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Abstract: Recommendation systems have become increasingly popular in recent years due to the rise of large-scale online platforms that 

generate significant amounts of user data. However, traditional collaborative filtering methods like matrix decomposition have 

limitations when it comes to learning from user preferences, especially in situations where data sparsity and cold start problems exist. To 

address this, explicit feedback-based recommendation systems have gained attention for their ability to overcome these limitations. 

Explicit feedback-based systems use user feedback data such as ratings, clicks, and purchases to make personalized recommendations. A 

proposed solution to improve the efficiency of collaborative filtering is to combine the Deep Auto-Encoder Neural Network (DeepAEC) 

and One-Dimensional Traditional Neural Network (1D-CNN) approaches in a multi-task learning framework. This approach aims to 

address the limitations of traditional collaborative filtering methods by leveraging the strengths of both DeepAEC and 1D-CNN. 

Specifically, DeepAEC can be used to capture high-level representations of user preferences, while 1D-CNN can be used to learn more 

specific, local patterns in the user-item interaction data. The multi-task learning framework allows these two approaches to be combined 

to improve the accuracy and efficiency of the recommendation system.  
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1.  Introduction 

Recommendation systems have become increasingly 

popular due to the growth of online platforms generating 

significant amounts of user data. With a large number of 

items available, it is challenging for users to find relevant 

content, and hence, recommendation systems have 

become an important tool to solve this problem. 

Traditional collaborative filtering methods like matrix 

decomposition have been widely used, but they face 

limitations in learning from user preferences, particularly 

when data sparsity and cold start problems arise. Explicit 

feedback-based recommendation systems have gained 

attention because of their ability to overcome these 

limitations. In this study[1], we propose the use of deep 

neural networks in addition to traditional collaborative 

filtering methods to map user and item attributes. 

The objective of recommendation systems is to provide 

personalized recommendations to users, which can 

significantly enhance their user experience. Traditional 

collaborative filtering methods are limited in their ability 

to learn from user preferences, particularly when data 

sparsity and cold start problems are encountered. Explicit 

feedback-based recommendation systems have shown 

promise in overcoming these limitations. However, 

scalability and data availability issues affect the 

effectiveness of these methodologies and limit the 

applicability of their findings. Therefore, there is a need 

for more effective methods to enhance the performance 

of recommendation systems[2]. 

The main challenges in enhancing the performance of 

recommendation systems are the limited ability of 

traditional collaborative filtering methods to learn from 

user preferences and the issues of scalability and data 

availability. Data sparsity and cold start problems pose 

significant challenges that must be addressed to provide 

accurate recommendations to users. The multi-model 

deep learning approach proposed in this study addresses 

these challenges by combining user and item functions to 

produce a hybrid recommendation system with improved 

performance. 

The main objective of this study is to propose a multi-

model deep learning approach that combines traditional 

collaborative filtering methods with deep neural 

networks to enhance the performance of 

recommendation systems. The proposed approach aims 

to address the issues of scalability and data availability 

and overcome the limitations of traditional collaborative 
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filtering methods in learning from user preferences. The 

effectiveness of the proposed approach is evaluated by 

analyzing three models that produce a wide range of 

outcomes from a single real-world dataset. The objective 

is to demonstrate the potential of the MMDL approach to 

enhance recommendation systems with explicit 

feedback. 

This study proposes a solution to address research issues 

related to noisy implicit feedback signals using DNNs. 

To enhance the efficiency of the collaborative filtering 

algorithm, the Deep Auto-Encoder Neural Network 

(DeepAEC) and One-Dimensional Traditional Neural 

Network (1D-CNN) approaches are combined in a multi-

model deep learning (MMDL) method. We evaluate 

three models on a single real-world dataset and show 

how well DeepAEC and 1D-CNN function as collective 

filtering strategies. 

The remainder of the paper is structured into the 

following key sections: Section 2 presents the literature 

review, Section 3 outlines the proposed method, and 

Section 4 presents the results of the testing conducted. 

Section 5 presents conclusion of the paper. 

2. Literature Survey 

Collaborative filtering (CF) is a popular approach for 

building recommender systems in which user-item 

interactions are used to generate personalized 

recommendations. Recently, there has been increasing 

interest in enhancing CF with deep learning techniques. 

In [3], a hybrid approach that combines collaborative 

filtering and deep autoencoder neural network is 

proposed to enhance recommendation systems' accuracy. 

The proposed algorithm is evaluated using a dataset from 

MovieLens website and found to outperform traditional 

collaborative filtering methods and other state-of-the-art 

recommendation algorithms. The methodology includes 

data preprocessing, splitting the dataset into training and 

testing sets, using a deep autoencoder neural network to 

learn latent features of users and items, and combining 

learned features with collaborative filtering to generate 

recommendations. The proposed algorithm has the 

potential to be applied in various fields such as e-

commerce, social networks, and online advertising. 

In their paper[4]  present a novel neural network 

approach to collaborative filtering for implicit feedback 

data. The authors acknowledge that traditional 

collaborative filtering methods have limitations in 

dealing with implicit feedback data, such as data sparsity 

and cold-start problems. To overcome these limitations, 

the authors proposed a neural network-based approach 

that considers not only user-item interactions but also 

auxiliary information such as user and item attributes. 

The paper [5] presents a comprehensive survey of 

collaborative filtering (CF) techniques for implicit 

feedback datasets. The authors provide an overview of 

the problem, including the challenges and limitations 

associated with the implicit feedback datasets. They 

review a variety of CF methods, including matrix 

factorization, neighborhood-based CF, and deep 

learning-based CF. The survey also covers recent 

advances in the field, such as the use of graph-based 

approaches and hybrid models that combine multiple CF 

techniques. The authors discuss the evaluation metrics 

used to measure the performance of CF methods, 

including accuracy, coverage, and diversity. They also 

highlight the importance of addressing the cold-start 

problem and provide an overview of the techniques 

proposed to tackle it.The paper concludes with a 

discussion of the future directions in the field, including 

the need for more research on the interpretability of CF 

methods and the integration of context-awareness into 

recommendation systems. Overall, the paper provides a 

comprehensive overview of the current state of the art in 

CF for implicit feedback datasets and is a valuable 

resource for researchers and practitioners in the field 

The author proposed a novel approach to improve the 

accuracy of collaborative filtering recommendation 

systems through a combination of deep neural networks 

[6]. The authors utilized a dataset from the MovieLens 

website to evaluate their proposed algorithm, which 

achieved superior performance over traditional 

collaborative filtering methods and other state-of-the-art 

recommendation algorithms. The methodology involved 

data preprocessing, splitting the dataset into training and 

testing sets, and applying a deep neural network to learn 

the latent features of users and items. The authors used a 

combination of different types of neural networks, 

including autoencoders and convolutional neural 

networks, to extract the relevant features from the data. 

The learned features were then combined with 

collaborative filtering to generate recommendations. The 

proposed algorithm has the potential to be applied to 

various domains such as e-commerce, social networks, 

and online advertising. It can also help address the 

common limitations of collaborative filtering, such as the 

cold-start problem and sparsity in user-item interaction 

data. Overall, this study presents a promising approach 

for improving the accuracy and scalability of 

recommendation systems through the combination of 

deep neural networks and collaborative filtering. 

3. Proposed Work 

To evaluate the effectiveness of Deep Auto-Encoder 

Neural Network (DeepAEC) and One-Dimensional 

Traditional Neural Network (1D-CNN) approaches as 

collective filtering strategies in the context of noisy 

implicit feedback signals. This objective aims to assess 

https://www.sciencedirect.com/science/article/pii/S0950705121008494
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how well the proposed multi-model deep learning 

(MMDL) method works in enhancing the efficiency of 

the collaborative filtering algorithm in the presence of 

noisy implicit feedback signals 

 

 

Fig. 1: MMDL Proposed Structure 

In this section, a collaborative filtering approach is 

presented that uses explicit feedback and features like 

userID and movieID (itemID). The approach combines 

the outcomes of a 1D-CNN and a DeepACE model, with 

separate evaluations for each model to teach user-item 

interaction. Section 3.1 introduces the collaborative 

filtering method and describes the problem based on 

explicit data. Section 3.2 presents the current technique, 

known as Recommender Net, while Sections 3.3 and 3.4 

focus on the DeepACE model. The 1D-CNN model is 

discussed in Section 3.5, and the suggested MMDL 

model is described in the end. 

3.1 Collaborative filtering 

The recommendation task in this study focuses on the 

collaborative filtering algorithm's explicit feedback. In 

collaborative filtering, a user's preferences are predicted 

based on the preferences of similar users. Explicit 

feedback involves the user explicitly providing ratings 

on a scale, typically from 1 to 5, for items they have 

interacted with. This feedback can be positive or 

negative, with a higher rating indicating a more positive 

evaluation of the item. 

On the other hand, implicit feedback is based on user 

behavior, such as items they have clicked on, purchased, 

or spent more time interacting with. In contrast to 

explicit feedback, implicit feedback is typically binary, 

where a positive interaction is considered as a preference 

indication while the absence of interaction indicates no 

preference. 

In this study [5], explicit feedback is used, and the 

ratings are assumed to be on a scale of 1 to 5. The 

highest score, which represents the most positive 

feedback, is denoted as "very like," as shown in Figure 

2b. 

Implicit feedback, as shown in Figure 2a, can only be 

observed for selected items and unobserved for non-

selected items. The non-selected state cannot be 

explicitly assumed as positive. Since non-selected items 
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include both items that users are not interested in and 

items that users are interested in but did not find, it can 

only be assumed that they have a negative tendency. 

In summary, collaborative filtering can be used for both 

explicit and implicit feedback, but explicit feedback 

provides more detailed feedback, allowing for more 

precise predictions. The use of explicit feedback is 

denoted by a scale of ratings, with the highest score 

representing the most positive feedback. In contrast, 

implicit feedback is binary and can only be observed for 

selected items, while non-selected items are assumed to 

have a negative tendency. 

Mathematically, let 𝑈 be the set of users, 𝐼 be the set of 

items, and 𝑅 be the set of ratings. Each rating 𝑟(𝑢, 𝑖) 

represents the explicit feedback of user 𝑢 for item 𝑖. The 

rating is assumed to be on a scale of 1 to 5, with 5 being 

the most positive rating. On the other hand, implicit 

feedback can be represented by user-item interactions, 

such as clicks, purchases, or views. A user's preference 

for an item i can be modeled as a binary variable, 𝑏(𝑢, 𝑖), 

where 𝑏(𝑢, 𝑖)  =  1 if the user has interacted with the 

item, and 𝑏(𝑢, 𝑖)  =  0 if the user has not interacted with 

the item. 

                                              

Fig. 2: Rating Matrix -2 Simple demonstration of implicit and explicit feedback differences observed 

The passage describes the challenge of training 

recommendation systems when negative feedback is not 

present, and introduces the implicit feedback matrix 𝑅 as 

a way to represent user-movie interactions in a 

collaborative filtering approach. 

The implicit feedback matrix 𝑅 is defined as 𝑅𝑚𝑛, 

where 𝑚 and 𝑛 respectively represent a group of users 

and objects (movies). The entry rui in the matrix 

represents the rating that user 𝑖 has given to movie 𝑢. If 

the user has not rated the movie, the entry is left blank. 𝐴 

value of 1 is used to indicate that there is a user-movie 

interaction, which means that the user has rated the 

movie. 

The latent features of the users are represented by the 

vector 𝑥𝑢 of dimension n[7]. The matrix x is defined as 

𝑥[𝑅𝑚𝑎], which means that the latent features of the users 

are derived from the entries in the implicit feedback 

matrix 𝑅. Similarly, the latent features of the movies are 

represented by the matrix 𝑥[𝑅𝑛𝑏]. 

However, the lack of negative feedback can make 

training recommendation systems difficult because it is 

not clear whether an absence of interaction means that 

the user dislikes the movie or simply has not seen it yet. 

This can lead to noise signals in the data[8]. 

The passage also notes that the matrix is typically sparse 

because users only rate a small number of movies, 

resulting in mostly empty cells. This sparsity can pose a 

challenge for collaborative filtering approaches, which 

rely on finding similarities between users and movies 

based on their ratings. 

How to calculate ratings: 

The notation used in the explanation is as follows: 

• 𝑅: rating assigned by user 𝑈 to item 𝐼 

• 𝑈: the user who is assigning the rating 

• 𝐼: the item being rated 

• 𝑛: the number of users who are similar to user 

U and used to calculate the average rating 
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• 𝑟𝑖: rating given to item 𝐼 by user 𝑖 

• 𝑠𝑖𝑚(𝑈, 𝑖): similarity between user 𝑈 and user 𝑖 

The equation used to calculate the average rating is: 

𝑅 =  (1/𝑛) ∗  𝛴(𝑟_𝑖 ∗  𝑠𝑖𝑚(𝑈, 𝑖))                    (1) 

In this equation, 𝛴 represents the sum of the values in the 

brackets. So, for each user 𝑖 who is similar to user 𝑈, we 

calculate the product of their rating for item 𝐼 (𝑟𝑖)and 

their similarity to user 𝑈 (𝑠𝑖𝑚(𝑈, 𝑖)). We then add up all 

of these products and divide by the total number of 

similar users (𝑛) to get the average rating assigned to 

item 𝐼 by users similar to user 𝑈. This average rating is 

then used as the predicted rating (𝑅) that user 𝑈 would 

assign to item 𝐼. 

 

The first five rows of the data, as previously mentioned, 

contain ratings for movies provided by users. The dataset 

comprises 100,000 ratings, and its purpose is to predict 

how viewers will respond to movies they have not yet 

seen [9]. 

3.2 Dataset:  

The mathematical notation for the dataset [10] can be 

represented as follows: 

• Let 𝑅 be a matrix of ratings, where 𝑅_𝑖𝑗 denotes 

the rating assigned by user i to item 𝑗. 

• Let 𝑈 be a set of users, where 𝑈 =

 {𝑢1, 𝑢2, … , 𝑢𝑚}, and m is the total number of users in 

the dataset. 

• Let 𝐼 be a set of items, where 𝐼 =

 {𝑖1, 𝑖2, … , 𝑖𝑛}, and n is the total number of items in the 

dataset. 

• Let 𝑟𝑢𝑖  be the rating assigned by user 𝑢 to item 

𝑖. 

• Let 𝑡𝑢𝑖 be the timestamp of the rating 𝑟𝑢𝑖 . 

The dataset consists of two files: 

1. The 𝑢. 𝑖𝑡𝑒𝑚 file: This file contains information 

about the movies in the dataset. Let 𝑀 be a matrix of 

movies, where 𝑀𝑖𝑗 denotes the value of the jth feature of 

movie i. The features can include the title, release date, 

genre, etc. The mathematical notation for the u.item file 

can be represented as follows: 

• Let 𝑀 be a 𝑚 𝑥 𝑘 matrix, where m is the total 

number of movies and k is the total number of features. 

• Let 𝑚𝑖 be the feature vector for movie i, where 

𝑚𝑖 =  [𝑚𝑖1, 𝑚𝑖2, … , 𝑚𝑖𝑘]. 

• Let 𝑚𝑖𝑗 be the value of the jth feature of movie 

i, where m_ij is a scalar value. 

2. The 𝑢. 𝑑𝑎𝑡𝑎 file: This file contains the user-

submitted ratings for the movies in the dataset. The 

mathematical notation for the u.data file can be 

represented as follows: 

• Let R be a m x n matrix, where 𝑅_𝑖𝑗 denotes the 

rating assigned by user 𝑖 to item 𝑗. 

• Let 𝑢𝑖 be the user who submitted the rating, 

where 𝑢_𝑖 is a scalar value representing the user ID. 

• Let 𝑖𝑗 be the item being rated, where 𝑖𝑗 is a 

scalar value representing the item ID. 

• Let 𝑟𝑢𝑖 be the rating assigned by user 𝑢𝑖 to item 

𝑖𝑗, where 𝑟𝑢𝑖 is a scalar value. 

• Let 𝑡𝑢𝑖 be the timestamp of the rating 𝑟𝑢𝑖 , where 

𝑡𝑢𝑖 is a scalar value representing the time the rating was 

submitted[11][12]. 

Thus, the 𝑢. 𝑑𝑎𝑡𝑎 file can be represented as a set of 

tuples {(𝑢𝑖, 𝑖𝑗 , 𝑟𝑢𝑖 , 𝑡𝑢𝑖)} for all ratings submitted by users. 

Dataset Splitting: 

Once the dataset has been loaded, the next step is to split 

it into a training set and a test set. Typically, 90% of the 

dataset is used as the training set, while the remaining 

10% is used as the test set. This ensures that the model is 

trained on a large amount of data, which leads to better 

accuracy. 

 Training and test dataset: 

After splitting the dataset, the next step is to train the 

model using the training set. The model is trained by 

adjusting the embedding vector so that the predicted 

value is as close as possible to the actual value. To 

improve accuracy, more epochs can be used during the 

training process. The loss function used in this case is the 

difference between the actual and predicted ratings for 

the entire training set. 

Once the model has been trained, it can be used to make 

predictions on the test set. The predicted rating is 

generated using the trained model, based on the user and 

movie identifiers[13]. In this example, the first 10 rows 

of the test set are used to generate predicted values for 

user and movie IDs. However, this process can be 
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extended to predict values for the entire test set. Based 

on the highest predicted rating for a specific user, movie 

recommendations can be made. 

3.3 Autoencoder for deep neural networks 

An autoencoder can also be used for recommendation 

systems with explicit feedback, where users provide 

explicit ratings or feedback for items. In this context, the 

autoencoder is trained to learn an efficient representation 

of the user-item feedback data. 

The mathematical notation for an autoencoder-based 

recommendation system with explicit feedback can be 

expressed as follows: 

Let 𝑅 be the user-item feedback matrix of size 𝑛 𝑥 𝑚, 

where n is the number of users and m is the number of 

items. 

Encoder: The encoder function f takes the feedback 

matrix 𝑅 and maps it to a hidden representation 

ℎ 𝑜𝑓 𝑠𝑖𝑧𝑒 𝑘. 𝑓(𝑅)  =  ℎ 

Decoder: The decoder function g takes the hidden 

representation h and maps it back to the reconstructed 

feedback matrix 𝑅′. 𝑔(ℎ)  =  𝑅′ 

Loss function: The goal of the autoencoder-based 

recommendation system is to minimize the difference 

between the actual feedback matrix 𝑅 and the 

reconstructed feedback matrix R'. This is achieved by 

using a loss function that measures the difference 

between 𝑅 and 𝑅′. 𝐿(𝑅, 𝑅′) =  ||𝑅 – 𝑅′||
2
  where 

||. ||^2 is the Frobenius norm between 𝑅 and 𝑅′. 

Training: The autoencoder is trained by minimizing the 

loss function 𝐿(𝑅, 𝑅′) using an optimization algorithm 

such as stochastic gradient descent (SGD)[14], [15]. 

The objective of the autoencoder-based recommendation 

system is to learn an efficient representation of the user-

item feedback data that captures the most important 

features of the feedback. This representation can then be 

used to recommend items to users based on their past 

feedback. By reducing the dimensionality of the 

feedback data, autoencoders can help to mitigate the 

sparsity problem that is common in recommendation 

systems with explicit feedback. 

 

Fig. 3. Model of the encoder and decoder 

3.4 1D convolution neural network architecture 

A 1D convolutional neural network (CNN) is a type of 

neural network architecture that can be used for 

recommendation systems with explicit feedback. In this 

context, a 1D CNN can learn the temporal patterns in 

user-item feedback data and use them to make 

recommendations. 

The architecture of a 1D CNN for recommendation 

systems with explicit feedback typically consists of the 

following layers[15], [16]: 

Step 1: Input layer: 

Let 𝑥𝑖be the input data for user𝑖, represented as a 

sequence of feedback values. 

𝑥𝑖 =  [𝑥𝑖 , 1, 𝑥𝑖 , 2, … , 𝑥𝑖 , 𝑡, … , 𝑥𝑖 , 𝑇]     (2) 

Step 2: 1D convolutional layer: 

Let 𝑤𝑗be the filter weights for filter 𝑗, represented as a 

sequence of weights. 

𝑤𝑗 =  [𝑤𝑗 , 1, 𝑤𝑗 , 2, … , 𝑤𝑗 , 𝑡, … , 𝑤𝑗 , 𝑇′]      (3) 

The output of the 1D convolutional layer for user i and 

filter j is given by: 

ℎ𝑖 , 𝑗 =  𝑓( 𝑤𝑗 ∗  𝑥𝑖)         (4) 

where * represents the convolution operation and f is the 

activation function. 

Step 3: Pooling layer: 

Let 𝑃 be the pooling operation, such as max pooling or 

average pooling. The output of the pooling layer for user 

i and filter 𝑗 is given by: 
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𝑝𝑖 , 𝑗 =  𝑃( ℎ𝑖 , 𝑗 )        (5) 

Step 4 : Fully connected layer: 

Let 𝑔𝑘be the weights for neuron 𝑘 in the fully connected 

layer. The output of the fully connected layer for user i 

and filter 𝑗 is given by: 

𝑧𝑖 , 𝑗, 𝑘 =  𝑔𝑘 ∗  𝑝𝑖 , 𝑗         (6) 

Step 5: Output layer: 

Let 𝑦𝑖 , 𝑗 be the predicted rating or feedback value for 

user i and item 𝑗. The output of the output layer is given 

by: 

𝑦𝑖 , 𝑗 =  ℎ(𝑧𝑖 , 𝑗, 1, 𝑧𝑖 , 𝑗, 2, … , 𝑧𝑖 , 𝑗, 𝐾)         (7) 

where ℎ is the activation function for the output layer. 

3.5 Ensemble Model: 1D-CNN and DeepACE 

To combine the 1D-CNN and DeepACE models for 

recommendation systems with explicit feedback, we can 

use an ensemble approach where we take the predictions 

from both models and combine them to produce a final 

prediction. 

Let R be the user-item feedback matrix of size n x m, 

where n is the number of users and m is the number of 

items. 

3.5.1  1D-CNN model: 

The 1D-CNN model takes as input a sequence of 

feedback values for a user and produces a rating 

prediction for each item. The architecture of the 1D-

CNN model is defined by the following mathematical 

notations: 

Input layer: 

Let 𝑥𝑖 be the input data for user i, represented as a 

sequence of feedback values. 

𝑥𝑖 =  [𝑥𝑖 , 1, 𝑥𝑖 , 2, … , 𝑥𝑖 , 𝑡, … , 𝑥𝑖 , 𝑇]     (8) 

1D convolutional layer: 

Let 𝑤𝑗  be the filter weights for filter j, represented as a 

sequence of weights. 

𝑤𝑗 =  [𝑤𝑗 , 1, 𝑤𝑗 , 2, … , 𝑤𝑗 , 𝑡, … , 𝑤𝑗 , 𝑇′]     (9)   

The output of the 1D convolutional layer for user i and 

filter j is given by: 

ℎ𝑖 , 𝑗 =  𝑓( 𝑤𝑗 ∗  𝑥𝑖)     (10) 

where ∗ represents the convolution operation and f is the 

activation function. 

Pooling layer: 

Let 𝑃 be the pooling operation, such as max pooling or 

average pooling. The output of the pooling layer for user 

𝑖 and filter 𝑗 is given by: 

𝑝𝑖 , 𝑗 =  𝑃( ℎ𝑖 , 𝑗 )                   (11) 

Fully connected layer: 

Let 𝑔𝑘 be the weights for neuron 𝑘 in the fully connected 

layer. The output of the fully connected layer for user 𝑖 

and filter 𝑗 is given by: 

𝑧𝑖 , 𝑗, 𝑘 =  𝑔𝑘 ∗  𝑝𝑖 , 𝑗              (12) 

Output layer: 

Let 𝑦𝑖 , 𝑗 be the predicted rating or feedback value for 

user i and item 𝑗. The output of the output layer is given 

by: 

𝑦𝑖 , 𝑗 =  ℎ(𝑧𝑖 , 𝑗, 1, 𝑧𝑖 , 𝑗, 2, … , 𝑧𝑖 , 𝑗, 𝐾)        (13) 

where ℎ is the activation function for the output layer. 

3.5.2 DeepACE model: 

The DeepACE model takes as input a matrix of user-

item feedback values and produces a rating prediction for 

each user-item pair. The architecture of the DeepACE 

model is defined by the following mathematical 

notations: 

Input layer: 

Let 𝑋 be the input matrix of user-item feedback values. 

𝑋 =  [𝑥_1,1, 𝑥_1,2, … , 𝑥_1, 𝑚; 

𝑥2,1, 𝑥2,2, … , 𝑥2, 𝑚; 

. . . 

𝑥_𝑛, 1, 𝑥_𝑛, 2, … , 𝑥_𝑛, 𝑚]        (14) 

Embedding layer: 

Let E be the embedding matrix of size 𝑘 𝑥 𝑙, where k is 

the embedding dimension and l is the number of unique 

feedback values. 

Let 𝑥𝑖
′, 𝑗 be the embedding vector for user i and item j, 

given by: 

𝑥𝑖
′, 𝑗 =  𝐸 ∗  𝑥𝑖 , 𝑗     (15) 

1D convolutional layer: 

Let 𝑤𝑗
′ be the filter weights for filter j, represented as a 

sequence of weights. 

𝑤𝑗
′ =  [𝑤𝑗

′, 1, 𝑤𝑗
′, 2, … , 𝑤𝑗

′, 𝑡, … , 𝑤𝑗
′, 𝑇′]           (16) 

The output of the 1D convolutional layer for filter j is 

given by: 

ℎ𝑗
′ =  𝑓( 𝑤𝑗

′ ∗  𝑥1
′ , 𝑗, 𝑤𝑗

′ ∗  𝑥2
′ , 𝑗, … , 𝑤𝑗

′ ∗  𝑥𝑛
′ , 𝑗 )        (17) 

where * represents the convolution operation and f is the 

activation function. 
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Fully connected layer: 

Let 𝑔𝑘
′  be the weights for neuron k in the fully connected 

layer. The output of the fully connected layer for filter j 

is given by: 

𝑧𝑗
′, 𝑘 =  𝑔𝑘

′ ∗  ℎ𝑗
′         (18) 

Output layer: One approach to combining the 1D-CNN 

and DeepACE models is to use the output of the 1D-

CNN model as input to the DeepACE model. This can be 

done by taking the flattened output of the 1D-CNN layer 

and using it as the input to the embedding layer of the 

DeepACE model. 

Let X be the input matrix, where each row represents a 

user and each column represents a movie, and R be the 

rating matrix, where each element Rij represents the 

rating given by user i to movie 𝑗. Let 𝑓1 be the function 

that represents the 1D-CNN model, and 𝑓2 be the 

function that represents the DeepACE model. Then, the 

combined model can be represented as follows: 

𝑍 =  𝑓1(𝑋) 

𝐸 =  𝑓2(𝑍) 

where 𝑍 is the output of the 1D-CNN model, and E is the 

embedding matrix of the DeepACE model. 

The loss function for this combined model can be a 

weighted sum of the losses from the two models: 

𝐿 =  𝛼 𝐿1 +  (1 −  𝛼)𝐿2       (19) 

where 𝐿1 is the loss function for the 1D-CNN model, 𝐿2 

is the loss function for the DeepACE model, and α is a 

weighting factor that determines the relative importance 

of the two losses. 

The combined model can be trained using 

backpropagation and stochastic gradient descent to 

minimize the loss function. Once trained, the model can 

be used to make predictions for unobserved ratings. 

In summary, the combined model uses a 1D-CNN model 

to extract features from the input matrix, and a DeepACE 

model to learn embeddings for the users and movies. By 

combining these two models, we can leverage the 

strengths of both approaches to improve the accuracy of 

the recommendations. 

4. Experimental Study 

This section comprises several parts. In Section 4.1, we 

discuss the experimental setup for our study. In Section 

4.2, we provide a description of the dataset that was used 

for the experiments. Section 4.3 describes the metrics 

that were used to evaluate the performance of our model. 

Section 4.4 presents the settings of the proposed 

structure for multi-modal deep learning (MMDL) and the 

results obtained from the experiments. Finally, in Section 

4.5, we perform a performance analysis of our model. 

4.1 Experimental setup. 

For our experiments, we utilized a system with the 

Windows operating system, four 3.10 GHz Intel Core i5-

2400 CPUs, and a 500 GB hard disk. Our model was 

implemented using Python 2.7 and Keras 2.0 with 

TensorFlow 3.0 serving as the backend [16], [17]. 

4.2 Dataset description 

 The MovieLens dataset [18], [19], [20] is a result of 

ongoing research by the Movielens project and is 

published by the GroupLens Study at the University of 

Minnesota. It is widely used to evaluate collaborative 

filtering techniques and is available in various formats on 

http://www.movielens.com. The MovieLens 100k 

dataset contains 100,000 movie reviews, with each user 

providing more than 20 ratings, ranging from 1 to 5. As 

these ratings are explicit, we selected this dataset to 

study how explicit feedback can be learned from implicit 

ratings. By converting each element to a binary 1 or 0, 

indicating whether the user has ranked the item or not, 

we converted the implicit data to explicit data. All test 

processes return predicted ratings, accepting input 

parameters of (user, item) pairs. After the data is read in, 

it is inserted into the rating matrix's user row and item 

column, creating matrices of sizes (943 x 1682), (6040 x 

3952), and (100k) for MovieLens. 

4.3. Metrics for evaluation are displayed. 

The root mean square error (RMSE) for the suggested 

model's prediction ability can be defined as: 

𝑅𝑀𝑆𝐸 =  𝑠𝑞𝑟𝑡( (1/𝑛)  ∗  𝑠𝑢𝑚((𝑟𝑢𝑖 −  𝑟)^2) )      (20) 

where: 

• r is the genuine rating for a particular film 

• n is the total number of predicted films 

• rui is the predicted value for user u for the particular 

film 

4.3.1 Existing Method (Recommender Net) 

num_users, num_movies, training set, and test set after 

the Output of the top 10 recommendations shown in the 

Existing Method (Recommender Net) [18]
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Fig. 4: Existing_plotgraph 

 

4.3.2 Neural network architecture of 1D convolution 

A convolutional neural network sometimes referred to as 

a CNN or ConvNet, is a subclass of neural networks that 

is particularly adept at processing data with a grid-like 

architecture, such as user IDs, movie IDs, and ratings, 

before producing an output concatenated into a fully 

connected network. 

 

Fig. 5: CNN1Dplot_graph 

CNN1D (Convolutional Neural Network 1D) is a deep 

learning model commonly used for processing sequential 

data such as time-series or text data. One way to evaluate 

the performance of a CNN1D model is to plot its training 

and validation accuracy and loss over epochs. 

In the context of a CNN1D model[24] for 

recommendation systems with explicit feedback, the 

accuracy measures how well the model can predict the 

user's rating of a movie. The loss measures the difference 

between the predicted rating and the actual rating. A low 

loss indicates that the predicted rating is close to the 

actual rating, while a high loss indicates the opposite. 

The training accuracy and loss indicate how well the 

model is fitting the training data during the training 

process, while the validation accuracy and loss indicate 

how well the model is generalizing to new data that it 

hasn't seen before. 

A typical plot of the training and validation accuracy and 

loss over epochs will have the number of epochs on the 

x-axis and the accuracy or loss on the y-axis. The 

training accuracy and loss are usually shown in blue, 

while the validation accuracy and loss are shown in 

orange. 

Ideally, we want to see the training accuracy increase 

and the training loss decrease over epochs, which 

indicate that the model is learning from the data. At the 

same time, we want to see the validation accuracy 

increase and the validation loss decrease, but not to the 

point where the model starts overfitting the training data. 

Overfitting occurs when the model starts to memorize 

the training data instead of learning from it. This can 
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lead to high training accuracy and low training loss, but 

poor validation accuracy and high validation loss. In this 

case, the model is not generalizing well to new data, and 

we need to tune the hyper parameters or modify the 

model architecture to prevent overfitting[21], [22], [23] . 

In summary, a plot of the training and validation 

accuracy and loss over epochs is a useful tool to evaluate 

the performance of a CNN1D model for 

recommendation systems with explicit feedback. It 

allows us to monitor how well the model is learning from 

the data and how well it is generalizing to new data. 

 4.4  Deep neural network autoencoder 

Autoencoders are self-supervised deep learning models 

that reproduce input data to condense it. Since they were 

trained as supervised deep-learning models that function 

as unsupervised models during inference, these models 

are known as self-supervised models. An autoencoder is 

made of two components: 

1. Encoder: It serves as a compression unit and 

compresses the input data. 

2. Decoder: It decompresses the input by reconstructing 

the compressed input. 

 

 

Fig. 6. DeepAEC plot_graph 

 

DeepAEC, short for Deep Autoencoder for Collaborative 

Filtering, is a neural network architecture used for 

recommendation systems. It uses a deep autoencoder, 

which is a type of neural network that learns to compress 

and reconstruct input data. 

The DeepAEC model consists of an input layer, a series 

of hidden layers, and an output layer. The input layer 

represents the user-item matrix, with each element 

representing a user's rating of an item. The output layer 

is a reconstructed version of the input matrix, where 

missing ratings are predicted. The hidden layers are 

responsible for learning a compressed representation of 

the input matrix, which can capture meaningful patterns 

in the data. 

To evaluate the performance of the DeepAEC model, 

various metrics are used, such as mean squared error 

(MSE), root mean squared error (RMSE), and mean 

absolute error (MAE). These metrics measure the 

difference between the predicted ratings and the actual 

ratings. A lower value of these metrics indicates better 

performance. 

To visualize the training progress of the DeepAEC 

model, a plot graph is often used. This graph typically 

shows the training and validation loss over multiple 

epochs. The loss is a measure of how well the model is 

able to reconstruct the input matrix, with a lower value 

indicating better performance. The training loss shows 

the reconstruction error on the training set, while the 

validation loss shows the reconstruction error on a held-

out validation set. 

The plot graph can be used to monitor the model's 

training progress and detect overfitting, where the model 

becomes too specialized to the training data and 

performs poorly on new data. If the validation loss starts 

increasing while the training loss continues to decrease, 

this is a sign of overfitting, and the training should be 

stopped or the model should be modified to prevent 

overfitting.
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Fig. 7. Performance comparison  

 

The results obtained from the experiments show that the 

DeepACE architecture was able to achieve optimized 

results with low loss compression compared to existing 

works. This means that DeepACE was able to effectively 

reduce the size of the data while retaining its important 

features, resulting in a compressed version of the data 

with minimal loss of information. 

Comparing the results of DeepACE to those of existing 

works, it is evident that DeepACE outperformed them in 

terms of compression and preservation of important 

features. The low loss compression obtained with 

DeepACE implies that the compressed data can be stored 

and transferred with ease, saving storage and network 

resources, without significantly impacting the 

performance of downstream tasks that utilize the data.  

Overall, the results suggest that DeepACE can be a 

promising architecture for handling large datasets in 

recommendation systems with explicit feedback, 

providing effective compression while retaining essential 

information. 

5. Conclusion and Future Scope 

Collaborative filtering (CF) techniques are widely used 

in recommendation systems. However, one of the main 

challenges with CF approaches is the sparsity of data, 

which stems from the fact that data is often presented in 

the form of a matrix of ratings, making it difficult to 

scale. In this research paper, we propose a multi-modal 

deep learning approach (MMDL) that combines a 

DeepACE neural network with a 1D conventional neural 

network to address this issue. To evaluate the 

performance of the proposed model, we compared it to 

the state-of-the-art techniques. Our experiments showed 

that the MMDL outperforms other well-known 

approaches in terms of RMSE measurements. We used 

the 100k MovieLens dataset as a real-world dataset to 

assess the model. In future work, we plan to focus on 

explicit feedback because implicit feedback is not 

sufficient to create a complete recommendation system. 

Overall, our proposed MMDL approach has the potential 

to improve the effectiveness of recommendation systems 

by addressing the sparsity issue commonly associated 

with CF techniques. 
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