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Abstract: The particle filter is known to be a powerful tool to recursively estimate a hidden target state process using noisy observations 

from electronic sensor systems. The filter employs a set of particles that explore the state space using the Monte Carlo simulation of the 

target dynamics and then weighs them using the incoming observation. The congregation of the particles lead to probabilistic estimation 

of the true target state. However, the filter is effective only when the particles are drawn from regions of importance, i.e., the regions 

that contribute to the posterior probability density function. The traditional particle filter is known to suffer degeneracy as the target 

dynamics do not necessarily push the particles into regions of importance. This degeneracy problem can be overcome by either using a 

large number of particles or leveraging the incoming observation into the Monte Carlo sampling process. Since both solutions are not 

feasible, an additional resampling step was introduced to kill those particles that do not contribute to the posterior and replace them by 

copies of others that do. Furthermore, the recently proposed auxiliary particle filter and its variants improved upon the particle filter 

by mimicking the use of the incoming observation in the sampling process. However, the challenge of leveraging the incoming observation 

in the sampling process still remains a challenge. Moreover, these conventional filters still employ resampling which is a computationally 

expensive procedure. This paper proposes a novel particle filtering approach that takes into account the incoming observation into the 

sampling process without having to use resampling. This allows the particles to effectively explore the regions of importance and 

consequently result in fast and accurate filtering. The developed method is employed in tracking rhythmic biomedical signals and its 

accuracy and computational complexity are evaluated. 

Index Terms: Particle filtering, resampling, biomedical signals, electrocardiogram, root mean square error, computational time 

1. Introduction 

Biomedical signals like the electrocardiogram (ECG) and 

the arterial blood pressure (BP) are rhythmic in nature. 

The underlying clinical parameters like the instantaneous 

frequency, pulse variation, etc. that cause these 

biomedical signals change gradually with time and 

extraction of these parameters is critical in biomedical 

diagnosis and prognosis [1], [2]. Since the biomedical 

signals can be characterized as a nonlinear time series 

function, it is appropriate to use Bayesian inference 

methods to track the harmonics of the signal [3], [4]. The 

most popular nonlinear non-Gaussian Bayesian inference 

filter is the particle filter (PF) [5], [6]. 

The PF performs Monte Carlo approximation of the 

posterior probability density function (pdf) using a set 

of weighted particles.  

These particles span and explore the target state space 

using the target dynamics. The states of the particles and 

their corresponding weights aids in making a 

probabilistic inference of the true target state. The 

critical step in the PF is the sequential importance 

sampling (SIS) that specifies the process of sampling new 

particles at each time index using target dynamics and 

updating their weights using the incoming observation. It 

is known that if the particles are indeed located in regions 

of importance, that is, in the region of the pdf with high 

density value, then the Monte Carlo estimate would be 

accurate. However, Since the particles drawn from SIS 

do not leverage on the incoming observation but only 

the target dynamics, SIS by itself, does not guarantee that 

the particles lie in regions of importance. This eventually 

results in one particle grabbing all the weight, termed 

degeneracy problem. This problem is overcome using 

two solutions. The first is to use a large number of 

particles. This solution is infeasible as the number of 

particles required increases exponentially with the target 

state space. The second solution is to include an 

additional step called resampling that eliminates 

particles having low weights, i.e., those that do not lie in 

regions of importance and replace them by copies of 

others having higher weights [7], [8]. However, 

resampling is a computationally intensive procedure that 

involves intensive communication overhead within the 

particles. 
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The stochastic resamplers are the most conventionally 

used ones in PFs. One of the first resampling methods, the 

multinomial selection [5], operates by first evaluating 

the cumulative sum of the normalized particle weights 

and then finding a value of the sum greater than a 

random sample drawn from U(0, 1). Sampling from the 

full interval (0, 1) leads to large Monte Carlo error 

variance. This problem was overcome in the stratified 

[9] and systematic [6] resamplers that divide the 

interval (0, 1) into strata and draw one sample per particle 

from each stratum. The residual resampler [10] improved 

upon these by duplicating the particles stochastically 

using principle of proportional allocation. The stochastic 

resamplers are known to be theoretically accurate as they 

give an unbiased representation of the posterior pdf. 

That being said, leveraging the resampling on random 

samples involves sequential search and extensive 

communication overhead within all the particles. This 

leads to enormous computational complexity and hence 

impedes the use of more particles for accurate estimation 

and leads to difficulty in hardware realization [11]. 

Another class of resamplers developed to suit for parallel 

implementation include the recently proposed Metropolis 

resampler [12] and others [13], [14]. These aid in nearly-

parallel PF implementation by reducing the 

communication within the particles. However, these 

resamplers are still algorithmically computation 

intensive. An alternate to resampling is the Gaussian 

particle filter (GPF) [15]. The GPF approximates the 

posterior with a Gaussian pdf and propagates the samples 

using the mean and covariance estimates. The filter is 

free from resampling and is hence very fast. However, 

it does not scale well with increasing noise and also 

suffers from estimation bias. 

Resampling aids in pushing particles into regions of 

importance but with an additional computational 

complexity. As an alternative, several methods have 

been proposed to leverage the incoming observation in 

SIS so that the particles are drawn from regions of 

importance. This mitigates the effect of degeneracy and 

consequently allows the use of fewer particles. The most 

popular in this class to date is the auxiliary particle 

filter (APF) [16] and the improved APF (IAPF) [17], 

[18]. The filters draw a set of lookahead particles and 

computes their weights, then resamples the resultant and 

uses those resampling indices to propagate the old 

particles to the next time step. Other look ahead strategies 

include adapted placement and others [19]–[22]. These 

methods exhibit improved tracking accuracy as they draw 

particles from high importance regions. However, these 

methods still employ resampling. 

This paper proposes a completely resampling-free 

method that leverages the incoming observation in the 

SIS step. For this we assume an additive Gaussian 

observation model which the biomedical signal harmonic 

tracking models also follow. Our proposal is to guide the 

particles drawn in the SIS step to high importance regions 

by using the observation pdf. For additive Gaussian 

observation models, the observation density is 99.7% 

explained in the region bounded by 3 times the standard 

deviation of its noise covariance from the mean value, 

which in this context, is the incoming observation. 

Similarly, the density is 95% explained in the region 

bounded by 2 times the standard deviation. Retaining the 

drawn particles that lie within the region that is randomly 

specified within the 2× and 3× the standard deviation and 

eliminating the others and replacing them randomly by 

perturbed copies of those that lie within the said region 

facilitates in totally avoiding resampling. The key 

benefits of this proposal are fast filtering and total 

avoidance of the highly communication expensive 

resampling step. Hence the proposed method is named 

“observation leveraged resampling-free PF.” 

The rest of the paper is organized as follows. Section 

II gives a brief description of the Bayesian PF. Section 

III proposes the observation leveraged resampling-free PF 

approach. Sections IV presents the evaluation analysis for 

tracking harmonics of ECG signals. We finally conclude 

in section V. 

2. Particle   Filtering 

In this section, we set the notation and briefly introduce 

the PF. Consider a state space model defined by a 

Markovian state transition and observation models as 

1( , )x x at t tf −=   (1) 

( , )y x et t th=   (2) 

for t = 1,…..., T, where the real-valued hidden target state 

is xt at time instant t ∈ N and f (.) is a nonlinear 

function of the evolution of the target state over time. 

The target dynamics are modelled as a first order 

Markovian process governed by the state transition pdf 

p(xt|xt−1). The sensor observation yt is conditionally 

independent of previous observations given the state that 

at time t and follows the observation density is p(yt|xt) 

The function h(.) is a nonlinear function that translates the 

target from the state space to the observation space. at 

and et are noise variables. 

Target inference is achieved by estimating the state of a 

target xt using the noisy sensor data y1:t = {y1, …., yt}. 

The recursive Bayes’ filter accomplishes this estimation 

by using the previous posterior pdf p(xt−1|y1:t−1) at time 

t − 1 as 

1: 1 1 1 1: 1 1( | ) ( | ) ( | ) ( | )x y y x x x x y xt t t t t t t t tp p p p d− − − − −   

     (3) 
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In the PF Monte Carlo approximation, 1 1: 1( | )x yt tp − −  is 

approximated using a set of particles and their 

corresponding weights  1 1
1

,x
N

i i
t t

t
w− −

−
 where i is the 

particle index and N is the total number of particles. To 

obtain the approximation of 1 1:( | )x y tp , the PF first 

draws new particles from the Markov transition prior 

1( | )x x x
i i
t t tp −   (4) 

and weights them according to 

1 ( | )y x
ii
tt t tw w p−=  (5) 

for i = 1, ……., N . After a few iterations, the discrepancy 

between the weights increases causing degenracy 

problems. The solution to this is resampling. 

Conventional systematic resampling [6] that 

accomplishes this obtains a new weighted set of N 

particles    
11

, ,x x
N Ni i i i

t t t t
tt

w w
−−

→  as follows [7], [8]; for 

i = 1,….., N , we sample an index j(i) distributed 

according to the probability ( ( ) )p
m

tj i m w= = ,m = 

1,…., N  and assign 
( )

x x
j ii
tt =  and set 1/i

tw N=  .Then 

the PF approximation of the posterior becomes 

1:

1

1
( | ) ( )x y x x

N
i

t t t t

i

p
N


=

= −  (6) 

where δ(.) denotes the Dirac delta function. It is implicit 

that resampling is sequential and also exhaustive over all 

the particles. This renders the PF computationally 

expensive. One approach to mitigate the computational 

complexity is to resample only when the estimated 

effective sample size (ESS), defined as, 

2

1

ESS = 1/ ( )

N
i

t

i

w

=

   (7)  

falls below a certain threshold. That being said, highly 

nonlinear models or highly manoeuvring targets and/or 

low noise scenarios cause high degeneracy and require 

frequent resampling. 

Not accounting for the incoming observation yt in the 

sampling process in (4) will not ensure the particles are 

drawn from regions of importance. The APF [16] and the 

IAPF variants [18] mimic the process by first propagating 

the means of the previous particles to the next time step 

and then determining which of them will survive. The 

relevant particles are then resampled and propagated. In 

the subsequent section, we propose a new filter that 

leverages the incoming observation in the sampling 

process without the need to resample. 

3. Proposed Particle Filter 

In this section, we propose the resampling-free 

approach that leverages the incoming observation in the 

SIS process. Let the set of N weighted particles at time 

t − 1 be  1 1
1

,x
N

i i
t t

t
w− −

−
 . To move to time t, we draw a 

new set of particles using the Markov transition prior 

and assign weights according to 

1( | )x x x
i i
t t tp −    (8) 

( | )y x
i i

tt tw p=    (9) 

for i = 1,….., N . Since we drew particles from the 

Markov transition prior and have not leveraged the 

incoming observation yt into the drawing process, one 

cannot ensure the drawn particles lie in regions of 

importance. To avoid this, we consider the following 

procedure. Assuming the observation density is 

assumed to be additive Gaussian as in (2), we 

understand that the observation density p(yt|xt) = N (yt; 

h(xt), σ2) has a mean h(xt) and variance σ2. The drawn 

particle x
i
t  is a hypothesises of the actual target so if 

the hypothesis is indeed correct, then the difference 

yt − h(xt), conventionally termed the “innovation”, 

would be small. Since we know that for a Gaussian pdf, 

a value of 3σ from the mean explains 99.79% of the pdf 

and a value of 2σ from the mean explains 95% of the 

pdf. Hence, we compute the limit 

2( ; , )ytL p U =   (10) 

where U ∼ U(2,3) and U(.) denotes a uniform pdf. We 

then sort the particles and weights in accordance to the 

ascending order of the weights as 

  1 2

1

, : ,....,x
N

i i N
t t t t t

t

w w w w
−

  (11) 

and then determine the first index ˆi at which the 

increasing weights is greater than the pdf value L 

corresponding to 3σ limit as 

^

i i
tw L
 

    (12) 

We now determine the set of dominant set of indices D 

that will be retained as 

^ ^

{ , 1,...., }D i i N= +   (13) 

 

The non-dominant set of ˆi − 1 particles, i.e., those having 

a weight less than L are eliminated and a new set of 

samples 
^

1,....., 1
s

i i
t
= −  are drawn instead by sampling a new 

replacement set of ˆi − 1 particles uniformly at random, 
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with replacement, from the set of dominant particles x
i D
t


. The final set of particles will contain the new sampled 

particles 
^

1
1}{s

i i
t i

−
=  appended with the particles 

corresponding to the dominant set ^}{x
i N
t

i i=
 

It should, however, be noted that the new set contains 

exact replicas of particles corresponding to the dominant 

set. This leads to losing particle diversity. Moreover, for 

very peaky weights, we may run into the problem of 

very few particles replicating the entire new particle set 

thus causing degeneracy. To avoid this, we perturb the 

new samples by a small regularising factor          as 

^

, (0, ), 1,....., 1s s   
i i

t t u u i i= +  = −N  

     (14) 

Then the final set of particles are arranged and their 

weights are then computed according to 

^ ^ ^

1: 1,..., 1 1{ , , ,...., }x s x x x
N i i i i N

t t t t t

= − +=               (15) 

( | ), 1,.....,y x
i i

t t tw p i N= =                      (16) 

The value of U determines the limit of the state space 

to which the samples are being pushed into. A value 

close to two indicates a tighter limit. 

As an illustration, the left panel of Figure 1 shows 

the stem plot of N = 100 particles and their 

corresponding weights.  

 

 

Fig. 1. The left panel shows the stem plot of the 1-D 

particles versus their weights. The right panel shows 

the increasing weight function. The first index whose 

weight is greater than the 3σ limit L is shown as red 

dot. 

It can be observed there are several particles in the state 

space that lie in region that does not contribute to the 

posterior. The right panel shows the sorted weights 

along with the maximum permissible 3σ limit L as a 

red dot. The indices succeeding the limit L are the 

dominant weights and the preceding ones are the 

negligible weights. From the example, it can be seen 

that particles from the 85th are treated dominant and the 

rest are non-dominant. The resampled set is shown in 

the left panel of Figure 2 and it can be observed that 

the proposed method effectively eliminates the low 

weight particles with perturbed copies of those with 

large weights. A closeup of the left panel is shown on 

the right and it can be observed that perturbing the 

dominant particles instead of replicating their exact 

copies will lead to particle richness among the new set 

(the cyan stem plot). The key merit herein is that 

resampling of particles is totally avoided with the 

proposed replacement scheme. Moreover, our 

proposition substantially accelerates the filtering process. 

In the subsequent section, we evaluate the performance of 

the proposed method. 

 

 

Fig. 2. Corresponding to the illustration in Figure 1, in 

the left panel, the red stem plot shows the 1-D particles 

and weights before replacement. The cyan shows the 

particles and weights after replacement. The right panel 

shows a closeup of the left to illustrate the effect of 

particle richness caused by perturbing the dominant 

particles. 
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4. Evaluation: Tracking Rhythmic 

Biomedical Signals 

In this section, we present the evaluation of the proposed 

observation leveraged resampling-free PF. We compare 

with the standard PF [6] that employs systematic 

resampling to push particles into regions of 

importance, the APF [16], [18] that employs lookahead 

schemes to push particles into regions of importance, and 

the GPF [15] which uses an altogether different approach 

that does not necessarily account for drawing particles 

from importance regions. The standard PF resamples 

only when the ESS/N ≤ 0.3. 

The state space model is challenging problem of tracking 

multiple harmonics in periodic rhythmical signals [3]. 

These signals are a model of the biomedical signals 

including the ECG and pulse variation signals. The 

measurement model for this example                  is 

( ), ,

1

( ) cos( ) cos( )
hN

k t t k t t tt

k

y t a k b k y e 
=

= + + +  

     (17) 

where hN  is the known number of harmonics, t  is the 

instantaneous phase of the fundamental frequency, ȳ t is 

the signal mean, ak,t and bk,t are the sinusoidal 

coefficients and et ∼ N (0, σ2 = 5) is the additive white 

measurement noise variable. 

The state variables that transit over time are defined as 

1 2t t s tt f  −= +   (18) 

,1
    [     ]t tt f

f g f u
−

= +   (19) 

1 ,1 1( ) t t f tt tf f f f u −− −= + − +  (20) 

, , 1 , , 1,....,
kk t k t a t ha a u k N−= + = (21) 

, , 1 , , 1,···,
kk t k t b t hb b u k N−= + =   (22) 

,  1 tt t y
y y u−= +     (23) 

For 1,......,t T=  where tf  is the fundamental 

frequency tf  is the mean fundamental frequency, 

1/s st f=  is the sampling interval, 0.99 =  is the 

auto-regressive coefficient assumed to be known and the 

Markov state transition noise variables are  

4 6

,   ,  (0,10 ), (0,10 ),f tftu uN N− −
  

6 6

, ,(0,10 ), (0,10 ),
k ka tbtu uN N− −

 and 

 

4

, (0,10 )ty
u N −

 The mean frequency is assumed to 

follow a nonlinear reflecting function. 

max max max

min max

min min min

( ) ,

[ ]

( )

f f f if f f

g f f if f f f

f f f if f f

− − 


=  
 + − 

 

     (24) 

The state space is now 4 + 2Nh = 14 dimensional and the 

state vector is 

( )1, 2, , 1, 2, ,, , , , , ,.., , , ,...,  
h ht t t t t t t N t t t N tmathbfx f f y a a a b b b=

•
 

       (25) 

The reader is referred to [3] for more detailed description 

of the model. We set Nh = 5, fs = 360Hz, a.. = b.,. = 1, fmax 

= 1, fmin = 5 Hertz, ty  = 0, σ 2 = 0.1. The initial state 

values of the ground truth are set to 
0 0true

t = =  and 

0 2true

tf = = , 
0

1.5
true

t
f

=
= Hertz, 

0
10

true

t
y

=
= , 

, 0 (2,5)true

k ta u=  and , 0 (3,7)true

k tb u= . The filters are 

initialised with ( )0 0,1i

t N =   and 

( )0 ,i

t min maxf U f f=  , ( )0
0,2

i

t
f U

=
 , 

( )0
0,1

i

t
y N

=
 , ( ), 0 2,5i

k ta U=  and

( ), 0 3,7i

k tb U=   for 1,..,i N= . For the chosen 

360sf = Hz, we record a 3.3 second signal, meaning the 

recorded signal contains T = 1200 time samples. 

The two performance measures used are the root mean 

squared error (RMSE) and the normalized mean squared 

error (NMSE) defined by 

^

1 , ( , , , )

T true

tt
t tt y

X X
XRMSE X f f y

T
=

−
= =


  

     (26) 

^

, ,1
, ,

1

1/ , ( , )
h

T trueN
k t k tt

h k t k t

k

X X
XRMSE N X a b

T

=

=

−
= =


  

     (27) 

2

1

2

( )

( )

T

t tt

t t

y y
NMSE

y y

=
−

=
−


  (28) 

where 
^

.  is the estimated value. The RMSE 

corresponding to the latent variables is a well-known 

measure. The NMSE, on the other hand, lies in (0, ∞) and 

a value of less than one indicates good harmonic tracking 
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[3] implying that the latent target state containing the 

harmonic frequencies, the sinusoidal coefficients and the 

signal mean Are tracked accurately to such an extent that 

the estimate of the measurement agrees with the received. 

Firstly, Figure 3 shows the degeneracy effect in the 

proposed filter for small and large values of N.  

 

 

Fig. 3. The estimated ESS versus the time instant t for N 

= 25 in the top panel and N = 100 in the bottom panel. 

The legend of the top panel applies to the bottom also. 

The computation friendly GPF considers only the 

weighted sum of the particles regardless of their 

contribution to the posterior and hence does not ensure 

that the ESS is maintained. Therefore, it can be observed 

in the figure that the GPF maintains low ESS throughout. 

This also causes the filter to perform poorly in high noise 

conditions. The key merit of the proposed method is that 

it avoids degeneracy by eliminating low weight particles 

and replaces them with perturbed copies of large weight 

particles. Accordingly, it can be observed that the 

normalized ESS estimate ESS/N of the proposed method 

stays high throughout the simulation thus overcoming 

degeneracy. It has been found that the standard PF and 

the APF require resampling at all time steps in order to 

maintain high ESS, and it can be seen in the figure that 

they indeed maintain good ESS as long as they resample. 

Table I shows the normalized mean value of ESS/N 

and its standard deviation. The normalized mean lies 

in (0, 1) and a value of one indicates no degeneracy. It 

can be observed that for both cases of N, the proposed 

method exhibits marginally high value of nearly 7% over 

the standard PF and the APF for both cases of N. 

Additionally, the proposed method does not oscillate as 

much as the other methods do, as is evident in the small 

value of standard deviations reported in the table. The 

proposed method is nearly 60% and 45% less oscillative 

than the APF and the standard PF respectively. That is to 

say the proposed method is more robust to the 

degeneracy caused by the SIS step than the 

conventional methods. This shows the efficacy of the 

proposed method is overcoming degeneracy and 

ensuring the particles are indeed drawn from regions of 

importance. 

 

 

Table I: The table shows the normalized expectation of ESS/N and its standard deviation for the four methods 

for n = 25, 100 Corresponding to the result shown in figure 3. 

Now that we have established that the proposed method 

does not suffer from degeneracy for the rhythmic 

biomedical signal model, we focus on the tracking 

accuracy and the computational time. The state vector 

for the biomedical signal model is 14-dimensional as 

described in (25). We compute the RMSE for each of 

these states according to (26) and (27) and these values 

are shown in Table II. It can be observed that the proposed 

method exhibits moderately lower errors in estimation of 

the frequency 1:Tf   and the mean frequency 
^

1:Tf  but 

shows tremendous reduction of error in the estimation 

of the instantaneous phase 1:T . It can be observed that 

the proposed method shows moderately higher errors in 

the estimation of the signal mean 1:Ty  and the sinusoidal 

coefficients 
1: ,1:hN Ta  and  

1: ,1:hN Tb  over the conventional 

N Method Proposed PF APF GPF 

25 

25 

E(ESS/N)/N 

Std(ESS/N) 

0.98113 

0.82416 

0.92640 

1.57775 

0.85515 

2.35492 

0.04119 

0.01161 

100 

100 

E(ESS/N)/N 

Std(ESS/N) 

0.98057 

3.63156 

0.94959 

6.96170 

0.91833 

7.36638 

0.01071 

0.04262 
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methods. A possible reason for the PFs to be more 

pronounced in effectively tracking the signal mean and 

sinusoidal coefficients could be due to the fact that 

resampling discards the lower weight particles with 

nonzero probability. The proposed method discards with 

unit probability. Therefore, in instances where the lower 

weight particles are important, e.g., when target 

manoeuvre is big, the proposed method is expected to 

show reduced tracking accuracy. The table also shows 

that the error reduces with increasing number of particles. 

The computational time (in seconds) versus the average 

RMSE (ARMSE) (average of all the errors) is shown in 

Figure 4. It can be clearly observed that the proposed 

method exhibits lower ARMSE and consumes lesser 

computation over the conventional methods at low and 

high values of N.  

      

 

Fig. 4. The top panel shows the computational time 

(seconds) versus the RMSE for N = 25, 100. The values 

at N = 25 are shown using solid dot. 

The bottom panel shows the TRMSE versus the number 

of particles. The legend of the top panel applies to the 

bottom also. 

This is because the method ensures that the particles  

drawn during the SIS step are corrected in a way that 

they are limited to within the boundary of y − 3σ. 

Moreover, the method totally avoids the need to 

resample and hence gains tremendously in terms of 

computational speed. A measure of the combined effect 

of tracking accuracy and the computational time is the 

time scaled RMSE (TRMSE) defined by 

cTRMSE T RMSE=    (29) 

where Tc is the computational time in seconds. A low 

value of TRMSE is desired as both the computational 

time and the tracking error is desired to be small. 

Figure 4 also shows the TRMSE versus the number of 

particles and it can be observed that the proposed 

method shows an incredible improvement of 99.688% 

and 99.512% (% reduction in TRMSE) at N = 25 and 

100 averaged over the other 3 methods. 

We finally show the NMSE versus the number of 

particles shown in figure 5.  

 

Fig. 5. The NMSE versus the number of particles. 

 

 

N Method fRMSE 𝑓̇RMSE RMSE 𝑦̅RMSE aRMSE bRMSE 

25 

Prop 

PF 

APF 

GF 

0.020200 

0.198390 

0.195415 

0.266362 

0.01518 

0.21948 

0.21727 

0.11313 

0.539472 

25.084442 

24.465122 

25.165979 

0.27305  

0.04792  

0.06710  

0.07915  

0.32908 

0.02123 

0.02038 

0.02021 

0.48384 

0.09658 

0.09637 

0.09586 

100 

Prop 

PF 

APF 

GF 

0.009401  

0.019670  

0.019457 

0.178653  

0.02509 

0.05947 

0.05897 

0.07010 

0.001562 

0.866295 

0.907270 

7.951485 

0.06440 

0.03080 

0.03008 

0.07689 

0.06477 

0.02075 

0.02119 

0.02027 

0.16686 

0.09604 

0.09495 

0.09610 

Table II: the table shows RMSE corresponding to the latent variables for the four methods under test for N =25, 

100. The reader may replace X  in XRMSE with the latent variable, e.g., fRMSE denotes the RMSE of the 

frequency estimate 
^

1:Tf  
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The NMSE is a measure of how accurately the 

estimated latent target states could recover the observed 

signal. The key benefit of the proposed method can be 

observed clearly in that it shows a NMSE of less than 

one even at low N = 25 particles. The other methods 

show a NMSE of more than one at N = 25 but drops 

below one from N = 50. That being said, the proposed 

method shows NMSE that is much lesser than the 

conventional methods. The main reason for this is the 

method’s ability to operate with fewer particles that are 

drawn from regions of importance.  

This evaluation study has shown that the proposed 

observation leveraged resampling free PF substantially 

accelerates the filtering operation as it replaces the 

computationally intensive resampling scheme with a 

simple replacement strategy. The method also gains in 

terms of tracking accuracy by effectively exploring the 

regions in the state space that contribute to the posterior. 

This paper also notes the weakness of the proposed 

method, as evidenced in Table II is that it never 

accounts for lower weight particles. That being said, this 

evaluation study has shown that the method is extremely 

powerful when studied in conjunction with accuracy and 

speed. 

5. Conclusion 

This paper proposed a resampling-free PF approach that 

leverages the incoming observation in the particle 

sampling process. This is done by limiting the sampling 

to a region that is randomly specified to be within 

explainable limits from the incoming observation. This 

mitigates the effect of degeneracy within the particles. 

Moreover, the computationally intensive resampling step 

is totally avoided. The proposed method is evaluated 

using a biomedical signal tracking example and its 

tracking accuracy and computational speed are shown. 
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