi:

10.1109/ICRITO51393.2021.9596499.

[12] D. P. Kingma and J. Ba, “Adam: A Method for

Stochastic Optimization,” 2017 2nd IEEE Int.

Conf. Cloud Comput. Big Data Anal. ICCCBDA

2017, pp. 156–160, Dec. 2014, doi:

10.1109/ICCCBDA.2017.7951902.

[13] C. Sammut and G. I. Webb, Eds., “Mean Squared

Error,” in Encyclopedia of Machine Learning,

Boston, MA: Springer US, 2010, p. 653.

[14] Y. Ghufran. "End-to-end self-driving car"

YouTube, Sep 4, 2022 [Video file]. Available:

https://www.youtube.com/watch?v=7HXkBrsrvOI.

[Accessed: Sep 4, 2022]

http://arxiv.org/abs/1604.07316
http://www.youtube.com/watch?v=7HXkBrsrvOI
http://www.youtube.com/watch?v=7HXkBrsrvOI

