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Abstract: In many real life applications, more than one variable needs to be studied. This means the need to model multivariate 

distributions to clarify the behavior of these variables combined and that there may be dependence among these variables. The 

parameters estimated according to the Bayesian method under the precautionary loss function are as close as possible to the real 

(hypothetical) parameters. The Bayes method under the squared loss function recorded a superiority over the Bayes method under the 

precautionary loss function at the cut-off coefficient (Alfa-cut = 0.3) in some simulation experiments. The greater the cutoff in the fuzzy 

group, the less elements that have less or equal cutoffs, and thus increase the accuracy of the estimation method. 
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1. Introduction 

In many real life applications, more than one variable 

needs to be studied. This means the need to model 

multivariate distributions to clarify the behavior of these 

variables combined and that there may be dependence 

among these variables. The distributions are bivariate 

(Bivariate distributions) One of the distributions that 

studies the behavior of two variables that may be 

independent or interdependent, which is of great 

importance in knowing the behavior of some important 

phenomena. Since the estimation process depends on 

observations, which in many cases cannot be recorded 

accurately due to the errors of the experiment, personal 

judgment, or some unexpected situations. Then 

randomness and fuzziness are a mixture in it and it is 

expressed in fuzzy numbers, so it is necessary to 

generalize the traditional statistical estimation methods 

for real numbers into fuzzy numbers for the purpose of 

reaching more accurate estimates than those produced by 

traditional estimates.The Gamma distribution is 

considered one of the important distributions in the 

analysis of reliability, survival theory, and the study of 

various phenomena, which attracted the interest of many 

researchers in this field, who developed the Kama 

distribution with one variable, (Univariate Gamma 
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distribution) To backward forms of binary gamma 

distributions to include two interrelated variables, 

including the binary gamma distribution for Kipple, and 

dual gamma distribution(Double Gamma) and the binary 

gamma distribution of Cheriyan and the binary gamma 

distribution of Gunst & Webster and the binary gamma 

distribution of Loaiciga & Leipnik, We'll look at one of 

the binary gamma distributions of Kippple, Because it 

provides important explanations for the variables that are 

interrelated with each other, as it takes into consideration 

the correlation between the variables in the form of a 

parameter that is included within its probability 

distribution function, which is useful in reliability 

analysis and survival analysis. The researcher prepares 

(Kipple) The first to derive the binary gamma 

distribution in (1941) and named after him by using two 

interconnected random variables, each with a Gaussian 

distribution, by expressing them as a binary series in a 

hierarchical polynomial form( Hermit polynomials) that 

were submitted before (Mehler ,1866),(Kipple,1941) 

And those are many studies and researches that dealt 

with the binary gamma distribution of Kipple Using the 

Bayesian method under a precautionary loss function 

assuming the fuzziness of random variables. 

Crisp set and Fuzzy set 

The normal concept of the group, as it is known as (the 

traditional group), is that the group in which the elements 

either belong or do not belong to it, with absolute 

distinction between belonging and not belonging, with 

very clear and precise boundaries for each element to 
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A 

which it belongs, so the element is not allowed to be in 

the group or not. therein at the same time 

(Pak & et al., 2013, 341-342) 

Let it  be a comprehensive set, 𝐴 even if it is a subset 

of it, each element 𝑥 in 𝐴 it can belong or not belong to 

the set 𝐴. 

Let µA(x) it be a distinctive function for the group A that 

gives each element in the group  a degree of belonging 

to the group A, and this function is two-valued {0,1}, as: 

1, if x   ∈    A 

So if it wasµA(x) = 1 The element x He has complete 

affiliation with the set 𝐴 

If it isµA(x) = 0 , then the element does not belong to the 

set at all 𝐴 

(H. Garg et al, 2013, 397) (A. Ibrahim, A. Mohammed, 

2017, 143) 

Figure (1) shows the traditional group, as we note that 

belonging to the elements xr and xr+1 equals zero for the 

elements و x0 and x1 x2 equals one And the elements in it 

either belong to the group or do not belong to it. 
µ (x) = { 

0, if x   ∉    A 
 
 

 

Fig 1 Graphical representation of the conventional Crisp set 

Assume  that µÃ(x0) = 1       thenx0       belongs  completely 

toÃ,  and  if  it  isµÃ(x1) = 0,  then  x1does  not  completely 

belong  to  the  groupÃ,  and  if  it  isµÃ (x1) = 0.8,  thenx1 

belongs with  a degree of 0.8 toÃ  . If it isµÃ(x)  equal to 

one or zero, we will get a non-fuzzy subset of the sample 

space (). 

(Danyaro & et al., 2010, 240) 

Figure (2) shows the fuzzy group, as we notice that the 

affiliation of the elements 𝑎, 𝑐 can fall between zero and 

one, and the element 𝑏 has a degree of affiliation equal to 

one, and that the elements can belong to the group 𝐴 with 

different degrees of affiliation. 

It is a group whose boundaries are inaccurate, in which 

each element has a certain degree of belonging, through a 

membership function that allocates each element in the 

group a degree of belonging in the period [0, 1]. In which 

the element or object is allowed to belong to (Partial 

Membership) 

(Pak, 2017, 504) 

Let  be a comprehensive group, the partial fuzzy set 𝐀̃ of 

  that is distinguished  by  the affiliation  function  µ𝐀̃(𝐱), 

which produces between values for [0,1] each value x in 

the fuzzy sample space. The fuzzy group is: 

Ã = {(xi, µÃ (xi)), x ∈  , i = 1,2,3, … … n, 0 < µÃ (x) 

< 1} … . . (1) 
 

 

 
Fig. 2 Graphical representation of the ((Fuzzy set) 

(Bashar, 2018, 19) 
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𝑘=0 

 

 + 

1. Membership function 𝒗−𝟏 
 

−𝒙−𝒚  
 𝟐 𝝆𝒙𝒚 𝒇(𝒙, 𝒚, 𝒗, 𝝆) = 

𝟏 
𝒙𝒚 𝟐     

𝒆 𝟏−𝝆   𝑰 ( 
√ 

) 

It is one of the basic and important functions in fuzzy 

group theory, which is used to generate the belonging of 

 
… (3) 

(   ) 
𝒗(𝟏−𝝆)  𝝆 𝒗−𝟏 

 
 

𝟏−𝝆 

elements within the fuzzy group, as it generates values 

within the period [0, 1] to represent the degree of 

belonging of each element in the traditional universal 

group within the (fuzzy set) 

(Abboudi & et al, 2020, 614) 

In other words, it is the function that draws the degree 

of importance of the element (the degree of affiliation) 

in the inclusive group to the fuzzy set, and it is a 

function with a positive value. 

.(Rutkowski, 2004,7-8) 

The affiliation functions are represented by a diagram 

whose ( y-axis) represents the degree of belonging to the 

group, and the ( x-axis) represents the normal values of the 

fuzzy variable. It belongs to the group and the degree of 

belonging to zero means that the value does not belong to 

the group, and the value between the two values (1,0) 

; 𝒙, 𝒚, 𝒗 > 𝟎 , 𝟎 < 𝝆 < 𝟏 

It is the standard form of Kibble's binary gamma 

distribution 

(Nadarajah & Gupta, 2006, 388) 

From equation (3), the( marginal distribution) for each of 

X and Y is a gamma distribution with a shape parameter 

𝑣 , 

𝑋  𝑔𝑎𝑚𝑚𝑎(𝜆 , 𝑣) 

𝑦  𝑔𝑎𝑚𝑚𝑎(𝛽, 𝑣 

And 𝐶𝑜𝑟𝑟(𝑋, 𝑌) = 𝜌 to represent the correlation 

parameter between the variables X, Y. 

X, Y are independent if and only if 𝜌 = 0 

The Kibble binary gamma distribution can be represented 

as a series Bessel function: 

defines the variable degrees of belonging to the group. The 

affiliation function in the fuzzy group is a generalization 
𝑓(𝑥, 𝑦, 𝑣, 𝜆, 𝛽, 𝜌) = ∑ 𝑓(𝑘 𝜌)𝑓 (𝑥v + 

of the characteristic function of  the traditional group. k,  
𝜆   

) f (y v + k,  
𝛽  

) … (4) 

Depending on the type of affiliation function, different 

types of fuzzy groups are obtained. 

1−𝜌 
 

Since: 

1−𝜌 

(H. Garg et al, 2013, 398). 

2. α-cut 

The cutoff principle in the fuzzy set was first introduced 

by the researcher (Zadeha,1971) 

and is defined α as the lowest degree of belonging to any 

𝑓(𝑘𝜌)It is the probability mass function of the negative 

binomial distribution𝑁𝐵(𝑉, 1 − 𝜌) as follows: 

𝑓(𝑘𝜌) = 
(𝑣+𝑘) 

𝜌𝑘(1 − 𝜌)𝑣 ; 𝑘 𝑍 : = {0, 1, 2, … } 
(𝑣)𝑘! 

… (5) 

and that f (xv + k, 
β   

)   and f (y v + k, 
β 

) are the 
element  in  the  fuzzyset  Ã  and  its  value  falls  within  the 1−ρ 1−ρ 

period [0 1] (H. Garg et al, 2013, 398), which represents 
probability density function of the gamma distribution 
with parameters (v + k,

 λ   
) and (v + k,

 β 
) 

the degree of belonging to the important elements because 

the important affiliation is confined between two 

 

respectively 

1−ρ 1−ρ 

values(𝑎1,𝑎𝑚 (on the pivot line of the fuzzy set 

(𝑆𝑢𝑝𝑝𝑜𝑟𝑡 Ã)  and  except  for  those  values  it  is  Of  little 

importance and out of scope(𝑐ut − out) (Auji, 2015). 

(Tashkandy et al., 2018, 66( )LMoudden & Marchand, 

2020, 2) 

∴ 𝑭(𝒙, 𝒚) 

3. Kibble’s bivariate gamma distribution 

If we have two random variables X, Y, then they are 

said to follow Kibble's binary gamma distribution if 

 

= ∑ 

𝒌=𝟎 

𝝀𝒙 

𝝆𝒗(𝜷)𝒌+𝒗 
 

 

(𝒌 + 𝒗)𝒌! 𝒗(𝟏 − 𝝆)𝟐𝒌+𝒗 

𝟏 − 𝝆 𝒌+𝒗 

𝟏 − 𝝆 𝒌+𝒗 

( ) 
𝝀 

𝜷𝒚 

 
 (𝒌 + 𝒗, 

their joint probability density function is as follows: 

𝒇(𝒙, 𝒚, 𝒗, , 𝜷, 𝝆) = 

) ( ) 
𝟏 − 𝝆 𝜷 

𝑘 

 (𝒌 + 𝒗, 

 
𝑣 

) 
𝟏 − 𝝆 

𝒗−𝟏 = ∑ 𝜌  (1−𝜌)  (𝑘 + 𝑣,   
𝜆𝑥 

)  (𝑘 + 𝑣,   
𝛽𝑦 

) 
(𝜷)𝒗 𝒙𝒚 𝟐 −𝒙−𝜷𝒚  

 𝟐√𝝆𝜷𝒙𝒚 
𝑘=0 (𝑘+𝑣)𝑘!𝑣 

 

1−𝜌 
 

1−𝜌 
( ) 

(𝟏−𝝆)𝒗   𝝆 𝜷 

(2) 

𝐞𝐱𝐩 (  

𝟏−𝝆 
) 𝐈𝒗−𝟏 ( ) … 

𝟏−𝝆 … (6) 

Formula (6) represents the cumulative probability density 

; 𝒙, 𝒚, 𝒗, , 𝜷 > 𝟎 , 𝟎 < 𝝆 < 𝟏 

If so  = 𝜷 = 𝟏, then equation (1) becomes: 

function of the Kibble distribution 

 
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2 

𝑘=0 
= ∑ 

1 
[∼ 𝑁𝐵(𝑣, 𝜌)]  (𝑘 + 𝑣, 

(𝑘+𝑣) 

𝜆𝑥 )  (𝑘 + 𝑣,  
𝛽𝑦 

) … (7) 

4. Bayesian Methods 

For the purpose of estimating the parameters of (Kibble’s 
1−𝜌 1−𝜌 

bivariate gamma) distribution 

And formula (7) is the cumulative density function of the 

Kibble distribution in terms of the negative binomial 

distribution and in terms of the incomplete minimum 

quantum function. 

Also, the cumulative density function of the Kibble 

distribution can be found in terms of the upper incomplete 

In equation (8), which is (𝜆, 𝛽, ρ) with fixing the 

parameter of the form (v), it is according to the following 

steps: 

1. Finding the possibility function for the (Crisp data), so 

if we have measurements of a random sample from the 
distribution(𝑥 , 𝑦 ), (𝑥 , 𝑦 ), … , (𝑥 , 𝑦 ), let 𝑋 = 

gamma function and the negative binomial distribution, as 1      1 2      2 𝑛     𝑛 

follows: 

 
𝑭(𝒙, 𝒚) = ∑ 

𝟏 
[∼ 𝑵𝑩(𝒗, 𝝆)] (𝒌 + 𝒗 − 

 

(𝑥1, 𝑥2, . . , 𝑥𝑛) and 𝑌 = (𝑦1 , 𝑦2, . . , 𝑦𝑛), the non-blurry 

observed data vector be as follows: 

𝒌=𝟎 (𝒌+𝒗) 

 

 (𝒌 + 𝒗,
 𝝀𝒙 

)) (𝒌 + 𝒗 −  (𝒌 + 𝒗,   
𝜷𝒚 

)) … (8) 
𝟏−𝝆 

 

 𝑙(𝑥 𝑦 v, λ, β, ρ) = ∏𝑛 

𝟏−𝝆 
 
 

𝑛 𝑓(𝑥 𝑦 , v, λ, β, ρ) = 

 

 
𝛽 

 

𝑛(
𝑣+1

) 2 

 
 
∏𝑛 

 
 

 
𝑣−1 (𝑥 𝑦 ) 2 

 
 
∏𝑛 

 
(∑ 

 

 
(𝑥𝑖𝑦𝑖 

 

 
)2𝑘+𝑣−1 

 
 ) ∏𝑛 

 
 

 
1 (𝑥 𝑦 )2 

𝑖  𝑖 

...(8) 

𝑖=1 𝑖   𝑖 (1−)2𝑛(𝑣)𝑛 ( 
 

) 
𝑖=1 𝑖   𝑖 𝑖=1 𝑘=0 

 
 

(𝑘+𝑣)𝑘! 𝑖=1 

 

𝑖  𝑖 

X Drawn from X and Y drawn from Y 

Where the information about can be represented by the 

following probability distribution: 

 

 

 
𝑳̃(̃𝒙, 𝒚̃, , 𝜷, ) = 

𝒗+𝟏 

As it x, y is seen clearly and full information is available 

about it. 

But if it is x and y is not seen in a clear and accurate way 

and partial information is available about it in the form of 

a partial fuzzy group, then the two fuzzy groups𝑥̃   and  𝑦̃ 

we get them in two steps: 

𝟐𝒏 1  𝒏( 
𝟐  

) 𝒗+𝟏 𝒗+𝟏      𝒗−𝟏      (𝒙 𝒚 )𝟐𝒌+𝒗−𝟏      𝟏 

( ) ()𝒏( 𝟐  
)(β)𝒏( 𝟐  

) ∏𝒏 ∫   ∫ (𝒙 𝒚 ) 𝟐    µ (𝒙)µ (𝒚)𝒅𝒚 𝒅𝒙 ∏𝒏 ∫  ∫  (∑     𝒊 𝒊 ) µ (𝒙)µ (𝒚)𝒅𝒚 𝒅𝒙 ∏𝒏 ∫ ∫ (𝒙 𝒚 )𝟐 µ (𝒙)µ (𝒚)𝒅𝒚 𝒅𝒙 
  

(𝟏−)𝟐𝒏(𝒗)𝒏      

…(18) 

𝒊=𝟏   𝟎     𝟎 𝒊    𝒊 ̃𝒙 ̃𝒚 𝒊=𝟏   𝟎     𝟎 𝒌=𝟎 (𝒌+𝒗)𝒌! ̃𝒙 ̃𝒚 𝒊=𝟏   𝟎     𝟎 𝒊    𝒊 ̃𝒙 ̃𝒚 

2. Determine the joint prior probability of the parameters to be estimated as follows: 

𝛑(𝛉) = 𝟏(𝛌)𝟐(𝛃)𝟑() … (11) 

The previous joint distribution is written in the following form: 

 𝒅𝟏  
𝒄𝟏   𝒅𝟐 

𝒄𝟐 𝛌𝒅 𝛃𝒅 
(𝒄𝟑+𝒅𝟑)( )   ( ) −  𝟏 −  𝟐 

𝛑(, 𝛽, ) = 𝟏− 𝟏−  𝛌𝒄𝟏−1𝑒 
(𝒄𝟏)(𝒄𝟐)(𝒄𝟑)(𝒅𝟑) 

𝟏− 𝛃𝒄𝟐−1𝑒 𝟏− 𝒄𝟑−1(1 − )𝒅𝟑−1 … (12) 

3. Finding the post joint probability using the inverse Bayes formula as follows: 
 

−𝒏(
𝒗+𝟏

)+𝒄 −1 
 
 −𝒄𝟏−𝒄𝟐+𝟐𝒏+𝒅 −1 𝒄   +𝒏(

𝒗+𝟏
)−1   𝒄   +𝒏(

𝒗+𝟏
)−1   −

   𝟏   
(𝛌𝒅𝟏+𝛃𝒅𝟐) 

ℎ̃(, 𝛽,  𝑥 𝑦 ) = 
 

𝟐 𝟑 (𝟏−) 𝟑 𝛌 𝟏 𝟐 𝛃 𝟐 𝟐 𝑒   𝟏− 𝑺𝟐𝑺𝟑𝑺𝟒 . (13) 
𝑖  𝑖        −𝒏(

𝒗+𝟏
)+𝒄 −1  −𝒄𝟏−𝒄𝟐+𝟐𝒏+𝒅 −1 𝒄   +𝒏(

𝒗+𝟏
)−1   𝒄   +𝒏(

𝒗+𝟏
)−1   −

   𝟏   
(𝛌𝒅𝟏+𝛃𝒅𝟐) 

∫0 ∫0 ∫0  𝟐 𝟑 (𝟏−) 𝟑 𝛌 𝟏 𝟐 𝛃 𝟐 𝟐 𝑒 𝟏− 𝑺𝟐𝑺𝟑𝑺𝟒𝑑𝑑𝛽𝑑 

5. Precautionary Loss Function 

The use of symmetric loss functions is based on the 

assumption that the loss is the same in any direction, but 

this assumption may not be fulfilled in several cases. In 

some cases, the positive error is more important than the 

negative error, and vice versa. Therefore, the use of 

symmetric loss functions is not appropriate. Therefore, it 

is preferable to use asymmetric loss functions. Among 

the asymmetric loss functions are the General Entropy 

Loss Function, the Linex Loss Function, and the 

DeGroot Loss Function. and a Precautionary Loss 

Function). The Precautionary Loss Function, which was 

introduced by (Nortsom, 1996), is prepared according to 

the following formula: 

(Norstorm, 1996, 401) 

(θ−θ̂)2 

L(θ̂ − θ) = … (14) 
θ̂ 

 

Under the precautionary loss function, underestimation is 

prevented because it uses the estimate around the point 

of origin to give conservative estimates. 
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𝛉 ̂ 

2 θ 

𝐒𝐁𝐏𝐄𝐋 

(P. Mozgunov, M. Gasparini, 2019, 2) 

According to the precautionary loss function, the baiz 

risk is given by the following formula: 

Bayes Risk = E (L (θ − θ̂)) 
 

 

 

E(u(x)|t ) = ʃθu(x)h (θ|t)dθ 

… (17) 

Therefore: 

𝐸 (𝑢(θ))  = 
ʃθ𝑢(θ)(θ|t)π(θ)dθ 

ʃθ𝐿(t)(θ|t)π(θ)dθ 
 

𝐄( 
(𝛉−𝛉̂)𝟐 

𝛉̂      
) = ʃ𝛉 

(𝛉−𝛉̂)𝟐 

𝛉̂ 
𝐡 (𝛉|𝐭)𝐝𝛉 

… (18) 

𝑢(θ)Any function with parametersθ 

 
 
 
 
 

 
… (15) 

= ʃ 
(𝛉𝟐−𝟐    𝛉̂+𝛉̂𝟐) 

𝐡 (𝛉|𝐭)𝐝𝛉 
𝛉 

 

= ʃ𝛉𝛉𝟐𝛉−𝟏𝐡 (𝛉|𝐭)𝐝𝛉 − ʃ𝛉𝟐𝛉𝐡 (𝛉|𝐭)𝐝𝛉 

+ ʃ𝛉𝛉̂𝐡 (𝛉|𝐭)𝐝𝛉 

= 𝑬(𝛉𝟐/𝒕)𝛉−𝟏 − 𝟐𝐄(𝛉/𝒕) + 𝛉̂ 

𝐿(t)(θ|t) Possibility function for the current sample data 
   

π(θ) The joint prior distribution of the parameters to be 

estimated 

So if it was 𝑢(θ) = θ2𝑡ℎ𝑒𝑛: 

ʃ  θ
2(θ|t)π(θ)dθ 

𝐸(θ /𝑡) = 
By deriving both sides of equation No. (15) with respect 

to and equating the derivative to zero, we get: 

 

… (19) 

ʃθ𝐿(t)(θ|t)π(θ)dθ 
 

 

𝛛𝐄(𝛉̂ − 𝛉)𝟐) 

𝛛𝛉̂ 
= 𝟎 

−𝛉̂−𝟐𝑬(𝛉𝟐/𝒕) + 𝟏 = 𝟎 

(F. Naji & A. Rasheed, 2019, 191) 

6. Fuzzy Bayesian estimator under a 

precautionary loss function FBPE 

𝛉̂𝟐 
 

 
𝐒𝐁𝐁𝐋 

= 𝐄(𝛉𝟐|𝐭 ) 
After extracting the subsequent joint distribution for the 

parameters to be estimated, we now come to find the 

∴ 𝛉̂𝐒𝐁𝐁𝐋   = √𝐄(𝛉𝟐|𝐭 ) 

… (16) 

In general, then: 

fuzzy Bayes estimator under the quadratic loss function, 

as the Bayes estimator is the expected loss function for 

the parameter to be estimated as follows: 

𝑬(𝟐/𝒙 𝒚 ) =        𝟐𝒉̃(, 𝜷,  𝒙 𝒚 )𝒅𝒅𝜷𝒅 
𝒊   𝒊 ∫𝟎 ∫𝟎 ∫𝟎 𝒊    𝒊 

 
       −𝒏(

𝒗+𝟏
)+𝒄   −𝟏 

 
 −𝒄𝟏−𝒄𝟐+𝟐𝒏+𝒅 −𝟏 𝒄   +𝒏(

𝒗+𝟏
)+𝟏   𝒄   +𝒏(

𝒗+𝟏
)−𝟏   −

   𝟏   
(𝛌𝒅𝟏+𝛃𝒅𝟐) 

= 
∫𝟎 ∫𝟎 ∫𝟎  𝟐 𝟑 (𝟏−) 𝟑 𝛌 𝟏 𝟐 𝛃 𝟐 𝟐 𝒆 𝟏− 𝑺𝟐𝑺𝟑𝑺𝟒𝒅𝒅𝜷𝒅 … (20) 

       −𝒏(
𝒗+𝟏

)+𝒄   −𝟏  −𝒄𝟏−𝒄𝟐+𝟐𝒏+𝒅 −𝟏 𝒄   +𝒏(
𝒗+𝟏

)−𝟏   𝒄   +𝒏(
𝒗+𝟏

)−𝟏   −
   𝟏   

(𝛌𝒅𝟏+𝛃𝒅𝟐) 

∫𝟎 ∫𝟎 ∫𝟎  𝟐 𝟑 (𝟏−) 𝟑 𝛌 𝟏 𝟐 𝛃 𝟐 𝟐 𝒆 𝟏− 𝑺𝟐𝑺𝟑𝑺𝟒𝒅𝒅𝜷𝒅 

The Bayesian estimator for the parameters of the Kipple distribution under a precautionary loss function is as 

follows: 
 

∴ ̂𝐒𝐁𝐏𝐄𝐋    = √𝐄(𝟐|𝐭 ) 

 
 

 
     −𝒏(

𝒗+𝟏
)+𝒄   −𝟏  −𝒄𝟏−𝒄𝟐+𝟐𝒏+𝒅 −𝟏 𝒄   +𝒏(

𝒗+𝟏
)+𝟏   𝒄   +𝒏(

𝒗+𝟏
)−𝟏   −

   𝟏   
(𝛌𝒅𝟏+𝛃𝒅𝟐) 

= √
∫𝟎 ∫𝟎 ∫𝟎  𝟐 𝟑 (𝟏−) 𝟑 𝛌 𝟏 𝟐 𝛃 𝟐 𝟐 𝒆 𝟏− 𝑺𝟐𝑺𝟑𝑺𝟒𝒅𝒅𝜷𝒅 

… (21)      −𝒏(
𝒗+𝟏

)+𝒄   −𝟏  −𝒄𝟏−𝒄𝟐+𝟐𝒏+𝒅 −𝟏 𝒄   +𝒏(
𝒗+𝟏

)−𝟏   𝒄   +𝒏(
𝒗+𝟏

)−𝟏   −
   𝟏   

(𝛌𝒅𝟏+𝛃𝒅𝟐) 

∫𝟎 ∫𝟎 ∫𝟎  𝟐 

 

∴ 𝛃̂𝐒𝐁𝐏𝐄𝐋    = √𝐄(𝛃𝟐|𝐭 ) 

𝟑      (𝟏−) 𝟑 𝛌 𝟏 𝟐 𝛃 𝟐 𝟐 𝒆 𝟏− 𝑺𝟐𝑺𝟑𝑺𝟒𝒅𝒅𝜷𝒅 

 
 

 
     −𝒏(

𝒗+𝟏
)+𝒄   −𝟏  −𝒄𝟏−𝒄𝟐+𝟐𝒏+𝒅 −𝟏 𝒄   +𝒏(

𝒗+𝟏
)−𝟏   𝒄   +𝒏(

𝒗+𝟏
)+𝟏   −

   𝟏   
(𝛌𝒅𝟏+𝛃𝒅𝟐) 

= √
∫𝟎 ∫𝟎 ∫𝟎  𝟐 𝟑 (𝟏−) 𝟑 𝛌 𝟏 𝟐 𝛃 𝟐 𝟐 𝒆 𝟏− 𝑺𝟐𝑺𝟑𝑺𝟒𝒅𝒅𝜷𝒅 … (22) 

     −𝒏(
𝒗+𝟏

)+𝒄   −𝟏  −𝒄𝟏−𝒄𝟐+𝟐𝒏+𝒅 −𝟏 𝒄   +𝒏(
𝒗+𝟏

)−𝟏   𝒄   +𝒏(
𝒗+𝟏

)−𝟏   −
   𝟏   

(𝛌𝒅𝟏+𝛃𝒅𝟐) 

∫𝟎 ∫𝟎 ∫𝟎  

 
 

∴ ̂ = √𝐄(𝟐|𝐭 ) 

𝟐 𝟑 (𝟏−) 𝟑 𝛌 𝟏 𝟐 𝛃 𝟐 𝟐 𝒆 𝟏− 𝑺𝟐𝑺𝟑𝑺𝟒𝒅𝒅𝜷𝒅 

 
 

 
     −𝒏(

𝒗+𝟏
)+𝒄   +𝟏  −𝒄𝟏−𝒄𝟐+𝟐𝒏+𝒅 −𝟏 𝒄   +𝒏(

𝒗+𝟏
)−𝟏   𝒄   +𝒏(

𝒗+𝟏
)−𝟏   −

   𝟏   
(𝛌𝒅𝟏+𝛃𝒅𝟐) 

= √
∫𝟎 ∫𝟎 ∫𝟎  𝟐 𝟑 (𝟏−) 𝟑 𝛌 𝟏 𝟐 𝛃 𝟐 𝟐 𝒆 𝟏− 𝑺𝟐𝑺𝟑𝑺𝟒𝒅𝒅𝜷𝒅 

…(23)      −𝒏(
𝒗+𝟏

)+𝒄   −𝟏  −𝒄𝟏−𝒄𝟐+𝟐𝒏+𝒅 −𝟏 𝒄   +𝒏(
𝒗+𝟏

)−𝟏   𝒄   +𝒏(
𝒗+𝟏

)−𝟏   −
   𝟏   

(𝛌𝒅𝟏+𝛃𝒅𝟐) 

∫𝟎 ∫𝟎 ∫𝟎  𝟐 𝟑 (𝟏−) 𝟑 𝛌 𝟏 𝟐 𝛃 𝟐 𝟐 𝒆 𝟏− 𝑺𝟐𝑺𝟑𝑺𝟒𝒅𝒅𝜷𝒅 
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And that the Bayes estimations in equations (21), (22) 

and (23) cannot be found by the usual analytical 

methods, so an iterative method or approximation must 

be used, and Gibbs sampling will be used. 

(BRÄNNSTRÖM, 2018, 18-19) 

7. The experimental side 

Simulation is a process of applying the user's 

imagination to an experimental virtual reality for the 

purpose of examining a specific problem or measuring a 

specific performance for the purpose of studying 

behavior and generalizing the results to the real reality. 

and its development over time. There have been many 

simulation methods, especially after the rapid 

development that took place in the use of electronic 

calculators, and because it is an effective method that 

enables us to manage it in a wide applied manner in 

practical application. 

(Silva& et al. , 2010 , 429-430). 

The Monte-Carlo Simulation method was adopted for the 

purpose of testing the efficiency of the estimation 

methods used to estimate the parameters of Kibble's 

bivariate gamma distribution using the Bayesian 

estimation method at quadratic and precautionary loss 

functions and to compare the extracted estimators using 

the mean squares integral error criterion. (IMSE) The 

sample sizes that will be worked on in selecting fuzzy 

groups have been determined, as a traditional sample size 

n = 150 has been chosen, and then the sample sizes to 

which the estimation methods will be applied are 

determined according to the cut-off factor that will be 

determined. And then choosing the default values for the 

parameters of the binary gamma distribution of Kibble, 

where the default values were obtained empirically from 

conducting several experiments and choosing the values 

at which the Bayes estimates stabilized and gave the best 

results, as shown in Table (1). 

Table (1) Default values for the parameters of the binary gamma distribution for Kibble 
 

Model 

 

 
Parameter 

 

1 

 

2 

 

3 

 

4 

 

5 

 

6 

 

7 

 

8 

V 1 1 1 1 1 1 1 1 

Α 2 2 1 4 4.5 8 0.5 3 

β 2 3 2.5 5 2 0.5 8 3 

ρ 0.8 0.1 0.5 0.2 0.9 0.7 0.7 0.3 

 

Random samples were generated following the binary 0 𝑖𝑓   𝑡    < 𝑎 

gamma distribution of Kibble using a special algorithm 𝜇𝐴 

𝑥−𝑎 
(𝑥) = { 

𝑏−𝑎 𝑖𝑓 𝑎 ≤ 𝑥 ≤ 𝑏 

to generate the sample of the binary gamma distribution 

of Kibble (General Kibble's Bivariate Gamma 

Distribution). Data Fuzzification (Data Fuzzification) 

was done by converting the traditional sample vector 

𝐗 = (𝐗𝟏, 𝐗𝟐)′ from the binary gamma distributionof 

Kibble to fuzzy by finding the degree of belonging 

corresponding to each of the observations of the 

traditional sample vector using the trigonometric 

belonging function as follows: 

1 𝑖𝑓 𝑥 > 𝑏 

… (24) 

Several   cutting   coefficients   were   chosen𝛂 − 𝐜𝐮𝐭 = 

𝟎. 𝟑, 𝟎. 𝟓, 𝟎. 𝟖, and the reason for choosing these cutting 

coefficients is obtaining different types of hazy samples 

at each cutting level, and thus testing the effect of hazy 

sample   sizes   on   the   accuracy   of   the   estimate. 
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Table (2) Parameters estimation and mean squares of integral error𝐈𝐌𝐒𝐄 at traditional and fuzzy Bayesian methods at cut- 

off coefficients𝛂 − 𝐜𝐮𝐭 = 𝟎. 𝟑, 𝟎. 𝟓, 𝟎. 𝟖 for all models used in the experimental side 
 

Model 1 2 3 4 5 

A
lf

a
-C

u
t 

 
Parameter 

 E
st

im
a

te
 

 IM
S

E
 

 E
st

im
a

te
 

 IM
S

E
 

 E
st

im
a

te
 

 IM
S

E
 

 E
st

im
a

te
 

 IM
S

E
 

 E
st

im
a

te
 

 IM
S

E
 

 

0.3 

𝛂̂ 2.861 0.742 2.564 0.319 1.661 0.437 4.562 0.316 3.332 0.110 

𝛃̂ 2.894 0.800 3.456 0.208 2.894 0.156 5.556 0.309 3.343 0.118 

𝛒̂ 0.887 0.008 0.466 0.134 0.777 0.077 0.363 0.027 0.332 0.001 

 

0.5 

𝛂̂ 2.563 0.317 2.454 0.207 1.233 0.054 4.542 0.294 3.212 0.045 

𝛃̂ 2.492 0.242 3.543 0.295 2.492 0.000 5.553 0.306 3.222 0.049 

𝛒̂ 0.833 0.001 0.379 0.078 0.533 0.001 0.243 0.002 0.321 0.000 

 

0.8 

𝛂̂ 2.343 0.118 2.444 0.197 1.113 0.013 4.113 0.013 3.112 0.013 

𝛃̂ 2.292 0.086 3.435 0.190 2.522 0.000 5.221 0.049 3.211 0.045 

𝛒̂ 0.827 0.001 0.211 0.012 0.527 0.001 0.211 0.000 0.321 0.000 

 
 

Fig 3 Mean squares integral error for the models used in the experimental side 

8. Discuss the Results 

1. The parameters estimated according to the Bayesian 

method under the precautionary loss function are as close 

as possible to the real (hypothetical) parameters. 

2. The Bayes method under the squared loss function 

recorded a superiority over the Bayes method under the 

precautionary loss function at the cut-off coefficient 

(Alfa-cut = 0.3) in some simulation experiments. 

3. The greater the cutoff in the fuzzy group, the less 

elements that have less or equal cutoffs, and thus 

increase the accuracy of the estimation method. 
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