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Abstract: Cancer of the skin is a major health concern worldwide. In order to aid clinical decision-making, early categorization of skin 

lesions is essential. This can potentially increase the likelihood of a cure being found for the disease before it progresses to malignancy. 

However, automatic skin cancer classification is challenging due to the imbalance and scarcity of most skin disease training photos, as well 

as the model's ability to adapt and be resilient between domains. In this paper, an optimized deep neural network is proposed to enhance 

disease detection accuracy so that an accurate automated solution can be generated for practitioners. According to the findings of the 

comparison between the proposed model and other models, the proposed model outperforms the other models. 
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1. Introduction 

The need for an efficient approach to automatically 

categorize skin cancer is critical with the growing frequency 

of the disease as well as the value of early diagnosis. The 

skin, the biggest one of the human body's organs [1], is 

responsible for safeguarding other bodily systems, making 

it more susceptible to illness [2]. Around 300,000 new 

instances [3] of melanoma were reported globally in 2018, 

making it the most prevalent malignancy in both men and 

women. In 2018, there were approximately 1 million 

occurrences of basal cell carcinoma (BCC), the second most 

widespread kind of skin cancer, and squamous cell 

carcinoma (SCC), the third most common type [4]. 

According to [5], the United States diagnoses more cases of 

yearly more cases of skin cancer than all other malignancies 

combined. Thankfully, the likelihood of recovery is 

significantly increased if the condition is caught early. 

When melanoma does not metastasize, [4] states that the 5-

year survival rate is 99%. The likelihood is that even if the 

percentage falls to 20% if it spreads to other bodily organs. 

Diagnostic outcomes are frequently reliant on the 

dermatologist's competence, though, as early signs of skin 

cancer are not usually obvious [6]. An automated diagnostic 

system is a vital tool for less experienced practitioners to 

make more accurate diagnoses. Moreover, it is extremely 

subjective and infrequently generalizable to make a skin 

cancer diagnosis with just the naked eye [7]. Therefore, it is 

essential to create a skin cancer fully automated 

categorization system that is more precise, more affordable, 

and quicker to detect [8]. Additionally, employing such 

automated diagnostic methods can successfully reduce skin 

cancer mortality, benefiting healthcare systems and patients 

[9]. 

Although, it is difficult to achieve automated categorization 

of skin cancer due given skin diseases' richness and variety 

of pictures. To begin with, there are many similarities 

between various skin lesions, which might lead to a mistake 

[10]. For instance, SCC and other skin conditions might act 

as different BCC mimics in histological imaging [11]. In 

light of this, it may be difficult for current techniques of 

diagnosis to reliably differentiate between skin 

malignancies and their well-known imitators. Second, skin 

lesions may vary greatly in colour, appearance, structure, 

size, and location, even among members of the same class 

[12]. As an illustration, BCC and its subcategories have 

virtually entirely distinct looks. Several subcategories 

within the same category are therefore challenging to 

categorize. The kinds of camera equipment used to take the 

photographs also have a significant impact on the 

categorization algorithms. Performance is negatively 

impacted when test photos are from a different domain [13]. 

Traditional machine learning methods are not suitable for 

skin cancer classification. For skin cancer detection, 

features are collected from skin disease photos and 

categorised using classic machine learning [14]. The ABCD 

Rule [15], Menzies Method [16], and 7-Point Checklist [17] 

_______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________ 

1
Chitkara University Institute of Engineering and Technology, Chitkara 

University, Punjab, India. rajgaurang@chitkara.edu.in 
2Department of Computer Science and Engineering,School of Engineering 

and Technology,Sharda University, Greater Noida, India 
3Associate Professor and Head CSE IoT, Jain Deemed to be University, 

Bangalore, India. gauravlondhe@gmail.com  
4Department of Computer Science and Engineering,School of Engineering 

and Technology,Sharda University, Greater Noida, India 

5School of Computer Science and Engineering, RV University, Bengaluru, 

India. rajatbhardwaj.x@gmail.com 

* Corresponding Author Email:ambuj4u@email.com 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(5s), 490–500 |  491 

can analyse skin disease images. Support vector machines 

[18], XGBoosts [19], and decision trees [20] classify 

handcrafted items. Machine learning algorithms can only 

recognise certain skin cancers as diseases due to the 

restricted amount of characteristics [21]. Due to their 

heterogeneity, categorising cutaneous cancers by their 

specific features is futile [22]. 

2. Literature Review 

Deep learning algorithms without domain expertise or 

feature extraction have considerably improved skin cancer 

classification. Deep learning algorithms outperform 

conventional machine learning methods in extracting key 

characteristics from big data sets [23]. Deep learning 

systems can analyse and assess data for physicians [24]. 

Deep learning systems match human dermatologists in 

diagnosis accuracy [25–27]. These algorithms are still far 

from being applied in a comprehensive diagnostic 

framework. First, a lack of balanced data and annotated 

photos has hampered deep learning skin cancer 

categorization [12]. These algorithms typically misdiagnose 

non-trained skin tumours [28]. Deep learning methods may 

need additional processing and training time for 

pathological images with millions of pixels [29]. Different 

situations will also make different sounds (such as various 

imaging equipment, and backdrops). Thus, these methods' 

robustness and generalizability should be considered [30]. 

Over the last several years, many studies have discussed 

diagnostic improvements in skin cancer classification, but 

none have fully examined the cutting-edge challenges in 

these occupations[31]. examined the latest dermoscopy 

image-based skin lesion categorization advancements [32]. 

analyzed CNN studies on skin lesion categorization [33]. 

CNNs consistently diagnose skin cancer [34]. presented an 

overview of numerous deep learning-based algorithms for 

skin cancer detection, including important challenges and 

restrictions, while [12] and [28] examined many machine 

learning approaches for dermatological diagnosis. [36] 

reviewed the latest melanoma categorization studies and 

compared their findings to human experts [35]. CNN-based 

approaches for identifying skin lesions using patient and 

imaging data were examined [37]. 

3. Material and Methods 

3.1. Dataset 

To reduce the number of deaths caused by skin cancer 

throughout the world, the International Skin Imaging 

Collaboration (ISIC) has launched the Melanoma Project, 

which use digital skin imaging. There are both for-profit 

businesses and academic organisations taking part. The 

many types of datasets are shown in Fig. 1. 

.  

Fig. 1. Skin Cancer Classification. 

The initial dataset, "ISIC 2018," comprises 10,015 photos of 

skin lesion disorders such benign keratosis, 

dermatofibroma, vascular lesion, melanoma, melanocytic 

nevus, basal cell carcinoma, and actinic keratosis. The 

Medical University of Vienna and University of Queensland 

granted permission for these photos. JPEG images typically 

have 600450 pixels [38, 39]. 

3.2. Proposed Methodology 

3.2.1. Data Augmentation 

Give deep learning models a lot of data to work with during 

training. Datasets for model training are improved through 

data augmentation. It is usual practise to enhance the 

datasets when dealing with big neural networks by cropping, 

padding, adding noise, altering brightness, and turning the 

data horizontally [40]. 

 

Fig 2. Proposed Methodology. 

3.2.2. Optimized Deep Neural Network 

3.2.2.1 Convolution 

Extracting useful characteristics from input photos is the job 

of the convolution technique. Fig. 3 depicts these processes. 

The outcome of the convolution operation is a feature map 

as given in fig. 3 which shows how the convolution 

operation happens. 

Although some information is lost during the convolution 

process, the goal here is to decrease the file size while 

simultaneously gaining access to the essential data. Image 

processing activities such as sharpening, edge detection, and 

blurring may all benefit from convolution performed with 

various filters. 
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Image                       Filter                         Feature Map 

Fig. 3. Convolution Operation. 

 
Fig. 4. CNN Model Architecture. 

Table 2. DNN Tuning Parameter 

The problem here is that CNN's understanding of translation 

invariance is inadequate. The CNN includes numerous 

layers/processes, including Convolution, Pooling, 

Flattening, and Full Connection. 

3.2.2.2 Pooling 

When working with a very big picture, it might be helpful 

to reduce the amount of parameters by using a pooling 

technique. Reduce the number of dimensions in each feature 

map while maintaining critical information through 

subsampling, also known as spatial pooling. There are three 

primary types of pooling: maximum, total, and average. 

The method of Max pooling is a kind of discretization that 

relies on a sampling strategy. On create the feature map, we 

apply a N X N max filter to the picture, picking the pixel 

with the greatest value after each iteration. Similarly, with 

average and sum pooling, the feature map incorporates the 

average and sum of pixel values. In Fig. 2, we see the Max 

Pooling procedure in action. 

3.2.2.3 Flattening 

The feature maps used as input by the artificial neural 

network must be in the form of a columnar vector of picture 

pixels. Our feature maps are "flattened" in the sense that 

they are transformed into a vector with a columnar layout. 

The procedure of flattening is shown in Fig. 6. 

Parameter Description 

Convolution 

Layer 10 

Max Pulling 

Layer 

10 

Drop out rate 0.25 

Network 

Weight 

Assigned 

Uniform 

Activation 

Function 

Relu 

Learning rates 0.0001, 0.001,0.01 

Epchos 50, 100, 

150 

Batch Size 36, 64, 110 
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 Input Image    Feature Map 

Fig. 6. Example of Max pooling  

 

Fig. 7. Flattening example 

3.2.2.4 Full Connection 

The complete connection layer generates an N-dimensional 

vector containing the total number of classes recognised 

based on the previous convolution/pooling layer. Therefore, 

the layer takes advantage of the probabilities associated with 

the neurons to determine which characteristics are most 

strongly linked to a given class. 

4. Result Analysis and Discussion 

The recent success of deep learning models can be traced 

back in large part to studies conducted using Co-GPU Lab's 

and the karas libraries written in Python. Experiments using 

different batch sizes, learning rates, and epoch lengths are 

conducted in this study. The experiment is run using two 

different epoch sizes (50 and 100) and three different 

learning rates (0.1,.001, and.0001). The findings are 

presented in Section 4.1: 

The effectiveness of the model is evaluated using a variety 

of performance metrics, which are as follows: 

   Accuracy (𝐴𝑐𝑐) =

 
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                                              ( a) 

 . Precision (𝑃𝑟𝑒) =

 
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                                            (𝑏) 

   Recall.(𝑅𝑒) =

 
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                                                   (𝑐) 

   F1-Score=

 
𝑃.𝑅

𝑃+𝑅
                                                                            (𝑑) 

 

It is important to keep in mind that the abbreviations TP, 

TN, FP, and FN stand, respectively, for true positive, true 

negative, false positive, and false negative. 

4.1. Epochs Test 

The purpose of this experiment is to study how Epochs 

influence gadget performance. An epoch is a comprehensive 

data set introduction for a machine learning algorithm. The 

experiment sizes used in this study are 50 and 100 epochs. 

Fig. 8 depicts the experiment conducted over the course of 

50 epochs, whereas Fig. 9 illustrates the same experiment 

conducted over 100 epochs with a 0.0001% learning rate. 

Both are very accurate, with a 98.02 and a 98 percent 

success rate, respectively. 

 

 

Fig. 8. Accuracy/loss  with learning rate 0.0001 and epochs 50 
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Fig. 9.  Accuracy/loss  with learning rate 0.0001 and epochs 100 

 

Fig. 10.  Accuracy/loss  with learning rate 0.001 and epochs 50 

 

Fig. 11.  Accuracy/loss  with learning rate 0.001 and epochs 100 
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Fig. 12.  Accuracy/loss  with learning rate 0.01 and epochs 50 

 

Fig. 13.  Accuracy/loss  with learning rate 0.01 and epochs 100 

 

It is reasonable to anticipate that increasing the number of 

times the inquiry is carried out will result in an increased 

proportion of accurate results. However, the number of 

epochs is increasing since the training phase is taking a 

greater amount of time. 

In this section, the experiment is carried out with a size of 

either 50 or 100 epochs. "Fig. 10: displays the test with 50 

epochs," and "Fig. 11 shows 100 epoch sizes with a learning 

rate of 0.001." "Fig. 10: shows the test with 50 epochs." 

Both have an accuracy percentage that is between 98.07 and 

98.25 percent, respectively. 

In this case, we run the experiment with two different epoch 

sizes: 50 and 100. Fig. 12 depicts the 50-epoch test, and Fig. 

13 illustrates the 100-epoch size with a 0.01-rate of learning. 

The two have a similar accuracy of 98.12%. 

A more accurate data measurement with a faster learning 

rate may be assessed based on the evaluation process carried 

out. Analyses of experimental results are shown in Table 3. 

Table 3. Experiment Results 

Datase

t Size 

Epoc

h LR 

Accurac

y (%) 

2000 50 

0.000

1 98.02%. 

 50 0.001 98.07%. 

 50 0.01 98.12%. 

 
100 

0.000

1 
98.00% 

 100 0.001 98.25% 

 100 0.01 98.12%. 

Tables 4 and 5 provide a detailed look at the outcomes of 

the expected model's comparison to other models. The 

suggested model is compared to another deep learning 

model in Table 4 and Fig. 14. As a result, it may be 
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concluded that the suggested model is more precise than the 

alternatives. The suggested method has the lowest space 

complexity compared to other approaches.Tables 4 and 5 

provide a detailed look at the outcomes of the expected 

model's comparison to other models. The suggested model 

is compared to another deep learning model in Table 4 and 

Fig. 14. As a result, it may be concluded that the suggested 

model is more precise than the alternatives. The suggested 

method has the lowest space complexity compared to other 

approaches. 

Table 4. Comparison with Other Models 

Model Accuracy Rate Space Training Parameter’s Non-Trainable 

Mobinet 70.46 82,566 180,20,552 4,55,262 

InceptionV3 78.80 90,255 225,46,862 6,58,644 

VGG16 79.52 85,245 210,00,254 5,32,654 

Proposed 98.00 22,565 14,22,542  0 

 

 

Fig. 14. Proposed Model Against the Current State of the Art 

 

Fig. 15. Model Comparison: Proposed vs. State-of-the-Art. 
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Compared to previous models, the suggested model has 

superior accuracy, F1-score, precision, and recall, as shown 

in Table 5 and Fig. 15. 

Table 5. Comparison with Other Models 

Model 
AU

C 
CA F1 

Precisi

on 

Reca

ll 

Random Forest 

0.73

3 

0.42

1 

0.41

3 
0.412 

0.42

1 

AdaBoost 

0.78

2 

0.46

9 

0.45

7 
0.459 

0.46

9 

XGBoost 

0.74

0 

0.65

8 

0.65

9 0.660 

0.65

8 

Decision Tree 

0.59

0 

0.65

2 

0.65

0 0.650 

0.65

2 

CatBoost 

0.73

2 

0.64

9 

0.65

0 0.652 

0.64

9 

Gradient 

Boosting 

0.72

5 

0.64

1 

0.64

3 0.646 

0.64

1 

Neural Network 

0.71

7 

0.63

3 

0.63

3 0.632 

0.63

3 

SGD 

0.59

8 

0.60

7 

0.61

0 0.615 

0.60

7 

Logistic 

Regression 

0.68

7 

0.60

7 

0.60

5 0.604 

0.60

7 

Logistic 

Regression 

0.68

7 

0.60

7 

0.60

5 0.604 

0.60

7 

Naive Bayes 

0.66

4 

0.58

3 

0.58

8 0.621 

0.58

3 

kNN 

0.78

7 

0.47

3 

0.45

6 
0.463 

0.47

3 

SVM 

0.84

3 

0.53

9 

0.53

5 
0.541 

0.53

9 

Proposed 
0.98

0 

0.98

0 

0.97

8 
0.975 

0.97

8 

5. Conclusions 

Some of the worst cancers are those of the skin. Classifying 

skin lesions early on may aid in clinical decision-making by 

giving an accurate diagnosis of the problem. There may be 

a better chance of finding a cure for the condition before it 

becomes terminal if this is done. However, automated skin 

cancer classification is difficult since most skin disease 

training photographs are imbalanced and scarce, and the 

model must be able to adapt and be adaptable across 

domains. This study recommends utilizing a deep neural 

network that has been trained with the best possible settings 

to increase confidence in medical diagnoses. The proposed 

model was found to be better than competing ones (with 98 

percent accuracy). 
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