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Abstract: Industrial internet of things (IIoT) equipments undergoes a wide variety of quality checks before being accepted for on-site 

usage. Because of recent advances in machine learning& cloud-based computations, IIoT devices have sufficiently high accuracy & 

precision performance. Due to which, IIoT network designers focus more towards improving security, privacy and scaliability. A wide 

variety of models are available for security which uses cryptographic, key-exchange and blockchain implementations. Due to their 

application specific nature, these models have low scalability, which limits their real-time usability. Hence to overcome this issue, 

current research proposes hybrid augmented blockchain & machine learning model which help to improve device scalability. This model 

utilizes side chains and machine learning models for improving QoS while maintaining high security in IIoT networks. It further 

proposes an interfacing method that is tested on multiple existing IIoT nodes, for enhancing their security & QoS performance. It is 

observed that the proposed model gives 18%better accuracy,11%better precision and 12%better AUC of attack detection when compared 

with NR2B, SMHGKA and DQNSBmodels. Thus, the proposed model is capable of high security, better QoS, and has superior 

scalability due to black-box approach for existing devices. 
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1. Introduction 

Industrial IoT devices are designed to achieve superior 

speed with high level of security, which includes data 

privacy, control signal security, node security, node 

authentication, etc. In order to design such devices, 

specialized algorithms for encryption, hashing, secret 

sharing, privacy preservation, key-exchange, data 

aggregation, tunneling, etc. are proposed by researchers. 

These algorithms work at one of the 4 levels of IIoT 

design, which are [1], 

• Device level, wherein data security, privacy, 

aggregation, etc. algorithms are deployed. These 

algorithms mainly preserve node’s authenticity, and 

optimize its performance. 

• Network & connectivity level, which utilizes 

algorithms for routing, antenna optimization, etc. 

• Infrastructure & platforms, wherein design of 

Gateways, fog nodes, and other interfacing 

components is optimized via machine learning, fog 

computing, and stream processing operations. 

• Application level, which assists in monitoring of 

control devices, maintenance, visualization, etc.  

The devices form the core components of any IIoT 

network require highly complex optimizations in order to 

achieve better security & QoS performance. In order to 

perform this task, various machine learning & data security 

algorithms are proposed by researchers [2, 3, 4]. Survey of 

these algorithms and their performance, advantages, 

disadvantages and future scope is discussed in section III. 

It has been observed from this literature study that, most 

models proposed are for optimization techniques for new 

IIoT deployments, which limits their usage capabilities for 

existing industrial components. Inspired from this study 

this research work proposed hybrid augmented blockchain 

&machine learning model(HAB&ML). It works on 

mutable sidechains and their maintenance mechanism 

using machine learning approach. The performance of 

proposed model is evaluated by comparing with existing 

machine learning methods.Finally, this research concludes 

with some remarkable observations about the proposed 

HAB&MLmodel. 

2. Literature Review 

Blockchain based system models are currently being 

evaluated for a wide variety of IoT applications. These 

include industrial IoT, home IoT, and commercial IoT 

networks. These networks have various security & privacy 

preservation restrictions, which must be catered by the 

blockchain model for better deployment capabilities. The 

work in [5, 6] propose such a framework, wherein 

researchers have used different types of blockchain 

models, and used them for adversary node resistant & 
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halting recoverable blockchains (NR2B). These models 

have high good attack detection capabilities, but have low 

QoS performance due to highly complex attack detection 

processes. This drawback is removed by [7], wherein 

researchers have deployed secure sharding blockchain 

model using hierarchical group key agreement 

(SMHGKA), and applied it for large-scale networks. The 

model is capable of providing high QoS with good attack 

detection & removal capabilities, due to which it can be 

applied for any sized IoT networks. An application of this 

model on open blockchains can be observed from [8], 

wherein smart contracts are deployed for securing node-to-

node transactions.  

Scalable blockchains are proposed in [9, 10, 11], wherein 

researchers have discussed scalable distributed ledgers 

(SDLs), trust models for blockchain sharding, and mobile 

edge computing based secure self-organized blockchains 

(MECSSOB) which reduce computational complexity of 

IoT nodes by offloading mining operations to mobile edge 

devices. Further the performance of these stratigies are 

improved by using some deep learning methods for 

effective task scheduling. Such deep learning models are 

proposed in [12, 13, 14], where Deep Q Network Shard 

based Blockchain (DQNSB), blockchain-based software 

defined network (BSDN), and fault tolerant blockchain 

models are discussed. These models assist in improving 

fault tolerance performance of blockchains, while reducing 

redundant calculations during blockchain mining, and 

verification process. Due to which they are applicable for 

large-scale IIoT networks with millions of nodes. But 

overall throughput of these models is lower, and reduces 

further as numbers of attacks in the network are increased. 

In order to improve attack resilience of blockchains, work 

in [15, 16, 17] proposes extensible blockchain-based data 

provenance, decentralized privacy over IIoT nodes using 

deep federated learning on mobile edge devices. These 

models aim at generating security tokens, which reduce 

authentication & access control attacks in the system. 

Performance of these models must be further evaluated on 

a large variety of deployments, some of which are 

discussed in [18, 19, 20, 21], and include highly intrusive 

networks, 5G Vehicular Adhoc Networks (VANETs), 

search-based environments with encrypted cloud 

deployments, and medical data sharing applications with 

highly sensitive environments. Estimation of performance 

on these environments will assist researchers in deploying 

scalable and high-efficiency blockchain networks. Such 

networks are described in [22, 23, 24], where effective 

key-management, privacy preservation, models that ensure 

fairness & reliability across multiple applications are 

discussed. These applications include smart car parking, 

home automation, hierarchical network scenarios, etc. It is 

observed that sidechain-based models are highly effective 

in such scenarios, and thus must be used for large scale 

application deployments. Further extensions of sidechains 

to larger networks can be observed from [25, 26], wherein 

Deep Reinforcement Learning based Spatial 

Crowdsourcing models, and sidechaining using machine 

learning for smart city application are discussed. These 

models suggest that existing protocols for IoT security are 

highly complex and require large computational power in 

order to deploy privacy preservation, encryption, and 

intrusion detection mechanisms. Hence, sidechains were 

developed, but most of the sidechain models are highly 

complex, and thus cannot be applied to large-scale IIoT 

networks. To overcome this drawback, our research  

proposes a security & QoS improvement for industrial IoT 

devices using hybrid augmented blockchain & machine 

learning (HAB&ML) model in next section. This is 

followed by its parametric validation, and probable 

recommendations for further extending its performance. 

3. Method 

From the literature review, it can be observed that existing 

protocols for IoT security require complex computations in 

order to deploy privacy preservation, encryption, and 

intrusion detection mechanisms. Due to the complexity of 

these protocols, QoS performance of the underlying IoT 

deployment reduces, which reduces its deployment 

capabilities for large-scale networks. In order to avoid this 

drawback, blockchain based models were deployed, which 

assisted in providing security using transparency, 

immutability, traceability, and distributed computing 

capabilities. To add data into these chains, mining 

algorithms are deployed, which depend on chain length, 

and hash complexity. Delay for mining increases 

exponentially w.r.t. the chain length, and impacts network 

as number of blocks are added. In order to overcome this 

drawback, sidechains were invented, which assist in 

dividing the main blockchain into multiple smaller chains. 

While using sidechains, each chain is managed separately 

by a group of selected miner nodes. Thus, as number of 

sidechains increase, computational complexity of 

managing these chains also increases. This complexity can 

be managed via machine learning-based sidechains, which 

allow for intelligent chain division. Such a model that uses 

hybrid augmented blockchain withmachine learningfor 

sharding is discussed in this section. The proposed model 

is capable of selecting optimum sidechain length 

depending upon multiple parameters including, main 

blockchain length, delay for block addition, consensus 

delay, and attack prevention probability. Initially the 

current blockchain is given to a stochastic modelling block, 

which generated multiple sidechain configurations, and 

evaluates various sidechain parameters. These parameters 

are fused using a fitness evaluation block, which decides 

whether to ‘modify’ or ‘pass’ these solutions. Finally, a 

process checker block is used for evaluation of quality of 
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service (QoS), and security parameters, which assists in 

selecting a given sidechain configuration.  

3.1. Stochastic modelling for generation of sidechain 

configurations 

In order to select the most optimum sidechain lengths, a 

stochastic modelling is approach is used. This approach 

initially generates sidechains with varying lengths, and 

then evaluates each sidechain configuration using QoS & 

security parameters. To generate these sidechains, the 

following process is used, 

• Initialize input parameters, 

o Number of configurations (𝑁𝑐) 

o Number of iterations (𝑁𝑖) 

o Machine learning rate (𝑀𝐿𝑟) 

o Mark each configuration as ‘to be changed’ 

• For each iteration in 1 to 𝑁𝑖 

o For each configuration in 1 to 𝑁𝑐 

▪ If this configuration is marked as 

‘not to be changed’, then go to the 

next configuration 

▪ Else, divide the blockchain into ‘k’ 

random sidechains, where ‘k’ is 

evaluated using equation 1, 

• 𝑘 = 𝑟𝑎𝑛𝑑𝑜𝑚(1, 𝐿𝐵 ∗ 𝑀𝐿𝑟) … (1) 

 

Where, 𝐿𝐵 represents length of the original blockchain. 

▪ Using this division, identify the 

sidechain with minimum length, and 

add a block into this sidechain. 

▪ While adding a new block, evaluate 

delay for block addition using 

equation 2, 

• 𝐷𝑛𝑒𝑤 = 𝐷𝑟𝑒𝑎𝑑 ∗ 𝐿𝑖 + 𝐷𝑤𝑟𝑖𝑡𝑒 + 𝐷ℎ𝑎𝑠ℎ ∗ 𝐿𝑖 + 𝐷𝑐ℎ𝑒𝑐𝑘 ∗

(𝐿𝑖 − 1) … (2) 

Where, 𝐷𝑛𝑒𝑤 , 𝐷𝑟𝑒𝑎𝑑 , 𝐷𝑤𝑟𝑖𝑡𝑒 , 𝐷ℎ𝑎𝑠ℎ , 𝑎𝑛𝑑 𝐷𝑐ℎ𝑒𝑐𝑘 represents 

delays for adding a new block, reading the existing 

blockchain, writing a block to the current chain, hashing 

the block, and checking the block for uniqueness in the 

current chain respectively, while 𝐿 represents length of the 

currently selected sidechain. 

▪ Based on this delay, evaluate fitness of this chain, using 

equation 3, 

• 𝐹𝑖 = ∑
𝐷𝑛𝑒𝑤𝑗

𝑘−1

𝑘,𝑘≠𝑖
𝑗=1 + 𝐷𝑛𝑒𝑤𝑖

… (3) 

o Evaluate fitness for all sidechain configurations, and 

then evaluate fitness threshold using equation 4, 

• 𝑓𝑡ℎ =
∑ 𝐹𝑖

𝑁𝑐
𝑖=1

𝑁𝑐
∗ 𝑀𝐿𝑟 … (4) 

o Discard all solutions where fitness is more than 

threshold by marking them as ‘to be changed’, while 

mark other solutions as ‘not to be changed’ 

• At the end of last iteration, generate a sidechain 

evaluation table (similar to table 1), which will be 

used for QoS & security evaluation of the selected 

configurations. 

Sidechain 

Configuration 

Fitness Block addition 

Delay 

S1 (100 blocks), S2 

(50 blocks),  

S3 (175 blocks), S4 

(15 blocks) 

F1 D1 

 

Table 1. Sidechain evaluation table generated via 

stochastic modelling 

This table is given to the sidechain evaluation block, which 

estimates multiple parameters for each sidechain 

configuration, and assists in selection of the best sidechain 

structure for block processing. 

3.2. Sidechain evaluation using multiple parameters 

The selected sidechain configurations are given to a 

sidechain evaluation block, wherein its hashing delay, 

sidechain length, consensus evaluation delay, and attack 

detection probabilities are estimated. These metrics are 

evaluated using different mechanisms, which are stated as 

follows, 

3.2.1. Evaluation of hashing delay& sidechain length 

For each configuration in table 1, the sidechain length can 

be evaluated from ‘sidechain configuration’ column, where 

different sidechains and their respective lengths are 

captured. Delay of hashing is evaluated by adding a new 

block to the minimum length sidechain, and then finding 

its block addition delay using equation 2. This new block 

addition delay is used in equation 5 to evaluate new 

hashing delay as follows, 

𝐷ℎ𝑎𝑠ℎ =
1

𝐿𝑖

[𝐷𝑛𝑒𝑤 − (𝐷𝑟𝑒𝑎𝑑 ∗ 𝐿𝑖 + 𝐷𝑤𝑟𝑖𝑡𝑒 + 𝐷𝑐ℎ𝑒𝑐𝑘 ∗ (𝐿𝑖

− 1))]  … (5) 

The values of sidechain length, and hash delays are stored 

and used in section 3.3 for sidechain quality evaluation, 

3.2.2. Evaluation of consensus delay 

A random set of ‘k’ miner nodes are selected, and the 

sidechains are stored on these nodes. Each of the nodes are 
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then inquired based on Proof-of-work (PoW) consensus 

model. After this inquiry, each of the miner nodes respond 

with their respective consensus decisions. These decisions 

are combined to evaluate consensus delay via equation 6 as 

follows, 

𝐷𝑐𝑜𝑛𝑠𝑒𝑛𝑠𝑢𝑠 =
∑ 𝐷𝑐ℎ𝑒𝑐𝑘𝑖

𝑘
𝑖=1

𝑘
… (6) 

Where, 𝐷𝑐ℎ𝑒𝑐𝑘 𝑖
 represents delay needed by miner node 𝑖 to 

verify current block. This delay is given for sidechain 

quality evaluation in the next sub-section. 

3.2.3. Evaluation of attack detection probability 

Evaluation of attack detection probability examines 

security strength for the given sidechain configuration. 

This strength is estimated using the following process, 

• A testbed of ‘k’ random attack nodes is generated, 

which perform the following attacks on each of the 

miner nodes, 

o Man in the middle attack 

o Masquerading attack 

o Spoofing attack 

• After attacking these nodes, their individual blockchains 

are examined, and a metric for attack detection 

probability (ADP) is evaluated using equation 7, 

𝐴𝐷𝑃 =
1

𝑁𝑎 ∗ 𝑁𝑛

∑ ∑ 𝐶𝑉𝑗 ∗ 𝐴𝑖,𝑗 … (7)

𝑁𝑛

𝑗=1

𝑁𝑎

𝑖=1

 

Where, 𝑁𝑎, 𝑁𝑛 , 𝐶𝑉, 𝑎𝑛𝑑 𝐴𝑖,𝑗 represents number of attacks 

injected, number of miner nodes, chain verification status, 

and presence of attack 𝑖 on the chain present at node 𝑗 

• The chain verification status is a flag with binary values, 

and indicates if the current chain is validated via hash 

checking or not. 

3.3. Fitness evaluation & Process checking 

Using the evaluated metrics from equation 5, 6, and 7, a 

sidechain rank is estimated for each sidechain 

configuration of table 1. This rank is estimated using 

equation 8 as follows, 

𝑆𝐶𝑟𝑎𝑛𝑘 =
𝑣𝑎𝑟(𝑆𝑙𝑒𝑛𝑔𝑡ℎ𝑠)

𝐴𝐷𝑃

∗ [
𝐷ℎ𝑎𝑠ℎ

max(𝐷ℎ𝑎𝑠ℎ)

+
𝐷𝑐𝑜𝑛𝑠𝑒𝑛𝑢𝑠

max(𝐷𝑐𝑜𝑛𝑠𝑒𝑛𝑠𝑢𝑠)
] … (8) 

All the sidechain configurations are ranked according to 

𝑆𝐶𝑟𝑎𝑛𝑘 in ascending order. Sidechains with maximum rank 

indicate configurations that have highest delays with lower 

attack detection probabilities. Similarly, sidechains with 

lower ranks indicates configurations with higher attack 

detection rate, and lower delays. Thus, this block selects 

the sidechain configuration with lowest rank, and uses it 

for future network operations. Due to use of these machine 

learning-basedsidechain configuration modelling 

processes, overall accuracy of attack detection improves, 

while delay needed for blockchain mining, and overall 

consensus reduces. This improves QoS performance of the 

chain, while making the selected sidechain highly secure 

under different types of attacks. Performance of this model 

is evaluated in terms of accuracy of attack detection, 

precision of attack removal,delay for blockchain mining, 

and area under the curve (AUC) for attack detection. This 

performance is compared with various state-of-the art 

models, and is tabulated in the next section of this text. 

4. Results and Discussion 

It has been observed from our experimentation that 

performance of hybrid augmented blockchain &machine 

learning (HABC & ML) model is better than previous 

models.This model is able to achieve high accuracy in 

detection of attack, good precision in removal of attack , 

reducetion in delay for blockchain mining and better  area 

under the curve (AUC) performance. This performance is 

evaluated by comparing with NR2B [6], SMHGKA [7], 

&DQNSB [12]. This experimentation is performed on 

IEEE Data Port and TON IoT datasets, which consist of 

over 3 millionIoT data sensing and attack instances. 

Further these instances were splitted into 70:30 ratio for 

training &testing purpose.Accuracy in attack detection 

(Accuracy) is be observed as per table 2. 

From table 2, it is observed that the proposed model has 

21%,14%&18%  better accuracy than NR2B 

[6],SMHGKA [7] and DQNSB [12] when compared on the 

same dataset. This is due to the fact that the proposed 

model uses blockchain, which improves probability of 

attack detection via incorporation of immutability and 

traceability, this helps in improving attack detection 

accuracy for small, medium, and large communication 

packets.  

From table 3, it is observed that the proposed HAB&ML 

model has 20%,3%,9% better precision than NR2B [6], 

SMHGKA [7] and DQNSB [12], when compared on 

multiple number of requests. This performance 

improvement is due to use of sidechain with machine 

learning approach which assists in improving efficiency of 

attack detection via adaptively modifying sidechain 

lengths.  

Similarly performance in terms of  AUC of attack 

detection (AUC) is as depicted in table 4.It is observed 

from table 4 that the HAB&ML model has 20%,6%,10%  

better AUC than NR2B [6], SMHGKA [7], and DQNSB 

[12], when compared on different requests. This 
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performance improvement is observed due to 

implementation of machine learning with sharding, which 

assists in reducing overall complexity of attack detection. 

From table 5, it is observed that the performance of 

HAB&ML model in terms of delay in block chain mining 

is 15% ,18% and 16 % lower than NR2B [6], SMHGKA 

[7], andDQNSB [12], when compared on a large number 

of communications.  

Number of 

IIoTcommuni

cations 

Accuracy 

(%) 

NR2B [6] 

Accurac

y (%) 

SMHGK

A [7] 

Accura

cy (%) 

DQNSB 

[12] 

Accuracy(

%) 

HAB&ML 

500 66.26 67.92 75.25 84.60 

1000 67.87 69.00 75.45 85.77 

1500 68.18 70.16 75.65 86.45 

2000 68.58 70.85 76.05 87.05 

2500 68.88 71.57 76.36 87.58 

5000 69.08 71.94 76.66 87.93 

7500 69.90 73.09 76.96 88.85 

10000 70.40 73.90 77.23 89.49 

12500 70.90 74.72 77.53 90.15 

15000 71.41 75.53 77.83 90.80 

17500 71.91 76.35 78.12 91.44 

20000 72.41 77.16 78.42 92.10 

22500 72.91 77.97 78.72 92.75 

25000 73.42 78.79 79.01 93.40 

27500 73.91 79.60 79.31 94.05 

30000 74.42 80.42 79.60 94.71 

32500 74.92 81.22 79.90 95.35 

35000 75.43 82.04 80.19 96.00 

37500 75.92 82.86 80.49 96.66 

40000 76.43 83.67 80.79 97.31 

42500 76.93 84.49 81.08 97.96 

45000 77.43 85.29 81.38 98.61 

47500 77.93 86.11 81.67 99.26 

50000 78.44 86.92 81.97 99.91 

Table 2. Accuracy of event classification of different 

models 

Performance in terms of Precision in attack detection (P) is 

as shown in table 3 . 

Number 

ofIIoTcomm

unications 

Precision 

(%) 

NR2B [6] 

Precision 

(%) 

SMHGKA 

[7] 

Precisio

n (%) 

DQNSB 

[12] 

Precision 

(%) 

HAB&M

L 

500 62.94 71.32 67.72 75.55 

1000 64.48 72.46 67.90 76.61 

1500 64.77 73.67 68.08 77.24 

2000 65.16 74.40 68.45 77.80 

2500 65.44 75.14 68.72 78.29 

5000 65.63 75.54 68.99 78.61 

7500 66.41 76.75 69.27 79.45 

10000 66.88 77.60 69.51 80.04 

12500 67.36 78.46 69.78 80.64 

15000 67.83 79.31 70.04 81.23 

17500 68.32 80.16 70.32 81.83 

20000 68.79 81.02 70.58 82.44 

22500 69.27 81.87 70.84 83.03 

25000 69.74 82.73 71.11 83.63 

27500 70.22 83.58 71.38 84.22 

30000 70.70 84.44 83.59 89.29 

32500 71.17 85.29 83.89 89.90 

35000 71.65 86.14 84.20 90.51 

37500 72.12 87.00 84.52 91.13 

40000 72.61 87.85 84.83 91.75 

42500 73.08 88.71 85.13 92.36 

45000 73.56 89.57 85.45 92.97 

47500 74.03 90.42 85.76 93.59 

50000 74.52 91.27 86.07 94.20 

Table 3. Precision of attack detection for different models 

Number of 

IIoTcommun

ications 

AUC (%) 

NR2B [6] 

AUC (%) 

SMHGK

A [7] 

AUC 

(%) 

DQNSB 

[12] 

AUC (%) 

HAB&M

L 

500 66.26 71.41 73.32 82.13 

1000 67.87 72.54 73.51 83.27 

1500 68.18 73.76 73.71 83.95 

2000 68.58 74.49 74.10 84.54 

2500 68.88 75.23 74.40 85.06 
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5000 69.08 75.63 74.69 85.40 

7500 69.90 76.84 74.99 86.31 

10000 70.40 77.69 75.26 86.94 

12500 70.90 78.55 75.55 87.58 

15000 71.41 79.41 75.83 88.22 

17500 71.91 80.26 76.12 88.86 

20000 72.41 81.11 76.41 89.51 

22500 72.91 81.97 76.70 90.15 

25000 73.42 82.83 76.98 90.78 

27500 73.91 83.68 77.28 91.42 

30000 74.42 84.54 83.69 94.35 

32500 74.92 85.40 83.99 95.00 

35000 75.43 86.25 84.30 95.66 

37500 75.92 87.10 84.62 96.30 

40000 76.43 87.96 84.93 96.95 

42500 76.93 88.82 85.24 97.59 

45000 77.43 89.67 85.55 98.25 

47500 77.93 90.53 85.86 98.90 

50000 78.44 91.38 86.17 99.54 

Table 4. AUC of attack detection for different models The 

observations related to delay of blockchain mining (Delay) 

is depicted in table 5. 

Number of 

IIoTcommun

ications 

Delay (s) 

NR2B [6] 

Delay (s) 

SMHGK

A [7] 

Delay (s) 

DQNSB 

[12] 

Delay (s) 

HAB&ML 

500 0.19 0.21 0.21 0.16 

1000 0.40 0.42 0.43 0.33 

1500 0.61 0.66 0.66 0.50 

2000 0.81 0.88 0.88 0.66 

2500 1.02 1.11 1.10 0.84 

5000 2.04 2.23 2.20 1.68 

7500 3.09 3.40 3.32 2.55 

10000 4.15 4.59 4.44 3.42 

12500 5.23 5.80 5.58 4.30 

15000 6.32 7.03 6.71 5.20 

17500 7.42 8.28 7.86 6.12 

20000 8.54 9.57 9.02 7.04 

22500 9.68 10.88 10.18 7.98 

25000 10.83 12.22 11.35 8.93 

27500 11.99 13.57 12.53 9.89 

30000 13.17 14.97 14.82 11.14 

32500 14.36 16.37 16.11 12.15 

35000 15.57 17.81 17.41 13.17 

37500 16.80 19.27 18.73 14.21 

40000 18.04 20.76 20.04 15.25 

42500 19.29 22.27 21.37 16.32 

45000 20.55 23.81 22.71 17.39 

47500 21.84 25.37 24.06 18.47 

50000 23.14 26.96 25.42 19.57 

Table5. Delay of blockchain mining using different 

number of communications 

Thus, this comparative study of HAB&ML model with 

NR2B [6], SMHGKA [7], and DQNSB [12] proves the 

capability of HAB&ML model to support high-speed, 

high-accuracy, and high AUC performance on multiple 

request types efficiently. 

5. Conclusion 

Due to incorporation of machine learning for sidechain 

configuration selection, the proposed model is capable of 

reducing blockchain mining delay, while showcasing good 

precision, accuracy and AUC performance for attack 

detection. The proposed model is able to 

provide21%,14%,18% better accuracy than NR2B [6], 

SMHGKA [7], and DQNSB [12], when compared on the 

same dataset. While it has 15% lower delay than NR2B 

[6], 18% than SMHGKA [7], and 16% than DQNSB [12], 

when compared on a large number of communications. 

Due to such a high performance in terms of both delay of 

mining, and accuracy of attack detection, the proposed 

model is useful for a wide variety of highly useful IIoT 

applications. The model further showcases 20% better 

precision than NR2B [6], 3% better precision than 

SMHGKA [7], and 9% better precision than DQNSB [12], 

when compared on multiple number of requests. In future, 

researchers can use Q-learning, reinforcement learning, 

and other deep learning models for improving 

computational efficiency of sidechain creation. 

Researchers can also explore utility of different consensus 

models including Proof-of-Stake (PoS), Proof-of-Authority 

(PoA), etc., then, apply it for selection of sidechain 

configuration, and observe its effect on QoS & security 

performance. 
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