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Abstract 

There are several robust regression methods that can be used to select parsimonious models in regression. In this paper, a study of the 

quantile regression with a normal-compound gamma scale mixture prior is presented. The Monte Carlo Markov Chain (MCMC) is 

derived for posterior inference. Finally, the robustness of this model is demonstrated using both real and simulated data. The results show 

that the proposed method performs very well compared to some of the existing methods.   
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1. Introduction 

One popular alternative method to standard mean 

regression which may provide greater information is 

quantile regression, which has in recent years proved to 

be a robust approach to the analysis of regression models 

(Koenker and Bassett, 1978; Li et al., 2010; Yu and 

Moyeed, 2001). The advantage of using this method 

becomes more readily apparent when trying to 

accomplish a more complete investigation of the 

relationship between a response variables and covariates. 

The flexibility of quantile regression models have made 

them into such an attractive tool that has numerous 

applications in the real world applications such as 

economics, agricultural, biology and several other fields.  

Let 𝑦 = (𝑦1 , ⋯ , 𝑦𝑛)𝑇 be a vector of observations and 

consider the linear model  

𝑦 = 𝑋𝛽 + 𝜖,  (1) 

with a 𝑛 × 𝑝 design matrix of covariates 𝑋 =

(𝑥1, ⋯ , 𝑥𝑝), a 𝑝 × 1 of vector of unknown regression 

coefficient 𝛽 = (𝛽1, ⋯ , 𝛽𝑝)𝑇 and 𝜖 = (𝜖1, ⋯ , 𝜖𝑛)𝑇  where 

𝜖𝑖 ∼ 𝑁(0, 𝜎2). We can calculate the 𝜃th quantile 

regression model using the inverse cumulative 

distribution function 𝑄𝑦𝑖
(𝜃|𝑥𝑖) of 𝑦𝑖  given 𝑥𝑖 defined as  

𝑄𝑦𝑖
(𝜃|𝑥𝑖) = 𝛽0 + 𝑥𝑖

′𝛽. (2) 

We can estimate the value of the coefficient 𝛽 by 

minimizing the following  

∑

𝑛

𝑖=1

𝜌𝜃 (𝑦𝑖 − 𝑥𝑖
𝑇𝛽), 

(3) 

with quantile check loss function 𝜌𝜃  defined by  

𝜌𝜃(𝑥) = {𝜃𝑥, 𝑖𝑓  𝑥 ≥ 0, (𝜃 − 1)𝑥, 𝑖𝑓  𝑥 < 0. (4) 

Equivalently, we can write the check function as  

𝜌𝜃(𝑥) = 𝑥𝜃 − 𝑥𝐼(𝑥 ≤ 0) (5) 

 

Figure 1. A plot showing check loss function 𝜌𝜃 for different 

values of 𝜃: The dashed red line for 𝜃 = 0.01, the dotted blue 

line for 𝜃 = 0.10, the dashed doted black line for 𝜃 = 0.15, the 

long dashed green linefor 𝜃 = 0.20 and the solid gray line for 

𝜃 = 0.30. 

Since the linear check function (4) is not differentiable at 

0, there is no closed form solution available. However, 

the minimization in (3) can obtained using linear 

programming methods (Koenker and d’Orey, 1987). 

From a Bayesian point of view, the minimization check 

function in (3) is equivalent to maximize the likelihood 

_____________________________________________________ 
1University of AL-Qadisiyah, College of Science, Department of 

Mathematics, Iraq  

ahmed.alhamzawi@qu.edu.iq 
2University of AL-Qadisiyah, College of Education, Department 

of Mathematics, Iraq  

gorgees.alsalamy@qu.edu.iq 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(5s), 60–66 |  61 

function when the error distribution has asymmetric 

Laplace distribution of the form  

𝑓(𝜖𝑛|𝜎) = 𝜃(1 − 𝜃)𝜎{ −𝜎𝜌𝜃(𝜖𝑛)}, (6) 

 

where the likelihood of the response variable of interest 

𝑦 is given by  

 𝑓(𝑦|𝑋, 𝛽, 𝜃) = ∏

𝑛

𝑖=1

𝜃(1 − 𝜃)𝜎{ −𝜎𝜌𝜃(𝑦𝑖 − 𝑥𝑖
𝑇𝛽)} (7) 

It is straightforward to see that maximizing (7) is 

equivalent to minimizing (3). In subsequent work of 

Kozumi and Kobayashi (2011), it was showed that the 

asymmetric Laplace distribution (6) can be written as a 

mixture of an exponential distribution with a scaled 

normal distribution. Thus, we have the Bayesian 

hierarchical model  

𝑦𝑖 = 𝑥𝑖
𝑇𝛽 + 𝜉1𝑣𝑖 + 𝜉2𝜏−1/2√𝑣𝑖𝑤𝑖  (8) 

𝑣|𝜏 ∼ ∏

𝑛

𝑖=1

𝜏(−𝜏𝑣𝑖)  (9) 

𝑤 ∼ ∏

𝑛

𝑖=1

1

√2𝜋
(−

1

2
𝑤𝑖

2)  (10) 

where 𝑣 = (𝑣1, … , 𝑣𝑛), 𝑤 = (𝑤1, … , 𝑤𝑛)  

𝜉1 =
1 − 2𝜃

𝜃(1 − 𝜃)
 𝑎𝑛𝑑 𝜉2 = √

2

𝜃(1 − 𝜃)
. (11) 

In the following sections, we will introduce the NCG 

prior for quantile regression coefficients and the Gibbs 

sampler for this model will be constructed. Then, we will 

compare the results with other existing models using 

both simulated and real data examples.  

2.  Scale Mixture of Compound Gamma Distribution  

We will study the quantile regression for a scale mixture 

model with compound gamma density  

𝜋(𝑥) = ∫
∞

0

… ∫
∞

0

[∏

𝑁

𝑖=1

𝑧𝑖+1
𝑐𝑖

𝛤(𝑐𝑖)
𝑧𝑖

𝑐𝑖−1{−𝑧𝑖𝑧𝑖+1} ] 𝑑𝑧2 … 𝑑𝑧𝑁 (12) 

where 𝑧1 = 𝑥 and 𝑧𝑁+1 = 𝜙 is a constant. The behavior 

of our prior is clearly demonstrated in Figure 1 for 

specific values of 𝑁 and 𝑐1. One can clearly see that for 

higher values 𝑐1, we have flatter head with a heavier tail 

for increasing values of 𝑁. However, if we consider 

values of 𝑐1 closer to zero, then we have pole at the 

origin with a sharper pole as the value 𝑁 increases. The 

values for these hyperparameters can be changed 

depending on the sparsity of our model. The above 

density is generalization of different types of priors 

considered in the past such as: the Three-Parameter Beta 

Distribution, the Scaled Beta2 (SBeta2) family 

(Armagan et al., 2011; P´erez et al., 2017) for 𝑁 = 2, the 

Beta prime distribution when 𝑁 = 2 and 𝜙 = 1 (Bai and 

Ghosh, 2018) and horseshoe prior for 𝑁 = 4, 𝑐3 = 1/2 

and 𝑐4 = 1/2 (Carvalho et al., 2010) given by the 

hierarchical model  

𝛽𝑖|𝑟𝑒𝑠𝑡 ∼ 𝑁(0, 𝜎2𝑧1), 

𝑧1
1/2

∼ 𝐶+(0, 𝑧2), 

𝑧2
1/2

∼ 𝐶+(0,1). 

The complexity of the prior in (12) may be presented 

more straightforwardly by using the following 

equivalence  

Proposition 1.  If 𝑧1 ∼ 𝐶𝐺(𝑐1, … , 𝑐𝑁 , 𝜙), then  

 (1)  𝑧1 ∼ 𝐺(𝑐1, 𝑧2), 𝑧2 ∼ 𝐺(𝑐2 , 𝑧3), … , 𝑧𝑁 ∼ 𝐺(𝑐𝑁 , 𝜙) 

(2)  𝑧1 ∼ 𝐺(𝑐1, 1), 𝑧2 ∼ 𝐼𝐺(𝑐2, 1), … , 𝑧𝑁 ∼ {𝐺(𝑐𝑁 , 𝜙) 𝑜𝑑𝑑   𝑁 𝐼𝐺(𝑐𝑁 , 𝜙) 𝑒𝑣𝑒𝑛   𝑁  

where 𝐺(𝛼, 𝛿) is the gamma distribution with shape 

parameter 𝛼 and inverse scale (rate) parameter 𝛿 and 

𝐼𝐺(𝛼, 𝛿) is the inverse gamma distribution with shape 

parameter 𝛼 and scale parameter 𝛿.  

Proof. The proof of this equivalence is giving in 

(Alhamzawi and Mohammad, 2022). 

 

Figure 2. A demonstration of the density (12) for various 

values of 𝑐1 and 𝑁. The solid, dashed and dotted lines represent 

𝑁 = 2, 𝑁 = 4 and 𝑁 = 8, respectively. 

To proceed a Bayesian analysis, we assign a normal-

compound gamma prior on 𝛽 and have the following 

hierarchal model  

𝑦𝑖 = 𝑥𝑖
𝑇𝛽 + 𝜉1𝑣𝑖 + 𝜉2𝜏−1/2√𝑣𝑖𝑤𝑖  (15) 

𝑣|𝜏 ∼ ∏

𝑛

𝑖=1

𝜏(−𝜏𝑣𝑖)  (16) 

𝑤 ∼ ∏

𝑛

𝑖=1

1

√2𝜋
(−

1

2
𝑤𝑖

2)  (17) 

𝛽𝑖|𝑧1, 𝑧2, … , 𝑧𝑁 , 𝜏 ∼ 𝑁(0, 𝜏−1 ∏

𝑁

𝑖=1

𝑧𝑖) (18) 

𝜏 ∼ 𝐺(𝑐0, 𝑑0) (19) 

The full conditional posterior distributions for the above 

model can be calculated easily to construct the Gibbs 

sampler. Additionally, we will propose a method for 
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updating the hyperparameters that will be incorporated 

into the Gibbs sampler.  

3. Posterior Inference  

The parameters of interest can be drawn from their 

conditional posteriors as follows:  

● Update 𝛽  

𝑃(𝛽|𝑋, 𝑦, . . . ) ∝ 𝑃(𝑦|𝛽, . . . )𝜋(𝛽),  

∝ {−
(𝑦 − 𝑋𝛽 − 𝜉1𝑣)𝑇𝑉−1(𝑦 − 𝑋𝛽 − 𝜉1𝑣)

2𝜏−1𝜉2
2 } × {−𝜏

𝛽𝑇𝑍−1𝛽

2
}  (20) 

∝ {−
𝜏

2
[−2𝜉2

−2(𝑦 − 𝜉1𝑣)𝑇𝑉−1𝑋𝛽 + 𝜉2
−2𝛽𝑇𝑋𝑇𝑉−1𝑋𝛽

+ 𝛽𝑇𝑍−1𝛽]}  
 

where 𝜇𝛽 = 𝜉2
−2𝛴−1𝑋𝑇𝑉−1(𝑦 − 𝜉1𝑣),𝑉 =

𝑑𝑖𝑎𝑔(𝑣1, … , 𝑣𝑛), 𝑍 = 𝑑𝑎𝑖𝑔(∏𝑁
𝑖=1 𝑧𝑘1, … , ∏𝑁

𝑖=1 𝑧𝑘𝑝) 

and 𝛴 = 𝜉2
−2𝑋𝑇𝑉−1𝑋 + 𝑍−1. Therefore, we have the 

normal distribution 𝑁(𝜇𝛽 , 𝛴−1𝜎2).  

● Update 𝑧𝑘 (if 𝑘 is odd number)  

𝑃(𝑧𝑘|𝑋, 𝑦, . . . ) ∝ 𝜋(𝛽𝑖|𝑧1, 𝑧2, … , 𝑧𝑁 , 𝜏)𝜋(𝑧𝑘)  

∝
1

√𝑧𝑘

{−
𝜏𝛽𝑇𝑍−1𝛽

2
} × (𝑧𝑘)𝑐𝑘−1{−𝑧𝑘} , (21) 

∝ (𝑧𝑘)(𝑐𝑘−
1
2

)−1 {−
1

2
[𝜏𝛽𝑇𝑍−𝑘

−1𝛽𝑧𝑘
−1 + 2𝑧𝑘]} ,  

where 𝑍−𝑘 = 𝑑𝑎𝑖𝑔(∏𝑁
𝑖=1,𝑖≠𝑘 𝑧𝑘1, … , ∏𝑁

𝑖=1,𝑖≠𝑘 𝑧𝑘𝑝). 

Thus, we have the generalized gaussian distribution 

𝐺𝐼𝐺 (𝜏𝛽𝑇𝑍−𝑘
−1𝛽, 2, 𝑐𝑘 −

1

2
).  

● Update 𝑧𝑘 (if 𝑘 is even number)  

𝑃(𝑧𝑘|𝑋, 𝑦, . . . )

∝ 𝜋(𝛽𝑖|𝑧1, 𝑧2, … , 𝑧𝑁, 𝜏)𝜋(𝑧𝑘) 
 

∝
1

√𝑧𝑘

{−
𝜏𝛽𝑇𝑍−1𝛽

2
} 

× (𝑧𝑘)−𝑐𝑘−1{−𝑍𝑘
−1} , 

(22) 

∝ (𝑧𝑘)−(𝑐𝑘+
1
2

)−1 {− [
𝜏𝛽𝑇𝑍−1𝛽

2

+ 1] (𝑧𝑘)−1} , 

 

which is the inverse-gamma distribution 𝐼𝐺 (𝑐𝑘 +

1

2
,

𝜏𝛽𝑇𝑍−1𝛽

2
+ 1).  

● Update 𝑣  

𝑃(𝑣|𝑋, 𝑦, . . . ) ∝ 𝑃(𝑦|𝛽, . . . )𝜋(𝑣𝑖|𝜏)  

∝
1

√𝑣
{−

(𝑦 − 𝑋𝛽 − 𝜉1𝑣)𝑇𝑉−1(𝑦 − 𝑋𝛽 − 𝜉1𝑣)

2𝜏−1𝜉2
2 }  × {−𝜏𝑣}  (23) 

∝ 𝑣
1
2−1 {−

1

2
[𝜏𝜉2

−2(𝑦 − 𝑋𝛽)𝑇𝑉−1(𝑦 − 𝑋𝛽)

+ 𝜏 (
𝜉1

2

𝜉2
2 + 2) 𝑣]}  

 

Hence, we have the generalized gaussian distribution 

𝐺𝐼𝐺 (
𝜏(𝑦𝑖−𝑥𝑖

𝑇𝛽)
2

𝜉2
2 ,

𝜏𝜉1
2

𝜉2
2 + 2𝜏,

1

2
).    

● Update 𝜏  

𝑃(𝜏|𝑋, 𝑦, . . . ) ∝ 𝑃(𝑦|𝛽, . . . )𝜋(𝛽𝑖|𝑧1, 𝑧2, … , 𝑧𝑁, 𝜏)𝜋(𝜏)  

∝ (𝜏𝑛/2 {−
(𝑦 − 𝑋𝛽 − 𝜉1𝑣)𝑇𝑉−1(𝑦 − 𝑋𝛽 − 𝜉1𝑣)

2𝜏−1𝜉2
2 } ) (24) 

× (𝜏𝑝/2 {−
𝛽𝑇𝑍−1𝛽

2𝜏−1
} ) (𝜏𝑛(−𝜏𝑣) )𝜏𝑐0−1{−𝑑0𝜏}   

∝ 𝜏
𝑐0+(

3𝑛+𝑝
2

)−1
{−𝜏 [∑

𝑛

𝑖=1

(𝑦𝑖 − 𝑥𝑖
𝑇𝛽 − 𝜉1𝑣𝑖)2

2𝜉2
2𝑣𝑖

+ ∑

𝑝

𝑖=1

𝛽𝑖
2

2 ∏𝑁
𝑖=𝑘 𝑧𝑘

+ 𝑑0]}  

 

this is again the gamma distribution 𝐺 (𝑐0 +

3𝑛+𝑝

2
, ∑𝑛

𝑖=1
(𝑦𝑖−𝑥𝑖

𝑇𝛽−𝜉1𝑣𝑖)2

2𝜉2
2𝑣𝑖

+
𝛽𝑇𝛽

2 ∏𝑁
𝑖=𝑘 𝑧𝑘

+ 𝑑0).  

 

● Update 𝑐𝑘  

We use the same method provided in (Alhamzawi, 2022) 

by calculating the expectation of the log complete-data 

likelihood  

𝑄(𝜉, 𝜉𝑜𝑙𝑑) =     ∑

𝑁

𝑘=1

∑

𝑝

𝑖=1

(−1)𝑘+1  𝑐𝑘𝐸𝑐𝑘
𝑜𝑙𝑑 

[( 𝑧𝑘𝑖)|𝑦] + 𝑐𝑁( 𝜙)

− ∑

𝑁

𝑘=1

( 𝛤(𝑐𝑘)) + 𝐶 

(25) 

where 𝜉𝑜𝑙𝑑 = (𝑐1
𝑜𝑙𝑑 , … , 𝑐𝑁

𝑜𝑙𝑑)  and 𝐶 all the terms not 

containing 𝑐1, 𝑐2, … , 𝑐𝑁. Then, we have 

𝛤′(𝑐𝑘) = ∑

𝑝

𝑖=1

(−1)𝑘+1𝐸𝑐𝑘
𝑜𝑙𝑑[( 𝑧𝑘𝑖)|𝑦] + 𝑐𝑁( 𝜙)𝐼(𝑘 = 𝑁) 

 

(26) 

4. Simulation Studies  

In this section, we will illustrate the proposed model 

using simulation studies. Here, we compare the proposed 

method (NCG10) with the Beta prime prior for scale 

parameters (NCG2, Bai and Ghosh, 2018), Bayesian 

quantile regression (Alhamzawi et al., 2011), Bayesian 

quantile regression with lasso penalty (Li et al., 2010), 

and Bayesian quantile regression with the elastic net 

penalty (Li et al., 2010). The data are simulated from the 

following model  

𝑦

= 𝑋𝛽 + 𝜖,    𝜖𝑖  ∼ 𝑁(0, 𝜎2𝐼𝑛)   
 

Methods are evaluated based on the mean squared error 

(MSE), the false positive rate (FPR) and the false 

negative rate (FNR).  
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Example 1 (Very sparse model) 

In this example we consider a very sparse model by 

setting 𝛽 =  (4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0) and 𝜎2 =

{1,9,25}. We consider three different scenarios by setting 

𝜃 = {0.05, 0.50, 0.95}. The covariates are simulated 

independently from 𝑁(0, 𝛴) where the (𝑖, 𝑗)𝑡ℎ elements 

of 𝛴 is 0.5|𝑖−𝑗|. We run 50 simulations. The results are 

summarized in Table 1. All results are averaged based on 

100 replications. The results show that the proposed 

method perform very well compare to other existing 

methods. It produces smallest MSE for all quantiles 

considered in this example. The proposed method 

exhibits promising performance in terms of variable 

selection described by FPRs and FNRs.   

 

 

Table 1. Results for Example 1. All results are averaged over 100 replications and their associated standard deviations (sd) are listed in 

the parentheses. 

 𝜃  MSE (sd)  FPR (sd)  FNR (sd)   

NCG2  0.05  0.4064 (0.2996)  0.0500 (0.2611)  0.0000 (0.0000)   

NCG10  0.05  0.3002 (0.2669)  0.0200 (0.1407)  0.0000 (0.0000)   

Bqr  0.05  1.1100 (0.4859)  0.7400 (0.9600)  0.0000 (0.0000)   

qr.lasso  0.05  0.8253 (0.3898)  0.4100 (0.6977)  0.0000 (0.0000)   

qr.enet  0.5  0.8446 (0.4838)  0.4700 (0.7311)  0.0000 (0.0000)   

     

NCG2  0.5  0.3541 (0.3548)  0.0800 (0.3674)  0.0000 (0.0000)   

NCG10  0.5  0.2543 (0.3213)  0.0200 (0.1407)  0.0000 (0.0000)   

Bqr  0.5  1.0565 (0.5507)  0.5900 (0.8420)  0.0000 (0.0000)   

qr.lasso  0.5  0.7540 (0.4490)  0.3800 (0.6784)  0.0000 (0.0000)   

qr.enet  0.5  0.8446 (0.4838)  0.4700 (0.7311)  0.0000 (0.0000)   

     

NCG2  0.95  0.3811 (0.3058)  0.0700 (0.2564)  0.0000 (0.0000)   

NCG10  0.95  0.2837 (0.2710)  0.0400 (0.1969)  0.0000 (0.0000)   

Bqr  0.95  1.0976 (0.4529)  0.6200 (0.7756)  0.0000 (0.0000)   

qr.lasso  0.95  0.7868 (0.3749)  0.3800 (0.5993)  0.0000 (0.0000)   

qr.enet  0.95  0.8803 (0.3964)  0.4400 (0.6715)  0.0000 (0.0000)   

 

Example 2 (Sparse model) 

Here we consider a simple sparse model. The covariates 

are set similar to the above example except that we set 

𝛽 =  (3, 1.5, 0, 0, 1, 2, 0, 0, 5, 0). The results are 

summarized in Table 2. Again, the proposed method 

NCG10 performs very well in terms of both covariate 

selection and prediction accuracy.   

Table 2. Results for Example 2. 

  𝜃  MSE (sd)  FPR (sd)  FNR (sd)   

NCG2   0.05  1.0262 (0.4964)  0.2900 (0.5738)  0.5000 (0.5946)   

NCG10   0.05  0.9531 (0.4755)  0.1300 (0.3667)  0.6500 (0.6723)   

Bqr   0.05  1.1325 (0.5284)  0.3800 (0.5993)  0.4000 (0.5505)   

qr.lasso   0.05  1.0312 (0.4876)  0.3200 (0.5840)  0.4200 (0.5352)   

qr.enet   0.05  1.0825 (0.5095)  0.3700 (0.6139)  0.3800 (0.5464)   

      

NCG2   0.5  0.9588 (0.4252)  0.3000 (0.6113)  0.3500 (0.5389)   

NCG10   0.5  0.8632 (0.4073)  0.1400 (0.3766)  0.5800 (0.6225)   

Bqr   0.5  1.0816 (0.4397)  0.4600 (0.6730)  0.2700 (0.4683)   

qr.lasso   0.5  0.9713 (0.4017)  0.3100 (0.5808)  0.3100 (0.5064)   

qr.enet   0.5  1.0199 (0.4175)  0.4200 (0.5891)  0.2500 (0.4578)   

      

NCG2   0.95  1.0337 (0.4636)  0.3700 (0.6460)  0.3600 (0.4824)   

NCG10   0.95  0.9253 (0.4598)  0.1800 (0.4353)  0.5200 (0.5942)   

Bqr   0.95  1.1534 (0.4869)  0.4500 (0.7017)  0.3100 (0.4648)   

qr.lasso   0.95  1.0459 (0.4539)  0.3500 (0.5925)  0.3000 (0.4606)   

qr.enet   0.95  1.1018 (0.4693)  0.4200 (0.6694)  0.3100 (0.4648)   

NCG2   0.95  1.0337 (0.4636)  0.3700 (0.6460)  0.3600 (0.4824)   
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5.  A real data example 

Here, we compare the performance of the five methods 

in Section 4, NCG2, NCG10, Bqr, qr.lasso, qr.enet, on 

the Prostate cancer data (Stamey et al., 1989), where 

there are 97 observations and 8 covariates. This data set 

is available in the R package Brq (Alhamzawi and Ali, 

2020). The response of interest is the logarithm of 

prostate-specific antigen. Table 3 lists briefly a 

description of the covariates (clinical measures).   

 

 

Table 3. Description of the clinical measures 

Covariates (clinical measures) Description of the clinical measures 

lcavol The logarithm of cancer volume 

lweight The logarithm of prostate weight 

age Age 

lbph The logarithm of the amount of benign prostatic 

hyperplasia 

svi Seminal vesicle invasion 

lcp The logarithm of capsular penetration 

gleason The Gleason score 

pgg45 The percentage Gleason score 4 or 5 

 

Following Mallick and Yi (2014) and Alhamzawi and 

Mallick (2020), we analyze the prostate cancer data set 

by dividing it into a subset of 67 observations (training 

observations) and a subset of 30 observations (testing 

observations). Model fitting is carried out on the first 

subset (67 observations named training observations) and 

performance is evaluated with the prediction error 

(MSE) on the second subset (30 observations named 

testing observations). The results of mean squared errors 

and standard deviations are summarized in Table 4. We 

can see that the proposed method performs very well in 

terms of prediction accuracy. In addition, the trace plots 

(see for example Figure 3 when 𝜃 = 0.95) and 

histograms (see for example Figure 4 when 𝜃 = 0.95) 

show that the proposed Gibbs sampler converge very fast 

to the stationary distribution. Hence, the simulations and 

real data analyses show the importance of the proposed 

method.  

 

 

Table 4. Results of the real data 

 MSE (sd) MSE (sd) MSE (sd) 

 𝜃 = 0.05 𝜃 = 0.50 𝜃 = 0.95 

NCG2 0.5235 (0.7032) 0.5212 (0.7046) 0.5206 (0.7032) 

NCG10 0.4980 (0.6813) 0.5027 (0.6789) 0.4981 (0.7046) 

Bqr 0.5502 (0.7456) 0.5499 (0.7463) 0.5507 (0.7037) 

qr.lasso 0.5208 (0.7113) 0.5233 (0.7079) 0.5221 (0.6813) 

qr.enet 0.5208 (0.6972) 0.5248 (0.7149) 0.5220 (0.6789) 
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Figure 3. Trace plots of prostate cancer data covariates when 𝜃 = 0.95. 

 

 

Figure 4. Histograms of prostate cancer data covariates when 𝜃 = 0.95. 

6. Concluding Remarks 

In this paper, we have proposed a new method for 

Bayesian quantile regression using a normal-compound 

gamma prior for the regression coefficients. We have 

compared the proposed method (NCG10) with the Beta 

prime prior for scale parameters (NCG2, Bai and Ghosh, 

2018), Bayesian quantile regression (Alhamzawi et al., 

2011), Bayesian quantile regression with lasso penalty 

(Li et al., 2010), and Bayesian quantile regression with 

the elastic net penalty (Li et al., 2010). The results of the 

simulation studies and real data analyses show that 

NCG10 performs very well compared with the above 

existing methods. The proposed method can be extended 

easily to other existing methods such as: tobit quantile 

regression and binary quantile regression. 
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