

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-67992147-6799 www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(4s), 660–672 | 660

Development of Load Balancing Methodology in Cloud Computing

Platforms

1Mohammed Khairullah Mohsin, 2Mustafa A. Fiath

Submitted: 16/11/2022 Accepted: 19/02/2023

Abstract: Load balancing is the process of distributing customer tasks among multiple computing resources, such as virtual machines

(VMs), servers and networks. It is a major concern in cloud computing as the number of customer demanding the service is growing

exponentially. An efficient load balancing approach can detect the load of the VMs proactively and assigns the customer tasks to the

VMs accordingly. In this paper, we present a mechanism on load balancing in cloud using probability theory. The main aim of the

proposed approach is to reduce the standard deviation of the load between the virtual machines so that they are close to zero.

Keywords: cloud computing, load balancing, task scheduling, probability theory, resources allocation.

1. Introduction

Cloud computing is a model for sharing resources (such

as networks, servers, storage, applications, and services),

software, and information to different user devices on

demand [1]. Cloud computing shows continuous growth

in the business community because it provides cost-

cutting solutions to customers [2,10]. This explosive

growth makes cloud service providers focus on efficient

management of resources. There is also a need to fairly

distribute customer orders to virtual machines, so that

they can accommodate a larger number of customer

orders without increasing the physical infrastructure [3].

Balanced task scheduling is very important in cloud

computing and has been given a lot of attention in recent

years. Irrespective of load balancing, service providers

must define QOS (Quality Of Service) parameters such

as Throughput, Availability, Flexibility, etc., to attract

their customers [4]. A customer task may fall into one of

two categories, either a high QoS task or a low QoS task.

A high QoS task is a type of task that can be assigned to

a subset of the available virtual machines, while a low

QoS task can be assigned to all available virtual

machines. Therefore, a task that requires a high QoS has

a higher priority than a task that requires a low QoS. The

current research problem in cloud computing is to

schedule a mixture of tasks that require high and low

QoS to a group of virtual machines with different

processing capabilities, so that the load on the virtual

machines is distributed fairly.

Many researchers have introduced load balancing

algorithms to distribute tasks on computing resources.

Most of these algorithms did not take into account the

parameters of the quality of service provided.

In this paper, we have studied the problem of task

scheduling in cloud computing based on probability

theory. The proposed approach consists of two phases, in

the first phase the tasks are sorted based on the

availability of virtual machines. Initial loads are

calculated for each virtual machine. In the second stage,

tasks are allocated to the virtual machines according to

the initial loads that were calculated in the first stage,

and then the loads are updated for each virtual machine

based on the new conditions.

2. Research justifications

Load balancing refers to the fair distribution of tasks

across computing resources in cloud systems. Load

balancing is a critical issue for optimizing resource

utilization, improving system response time, maintaining

available services, and thus improving system

performance.

The importance of the research is derived from the

importance of cloud computing, which constitutes the

sector of the future, as well as the amount of digital data

that is increasing very dramatically in the coming years.

Optimal investment of computer equipment and proper

load balancing leads to optimal use of computing

resources, thus increasing utilization, which in turn leads

to optimal investment of available resources away from

the need to add new equipment at an exorbitant cost.

Mohamedkhiry270@gmail.com

Ministry of Education, Directorate of Education, Anbar Governorate, Iraq

azeezmustafa89@uoanbar.edu.iq

College of Medicine, Anbar University, Iraq

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(4s), 660–672 | 661

3. Objectives

The research aims to improve the quality and efficiency

of the cloud system by developing an algorithm that

achieves a balanced and stable load in the cloud.

Therefore, the current load balancing algorithms were

studied and analyzed and a load balancing algorithm was

proposed that takes into account the size of the task and

the resources allocated to each virtual machine, with the

aim of improving system performance and achieving

load balancing and quality the service.

4. Literature Reviews

In [4], an algorithm for load balancing was developed

using the Particle Swarm Optimization (PSO) algorithm,

which is a technique inspired by the collective behavior

of flocks of birds. n represents the number of tasks to be

scheduled, and each element within this vector is a

random number between 1 and m, where m is the

number of virtual machines.

The total execution time is calculated for each

individual, then the individual with the lowest execution

time is selected, and the tasks are assigned to the

specified virtual machines within the chosen vector. The

main problem with this method is the early convergence

in reaching the solution if the search space is small and

this solution represents the best solution within the

chosen search space only and not the best solution that

can be reached within the cloud data center, and if a

large initial community is taken, this It will lead to a

significant increase in the time to find the best individual

and thus a significant increase in the waiting time for

tasks until they are scheduled and thus an increase in the

response time.

In [9], the Round Robin (RR) algorithm was developed

in order to reduce the response time. The proposed

method is based on dynamically allocating the execution

time of tasks for each cycle. The time share for the first

cycle is equal to the average expected execution times

for the tasks. In the second cycle, the completed tasks are

removed from the list and the remaining execution times

for the unfinished tasks are averaged. This process is

repeated until all tasks in the task list have been

completed. This study relied on optimizing the

scheduling of tasks that were allocated to virtual

machines and relied on the process of assigning tasks to

virtual machines on the static Round Robin algorithm.

Thus, this algorithm improves processing time for small-

sized tasks, but it does not take into account the

resources allocated to each virtual machine when

allocating tasks, so it may lead to Trashing or a

significant increase in processing time for large-sized

tasks.

In [6] a Load Balancing Decision Algorithm (LBDA)

algorithm was proposed for load balancing between

virtual machines within the cloud data center in order to

reduce the overall execution time and response time. The

mechanism of action of the proposed algorithm depends

on three stages: first, the processing capacity of the

virtual machines and the current load on each of them are

calculated and classified into (Underload, Balance, High

Balance, Overload), then the estimated execution time

for the task is calculated on each virtual machine in the

Underload state and the assignment of the task To the

virtual machine that achieves the lowest execution time,

and in the absence of virtual machines in the Underload

state, the estimated execution time for the task is

calculated on the virtual machines that are in the Balance

state, and so on. If all virtual machines are in the

Overload state, the job is queued until one of the virtual

machines changes state. This algorithm depends on the

processing capacity of the virtual machines during its

classification process, and therefore it does not take into

account other parameters such as internal storage and

external storage, and this may lead to the occurrence of

Trashing for some tasks if the memory is limited and

insufficient to perform the task.

5. Proposed Approach

The resources allocated to each virtual machine are

different and usually change dynamically according to

the resources reserved by the tasks assigned to the virtual

machine and the resources released when the virtual

machine finishes executing a specific task. The capacity

of each virtual machine is calculated in terms of the

resources available to each of them as follows [5]:

CPU
P

P

Max

CPU

CPU %100=

Storage Internal%100=
iMax

i

mi
m

m


StorageExternal%100=
eMax

e

me
m

m


() () ()  =++= 1:321  memiCPUj

Where:

j : Virtual machine capability.

:CPUP The processing power available within the

virtual machine.

im : Internal storage available within the virtual

machine.

em : External storage available within the virtual

machine.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(4s), 660–672 | 662

MaxP : The total processing power allocated to the virtual

machine.

iMaxm : Total internal storage allocated to the virtual

machine.

eMaxm : Total external storage allocated to the virtual

machine.

 : Weight parameter to adjust the degree of resource

impact.

The capability of each virtual machine is constantly

changing, depending on several factors:

➢ The capability of the virtual machine
j is

reduced when a new task is assigned to it and the amount

of deficiency equals)1(− depends on the percentage

of resources consumed relative to the total resources

allocated to this node [5]:

)1()()1()1(tt jj  −=+

Where:  Parameter to determining the ratio of

consumed resources to total resources.

➢ The capability of the virtual machine
j is

increased upon completion of a specific task, and the

amount of increase depends on the percentage of freed

resources that have been allocated to that task [5].

)2()()1()1(tvt jj  +=+

Where:  Parameter to determine the ratio of freed

resources to total resources.

The ratio of the load
ijL caused by task i on the virtual

machine j relative to the rest of the virtual machines is

calculated according to the following equation:

()

()
)3(

1

1

1

1,,1

k

m

k

ik

jij

mjni

ET

ET
L





−

−
=


=

−=−=

Where:

m: The number of virtual machines.

n: the number of tasks.

ET (Execution Time): The expected execution time of

task i on the virtual machine j.

The Execution Time (ET) [8] on each virtual machine is

calculated according to the following formula:

𝐸𝑇 =
𝑇𝐿

𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦∗𝑐𝑜𝑟𝑒𝑠(𝑇)
 (4)

Where:

TL (Task Length): The length of the task T.

Capacity: The rate of processing capacity per core

(MIPS).

Cores(T): The number of cores needed by task T.

Thus, the result of applying equation (3) to n tasks and m

virtual machines is a load matrix that looks like this:

mnWhere

LL

LL

LL

L

nmn

m

m

mjni


















=
−=−=

...

...

...

1

221

111

1,1

The total load (TL) caused by all tasks is calculated on

the VMj virtual machine:


=

=
n

i

ijj LVMTL
1

)5()(

When the job is allocated to the VMj, the loads are

updated for each virtual machine. The new total load

TL(VMj) of the VMj to which the job is allocated is

calculated according to the following relationship:

)6()1()()(ijjoldjnew LVMTLVMTL −+=

So the new load for the rest of the virtual machines is:

)7()()(ijjoldjnew LVMTLVMTL −=

The above two equations show that when task i is

assigned to a virtual machine, the percentage load on the

selected virtual machine increases, and the amount of the

increase is the sum of the percentages of load generated

by task i on the rest of the virtual machines. It is

generated by the first task on each VM separately and the

mechanism for applying the above two equations will be

discussed in the next section.

The main objective of the proposed approach is to reduce

the standard deviation σ of the load between virtual

machines so that its value is very close to zero. Where

the standard deviation σ is used to measure the extent of

data dispersion from the average value [13].

)8())()((
1

1

2
=

−=
m

j

j TLAverageVMTL
m



6. Results and Discussion

In this section, we will apply two work scenarios. The

first scenario will generate a load matrix randomly so

that the number of tasks is a multiple of the number of

virtual machines. The size of the matrix is (21X3) and

includes 3 columns representing the number of virtual

machines, m = 3, and 21 lines representing the number of

tasks n = 21, and in the second scenario, two new tasks

will be added to the previous matrix so that its size

becomes (23 x 3), where the number of tasks is not a

multiple of the number of virtual machines.

1) In the first scenario, Table (1) shows the matrix

of randomly generated loads. Each box represents the Lij

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(4s), 660–672 | 663

load that the Ti task causes on the VMj in relation to the

rest of the VMs, so the sum of each line is equal to one,

and an X indicates that the VM is not available for the

task.

2)

VM3 VM2 VM1

0.25 0.25 0.5 T1

0.55 X 0.45 T2

0.45 0.3 0.25 T3

0.2 0.2 0.6 T4

X 0.8 0.2 T5

0.25 X 0.75 T6

0.6 0.2 0.2 T7

0.15 0.7 0.15 T8

0.8 0.1 0.1 T9

0.4 0.6 X T10

0.8 0.2 X T11

X 0.35 0.65 T12

0.65 X 0.35 T13

0.15 0.1 0.75 T14

0.3 0.7 X T15

0.1 0.1 0.8 T16

0.25 0.75 X T17

0.35 X 0.65 T18

0.7 X 0.3 T19

0.4 0.3 0.3 T20

0.3 0.25 0.45 T21

7.65 5.9 7.45 Total Load (TL)

Table 1: Matrix of Randomly Generated Loads

The Round Robin algorithm will be applied to the matrix

shown in Table (1), where the algorithm starts by

allocating the first task to the first available virtual

machine and then moves to the next available virtual

machine, and this process is repeated circularly until all

tasks are allocated. Every time a specific task is assigned

to one of the virtual machines, the total load of the

virtual machine to which the task has been allocated is

updated according to equation (6), and the total load of

the rest of the virtual machines is updated according to

equation (7).

➢ Equation (5) is applied to the data of Table (1)

to calculate the total load TL(VMj) on each virtual

machine:

TL (VM1)=∑ 𝐿𝑖121
𝑖=1 =7.45

TL (VM2)=∑ 𝐿𝑖221
𝑖=1 =5.9

TL (VM3)=∑ 𝐿𝑖321
𝑖=1 =7.65

➢ Task T1 in table (1) is assigned to VM1, and

thus the total load of VM1 is updated according to

relationship (6) as follows:

TL (VM1) =7.45+(1-0.5)=7.95

➢ The total load of the remaining available virtual

machines VM2, VM3 is updated according to equation

(7) as follows:

TL (VM2) =5.9-0.25=5.65

TL (VM3) =7.65-0.25=7.4

➢ Cycle repeating the previous steps until all tasks

have been allocated.

Table (2) shows the results of applying the previous

steps to the load matrix shown in Table (1) using the

Round Robin (RR) algorithm, where the boxes in bold

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(4s), 660–672 | 664

indicate the default machine to which the task is

assigned, and the values in the table show the change in

the load ratio on each machine default on each

assignment to a new task.

VM3 VM2 VM1

7.65 5.9 7.45 TL

7.4 5.6 7.95 T1

7.85 5.65 7.5 T2

7.4 5.35 8.25 T3

7.2 6.15 7.65 T4

7.2 5.35 8.45 T5

7.95 5.35 7.7 T6

7.35 5.15 8.5 T7

7.2 5.45 8.35 T8

7.4 5.35 8.25 T9

7 5.75 8.25 T10

7.2 5.55 8.25 T11

7.2 5.2 8.6 T12

7.55 5.2 8.25 T13

7.4 5.1 8.5 T14

7.1 5.4 8.5 T15

8 5.3 7.7 T16

7.75 5.55 7.7 T17

8.4 5.55 7.05 T18

7.7 5.55 7.75 T19

7.3 6.25 7.45 T20

8 6 7 T21

Table (2) Results of applying the RR algorithm to the load matrix shown in Table (1)

We note from Table (2) that the percentage of the total load for each virtual machine is different from the other, and by

applying the relationship (8) to calculate the standard deviation, we find that:

8164.0
3

)78()76()77(
))()((

1

7
3

867
)(

222

1

2 =
−+−+−

=−=

=
++

=


=

m

j

j TLAverageVMTL
m

TLAverage



Thus, the load balancing process was done, but with a

standard deviation of the loads from the arithmetic mean

value, and therefore this result is not the best result that

can be reached and it did not achieve the best possible

utilization of the available resources because this

algorithm did not take into account the load caused by

the task on the virtual machine during the allocation

process mission.

The following figure shows the total load on each virtual

machine during the task allocation process using the

Round Robin algorithm, where we notice the differences

in the load on each virtual machine, where there are

virtual machines with a high load and others with a low

load, and this is the reason for the increase in the value

of the standard deviation.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(4s), 660–672 | 665

The total load on each virtual machine during the allocation process shown in Table (2)

To apply the proposed approach of the load balancing

algorithm to the matrix shown in Table (1), we first

rearrange the tasks according to the virtual machines

available for each task from lowest to highest, so we get

the ordered matrix shown in Table (3):

VM3 VM2 VM1

0.55 X 0.45 T2

X 0.8 0.2 T5

0.25 X 0.75 T6

0.4 0.6 X T10

0.8 0.2 X T11

X 0.35 0.65 T12

0.65 X 0.35 T13

0.3 0.7 X T15

0.25 0.75 X T17

0.35 X 0.65 T18

0.7 X 0.3 T19

0.25 0.25 0.5 T1

0.45 0.3 0.25 T3

0.2 0.2 0.6 T4

0.6 0.2 0.2 T7

0.15 0.7 0.15 T8

0.8 0.1 0.1 T9

0.15 0.1 0.75 T14

0.1 0.1 0.8 T16

0.4 0.3 0.3 T20

0.3 0.25 0.45 T21

7.65 5.9 7.45 Total Load (TL)

Table (3) Arrangement of tasks according to the virtual machines available for each task, from lowest to highest

0

1

2

3

4

5

6

7

8

9

10

T 1 T 2 T 3 T 4 T 5 T 6 T 7 T 8 T 9 T 1 0T 1 1T 1 2T 1 3T 1 4T 1 5T 1 6T 1 7T 1 8T 1 9T 2 0T 2 1

TO
TA

L
LO

A
D

TASKS

VM1 VM2 VM3

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(4s), 660–672 | 666

Equation (5) is applied to the data of Table (3) to

calculate the total load TL(VMj) where j=[1..4] on each

virtual machine:

TL (VM1)=∑ 𝐿𝑖121
𝑖=1 = 7.45

TL (VM2)=∑ 𝐿𝑖221
𝑖=1 = 5.9

TL (VM3)=∑ 𝐿𝑖321
𝑖=1 = 7.65

The virtual machine with the lowest overall overhead is

chosen from among the available virtual machines to

assign the task:

Min(TL(VM1),TL(VM3)) = TL(VM1)

The total load of the VM2 to which the task is allocated

is updated according to equation (6):

TL (VM1) =7.45+(1-0.45)=8

Update the total load of the remaining virtual machines

that were available for the task according to equation (7):

TL (VM3) =7.65-0.55=7.1

The overall load remains the same for virtual machines

that were not available for the task:

. TL (VM2) =5.9

Table (4) shows the results of applying the previous

steps to all tasks within the load matrix shown in Table

(3). Assignment process for a new task.

VM3 VM2 VM1

7.65 5.9 7.45 TL

7.1 5.9 8 T2

7.1 6.1 7.8 T5

7.85 6.1 7.05 T6

7.45 6.5 7.05 T10

6.65 7.3 7.05 T11

6.65 6.95 7.4 T12

7 6.95 7.05 T13

6.7 7.25 7.05 T15

7.45 6.5 7.05 T17

7.1 6.5 7.4 T18

7.4 6.5 7.1 T19

7.15 7.25 6.6 T1

6.7 6.95 7.35 T3

7.5 6.75 6.75 T4

6.9 6.55 7.55 T7

6.75 6.85 7.4 T8

6.95 6.75 7.3 T9

6.8 7.65 6.55 T14

6.7 7.55 6.75 T16

7.3 7.25 6.45 T20

7 7 7 T21

Table (4) Results of applying the proposed approach to the arranged load matrix shown in Table (3)

We note from Table (4) that the total load on each virtual

machine after allocating all the tasks is 7, and each

virtual machine is allocated 7 tasks, taking into account

the physical resources of the virtual machine and the size

of the task, and by applying the relationship (8) to

calculate the standard deviation, we find that:

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(4s), 660–672 | 667

0
3

)77()77()77(
))()((

1

7
3

777
)(

222

1

2 =
−+−+−

=−=

=
++

=


=

m

j

j TLAverageVMTL
m

TLAverage



We note that the value of the standard deviation 0=

is the best result that can be reached, as the load on each

virtual machine after the completion of allocating all the

tasks is the same, and this case represents the best

possible utilization of the available resources because the

tasks were distributed fairly on the virtual machines and

taking into account the resources assigned to each virtual

machine and the current load on each of them during the

allocation process.

The following figure shows the total load on each virtual

machine during the process of allocating tasks using the

proposed approach, where we notice a large difference in

the percentage of the load on each virtual machine before

the start of the allocation process, then the loads on each

virtual machine become very close to each other when

starting to allocate the first task until they are equal in

The end of the allocation process and the standard

deviation value.

The total load on each virtual machine during the task allocation process shown in Table (4)

We note from the first scenario that the proposed

approach achieves optimal load balancing that takes into

account the capacity and resources of the virtual

machine. We also note that the load ratio on each virtual

machine is equal to the arithmetic mean value of all

loads on all virtual machines, and therefore the standard

deviation is equal to zero, which is the best result that

can be reached. While the Round Robin algorithm, the

load ratio between the virtual machines deviates from the

arithmetic mean of the load, so the load balancing is

done, but not in an optimal way that takes into account

the resources allocated to each virtual machine.

3) In the second scenario, two tasks will be added to the

load matrix shown in Joule (1), so that the number of

tasks becomes not a multiple of the number of virtual

machines, so we get the new matrix shown in Table

(5):

VM3 VM2 VM1

0.25 0.25 0.5 T1

0.55 X 0.45 T2

0.45 0.3 0.25 T3

0.2 0.2 0.6 T4

X 0.8 0.2 T5

0.25 X 0.75 T6

0

1

2

3

4

5

6

7

8

9

T 2 T 5 T 6 T 1 0T 1 1T 1 2T 1 3T 1 5T 1 7T 1 8T 1 9 T 1 T 3 T 4 T 7 T 8 T 9 T 1 4T 1 6T 2 0T 2 1

TO
TA

L
LO

A
D

TASKS

VM1 VM2 VM3

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(4s), 660–672 | 668

0.6 0.2 0.2 T7

0.15 0.7 0.15 T8

0.8 0.1 0.1 T9

0.4 0.6 X T10

0.8 0.2 X T11

X 0.35 0.65 T12

0.65 X 0.35 T13

0.15 0.1 0.75 T14

0.3 0.7 X T15

0.1 0.1 0.8 T16

0.25 0.75 X T17

0.35 X 0.65 T18

0.7 X 0.3 T19

0.4 0.3 0.3 T20

0.3 0.25 0.45 T21

0.25 0.25 0.5 T22

0.25 X 0.75 T23

8.15 6.15 8.7 Total Load (TL)

Table (5) Matrix loads with a number of tasks that are not multiples of the number of virtual machines

Table (6) shows the results of applying the Round Robin

algorithm to the load matrix shown in Table (5), where

the boxes in bold indicate the default machine to which

the task has been allocated, and the values in the table

show the change in the percentage of the load on each

virtual machine at each assignment process New.

VM3 VM2 VM1

8.15 6.15 8.7 TL

7.9 5.9 9.2 T1

8.35 5.9 8.75 T2

7.9 5.6 9.5 T3

7.7 6.4 8.9 T4

7.7 5.6 9.7 T5

8.45 5.6 8.95 T6

7.85 5.4 9.75 T7

7.7 5.7 9.6 T8

7.9 5.6 9.5 T9

7.5 6 9.5 T10

7.7 5.8 9.5 T11

7.7 5.45 9.85 T12

8.05 5.45 9.5 T13

7.9 5.35 9.75 T14

7.6 5.65 9.75 T15

8.5 5.55 8.95 T16

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(4s), 660–672 | 669

8.25 5.8 8.95 T17

8.9 5.8 8.3 T18

8.2 5.8 9 T19

7.8 6.5 8.7 T20

8.5 6.25 8.25 T21

8.25 6 8.75 T22

9 6 8 T23

Table (6) Results of applying the RR algorithm to the load matrix shown in Table (5)

We note from Table (6) that the percentage of the total load for each virtual machine is different from the other, and by

applying the relationship (8) to calculate the standard deviation, we find that:

2472.1
3

)666.79()666.76()666.78(

))()((
1

666.7
3

968
)(

222

1

2

=
−+−+−

=

−=

=
++

=


=




m

j

j TLAverageVMTL
m

TLAverage

Thus, the load balancing process was done, but with a

large standard deviation, and therefore the tasks were not

distributed fairly to the virtual machines, taking into

account the current load on the virtual machines, and

therefore did not achieve the best possible utilization of

the available resources.

The following figure shows the total load on each virtual

machine during the process of allocating tasks using the

Round Robin algorithm. large in the standard deviation

value.

The total load on each virtual machine during the task allocation process shown in Table (6)

Table (7) shows the results of applying the proposed approach to the load matrix shown in Table (5) after rearranging the

tasks according to the virtual machines available for each task from the lowest to the highest.

VM3 VM2 VM1

8.15 6.15 8.7 TL

8.6 6.15 8.25 T2

0

2

4

6

8

10

12

T 1 T 2 T 3 T 4 T 5 T 6 T 7 T 8 T 9 T 1 0T 1 1T 1 2T 1 3T 1 4T 1 5T 1 6T 1 7T 1 8T 1 9T 2 0T 2 1T 2 2T 2 3

TO
TA

L
LO

A
D

TASKS

VM1 VM2 VM3

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(4s), 660–672 | 670

8.6 6.35 8.05 T5

8.35 6.35 8.3 T6

7.95 6.75 8.3 T10

7.15 7.55 8.3 T11

7.15 8.2 7.65 T12

7.5 8.2 7.3 T13

8.2 7.5 7.3 T15

7.95 7.75 7.3 T17

7.6 7.75 7.65 T18

7.9 7.75 7.35 T19

7.65 7.75 7.6 T23

7.4 7.5 8.1 T1

7.95 7.2 7.85 T3

7.75 8 7.25 T4

7.15 7.8 8.05 T7

8 7.1 7.9 T8

7.2 8 7.8 T9

8.05 7.9 7.05 T14

7.95 7.8 7.25 T16

7.55 7.5 7.95 T20

7.25 8.25 7.5 T21

8 8 7 T22

Table (7) The results of applying the proposed approach to the load matrix shown in Table (5) after their arrangement

Applying equation (12) to calculate the standard deviation, we find that:

4714.0
3

)666.78()666.78()666.77(

))()((
1

666.7
3

887
)(

222

1

2

=
−+−+−

=

−=

=
++

=


=




m

j

j TLAverageVMTL
m

TLAverage

We note from Table (7) that the load on the second and

third virtual machines is greater than the load on the first

virtual machine, and this is due to the fact that the second

and third virtual machines have been assigned 8 tasks

each, while the first virtual machine has been assigned 7

tasks, meaning that the two tasks that have been added

One of them was assigned to the second virtual machine

and one to the third virtual machine and this is due to a

small standard deviation from the mean value.

The following figure shows the total load on each virtual

machine during the process of allocating tasks using the

proposed approach, where we notice a large difference in

the percentage of the load on each virtual machine before

the start of the allocation process, then the loads on each

virtual machine become very close to each other until all

tasks are allocated.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(4s), 660–672 | 671

The total load on each virtual machine during the task allocation process shown in Table (7)

We note from the second scenario that the proposed

approach is superior to the Round Robin algorithm in the

process of load balancing, as the algorithm presented a

bad load balance during task allocation and after the end

of the allocation process caused a large standard

deviation value compared to the proposed approach in

which the load between virtual machines was very close

because of the standard deviation value Simple.

We note from the first and second scenarios that if the

number of tasks is a multiple of the number of virtual

machines, then the proposed approach will achieve load

balancing that is considered the best for the available

resources and a standard deviation value equal to zero,

but if the number of tasks is not a multiple of the number

of virtual machines, the proposed approach remains

superior to the Round algorithm Robin, although it

causes a standard deviation value that is considered small

compared to the standard deviation of the Round Robin

algorithm, and also during the task allocation process

using the proposed approach, the virtual machine loads

were very close to each other, while in the Round Robin

algorithm, there were large differences in the loads that

led to the presence of virtual machines In the case of

high load and the other in the case of low load, and

therefore it may cause a bottleneck problem in the virtual

machines with a high load, as well as some tasks that are

allocated to the virtual machines with a high load may be

dropped as a result of insufficient resources in them,

while the proposed approach does not cause a fall In

these problems because it takes into account the current

load on the virtual machine and the load that the new

task places on it.

7. Conclusions:

In this paper, we developed a probabilistic algorithm for

load balancing in cloud computing platforms, within a

heterogeneous environment in terms of the resources

allocated to virtual machines. At the beginning of the

research, a study was conducted that takes into account

the resources allocated to each virtual machine and

employing them in generating the load matrix. The

results showed that the proposed algorithm provides

effective and optimal load balancing compared to the

load balancing results of the Round Robin algorithm.

Load matrices were randomly generated and theoretical

calculations were done to obtain the results. In the future,

it would be better to simulate a realistic scenario and

obtain the results and compare them with other

algorithms. In this paper, it is considered that the access

of tasks to the cloud data center is in batches, it will be

more realistic if the access of tasks to the cloud data

center is considered random [10][11][12], and the current

approach is developed in a way that considers the

random access of tasks.

References

[1] Rashid, A., & Chaturvedi, A. (2019). Cloud

computing characteristics and services: a brief

review. International Journal of Computer Sciences

and Engineering, 7(2), 421-426.

[2] Singh, P., Dutta, M., & Aggarwal, N. (2017). A

review of task scheduling based on meta-heuristics

approach in cloud computing. Knowledge and

Information Systems, 52(1), 1-51.

[3] Panda, S. K., & Jana, P. K. (2018). Normalization-

based task scheduling algorithms for heterogeneous

multi-cloud environment. Information Systems

Frontiers, 20(2), 373-399.

[4] Chalack, V. A., Razavi, S. N., & Gudakahriz, S. J.

(2017). Resource allocation in cloud environment

using approaches based particle swarm

optimization. International Journal of Computer

Applications Technology and Research, 6(2), 87-

90.

[5] Gao, R., & Wu, J. (2015). Dynamic load balancing

strategy for cloud computing with ant colony

optimization. Future Internet, 7(4), 465-483.

[6] Dhari, A., & Arif, K. I. (2017). An efficient load

balancing scheme for cloud computing. Indian

Journal of Science and Technology, 10(11), 1-8.

0

2

4

6

8

10

T 2 T 5 T 6T 1 0T 1 1T 1 2T 1 3T 1 5T 1 7T 1 8T 1 9T 1 T 3 T 4 T 7 T 8 T 9T 1 4T 1 6T 2 0T 2 1

TO
TA

L
LO

A
D

TASKS

VM1 VM2 VM3

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(4s), 660–672 | 672

[7] Phi, N. X., Tin, C. T., Thu, L. N. K., & Hung, T. C.

(2018). Proposed load balancing algorithm to

reduce response time and processing time on cloud

computing. Int. J. Comput. Netw. Commun, 10(3),

87-98.

[8] Chien, N. K., Son, N. H., & Loc, H. D. (2016,

January). Load balancing algorithm based on

estimating finish time of services in cloud

computing. In 2016 18th International Conference

on Advanced Communication Technology (ICACT)

(pp. 228-233). IEEE.

[9] Stephen, A., Shanthan, B. H., & Ravindran, D.

(2018). Enhanced round Robin algorithm for cloud

computing. Int J Sci Res Comput Sci Appl Manag

Stud, 7(4), 1-5.

[10] Rashid, A., & Chaturvedi, A. (2019). Cloud

computing characteristics and services: a brief

review. International Journal of Computer Sciences

and Engineering, 7(2), 421-426.

[11] Singh, P., Dutta, M., & Aggarwal, N. (2017). A

review of task scheduling based on meta-heuristics

approach in cloud computing. Knowledge and

Information Systems, 52(1), 1-51.

[12] Panda, S. K., & Jana, P. K. (2018). Normalization-

based task scheduling algorithms for heterogeneous

multi-cloud environment. Information Systems

Frontiers, 20(2), 373-399.

[13] Leys, C., Ley, C., Klein, O., Bernard, P., & Licata,

L. (2013). Detecting outliers: Do not use standard

deviation around the mean, use absolute deviation

around the median. Journal of Experimental Social

Psychology, 49(4), 764-766.

