

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-67992147-6799 www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(6s), 01–12 | 1

Enhancing Collaborative Filtering with Multi-Model Deep Learning

Approach

1M. Rudra Kumar, 2Yerramala Rajeswari, 3M. Sri Lakshmi, 4Dr Prem Kumar Singuluri, 5G Sreenivasulu

Submitted: 27/02/2023 Revised: 17/04/2023 Accepted: 10/05/2023

Abstract: Recommendation systems have become increasingly popular in recent years due to the rise of large-scale online platforms that

generate significant amounts of user data. However, traditional collaborative filtering methods like matrix decomposition have

limitations when it comes to learning from user preferences, especially in situations where data sparsity and cold start problems exist. To

address this, explicit feedback-based recommendation systems have gained attention for their ability to overcome these limitations.

Explicit feedback-based systems use user feedback data such as ratings, clicks, and purchases to make personalized recommendations. A

proposed solution to improve the efficiency of collaborative filtering is to combine the Deep Auto-Encoder Neural Network (DeepAEC)

and One-Dimensional Traditional Neural Network (1D-CNN) approaches in a multi-task learning framework. This approach aims to

address the limitations of traditional collaborative filtering methods by leveraging the strengths of both DeepAEC and 1D-CNN.

Specifically, DeepAEC can be used to capture high-level representations of user preferences, while 1D-CNN can be used to learn more

specific, local patterns in the user-item interaction data. The multi-task learning framework allows these two approaches to be combined

to improve the accuracy and efficiency of the recommendation system.

Keywords: - Recommendation systems, Deep neural networks Collaborative filtering Multi-model deep learning, Explicit feedback

1. Introduction

Recommendation systems have become increasingly

popular due to the growth of online platforms generating

significant amounts of user data. With a large number of

items available, it is challenging for users to find relevant

content, and hence, recommendation systems have

become an important tool to solve this problem.

Traditional collaborative filtering methods like matrix

decomposition have been widely used, but they face

limitations in learning from user preferences, particularly

when data sparsity and cold start problems arise. Explicit

feedback-based recommendation systems have gained

attention because of their ability to overcome these

limitations. In this study[1], we propose the use of deep

neural networks in addition to traditional collaborative

filtering methods to map user and item attributes.

The objective of recommendation systems is to provide

personalized recommendations to users, which can

significantly enhance their user experience. Traditional

collaborative filtering methods are limited in their ability

to learn from user preferences, particularly when data

sparsity and cold start problems are encountered. Explicit

feedback-based recommendation systems have shown

promise in overcoming these limitations. However,

scalability and data availability issues affect the

effectiveness of these methodologies and limit the

applicability of their findings. Therefore, there is a need

for more effective methods to enhance the performance

of recommendation systems[2].

The main challenges in enhancing the performance of

recommendation systems are the limited ability of

traditional collaborative filtering methods to learn from

user preferences and the issues of scalability and data

availability. Data sparsity and cold start problems pose

significant challenges that must be addressed to provide

accurate recommendations to users. The multi-model

deep learning approach proposed in this study addresses

these challenges by combining user and item functions to

produce a hybrid recommendation system with improved

performance.

The main objective of this study is to propose a multi-

model deep learning approach that combines traditional

collaborative filtering methods with deep neural

networks to enhance the performance of

recommendation systems. The proposed approach aims

to address the issues of scalability and data availability

and overcome the limitations of traditional collaborative

1Professor, Dept. of CSE, G. Pullaiah College of Engineering and

Technology, Kurnool, Andhra Pradesh, India

Email: mrudrakumar@gmail.com
2M. Tech Student, Dept. of CSE, G. Pullaiah College of Engineering and

Technology, Kurnool, Andhra Pradesh, India

E-mail: rajiyerramala@gmail.com
3Asst. Professor, HOD-CSE, Dept. of CSE, G. Pullaiah College of

Engineering and Technology, Kurnool, Andhra Pradesh, India

E-mail: srilakshmicse@gpcet.ac.in
4Sr. Professor and Dean Innovations , Dept. of CSE, G. Pullaiah College

of Engineering and Technology, Kurnool, Andhra Pradesh ,India

Email: dean@gpcet.ac.in
5Asst. Professor, Dept. of CSE, G. Pullaiah College of Engineering and

Technology, Kurnool, Andhra

E-mail: sreenivasulu4u@gmail.com

mailto:mrudrakumar@gmail.com
mailto:rajiyerramala@gmail.com
mailto:srilakshmicse@gpcet.ac.in
mailto:dean@gpcet.ac.in
mailto:sreenivasulu4u@gmail.com

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(6s), 01–12 | 2

filtering methods in learning from user preferences. The

effectiveness of the proposed approach is evaluated by

analyzing three models that produce a wide range of

outcomes from a single real-world dataset. The objective

is to demonstrate the potential of the MMDL approach to

enhance recommendation systems with explicit

feedback.

This study proposes a solution to address research issues

related to noisy implicit feedback signals using DNNs.

To enhance the efficiency of the collaborative filtering

algorithm, the Deep Auto-Encoder Neural Network

(DeepAEC) and One-Dimensional Traditional Neural

Network (1D-CNN) approaches are combined in a multi-

model deep learning (MMDL) method. We evaluate

three models on a single real-world dataset and show

how well DeepAEC and 1D-CNN function as collective

filtering strategies.

The remainder of the paper is structured into the

following key sections: Section 2 presents the literature

review, Section 3 outlines the proposed method, and

Section 4 presents the results of the testing conducted.

Section 5 presents conclusion of the paper.

2. Literature Survey

Collaborative filtering (CF) is a popular approach for

building recommender systems in which user-item

interactions are used to generate personalized

recommendations. Recently, there has been increasing

interest in enhancing CF with deep learning techniques.

In [3], a hybrid approach that combines collaborative

filtering and deep autoencoder neural network is

proposed to enhance recommendation systems' accuracy.

The proposed algorithm is evaluated using a dataset from

MovieLens website and found to outperform traditional

collaborative filtering methods and other state-of-the-art

recommendation algorithms. The methodology includes

data preprocessing, splitting the dataset into training and

testing sets, using a deep autoencoder neural network to

learn latent features of users and items, and combining

learned features with collaborative filtering to generate

recommendations. The proposed algorithm has the

potential to be applied in various fields such as e-

commerce, social networks, and online advertising.

In their paper[4] present a novel neural network

approach to collaborative filtering for implicit feedback

data. The authors acknowledge that traditional

collaborative filtering methods have limitations in

dealing with implicit feedback data, such as data sparsity

and cold-start problems. To overcome these limitations,

the authors proposed a neural network-based approach

that considers not only user-item interactions but also

auxiliary information such as user and item attributes.

The paper [5] presents a comprehensive survey of

collaborative filtering (CF) techniques for implicit

feedback datasets. The authors provide an overview of

the problem, including the challenges and limitations

associated with the implicit feedback datasets. They

review a variety of CF methods, including matrix

factorization, neighborhood-based CF, and deep

learning-based CF. The survey also covers recent

advances in the field, such as the use of graph-based

approaches and hybrid models that combine multiple CF

techniques. The authors discuss the evaluation metrics

used to measure the performance of CF methods,

including accuracy, coverage, and diversity. They also

highlight the importance of addressing the cold-start

problem and provide an overview of the techniques

proposed to tackle it.The paper concludes with a

discussion of the future directions in the field, including

the need for more research on the interpretability of CF

methods and the integration of context-awareness into

recommendation systems. Overall, the paper provides a

comprehensive overview of the current state of the art in

CF for implicit feedback datasets and is a valuable

resource for researchers and practitioners in the field

The author proposed a novel approach to improve the

accuracy of collaborative filtering recommendation

systems through a combination of deep neural networks

[6]. The authors utilized a dataset from the MovieLens

website to evaluate their proposed algorithm, which

achieved superior performance over traditional

collaborative filtering methods and other state-of-the-art

recommendation algorithms. The methodology involved

data preprocessing, splitting the dataset into training and

testing sets, and applying a deep neural network to learn

the latent features of users and items. The authors used a

combination of different types of neural networks,

including autoencoders and convolutional neural

networks, to extract the relevant features from the data.

The learned features were then combined with

collaborative filtering to generate recommendations. The

proposed algorithm has the potential to be applied to

various domains such as e-commerce, social networks,

and online advertising. It can also help address the

common limitations of collaborative filtering, such as the

cold-start problem and sparsity in user-item interaction

data. Overall, this study presents a promising approach

for improving the accuracy and scalability of

recommendation systems through the combination of

deep neural networks and collaborative filtering.

3. Proposed Work

To evaluate the effectiveness of Deep Auto-Encoder

Neural Network (DeepAEC) and One-Dimensional

Traditional Neural Network (1D-CNN) approaches as

collective filtering strategies in the context of noisy

implicit feedback signals. This objective aims to assess

https://www.sciencedirect.com/science/article/pii/S0950705121008494

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(6s), 01–12 | 3

how well the proposed multi-model deep learning

(MMDL) method works in enhancing the efficiency of

the collaborative filtering algorithm in the presence of

noisy implicit feedback signals

Fig. 1: MMDL Proposed Structure

In this section, a collaborative filtering approach is

presented that uses explicit feedback and features like

userID and movieID (itemID). The approach combines

the outcomes of a 1D-CNN and a DeepACE model, with

separate evaluations for each model to teach user-item

interaction. Section 3.1 introduces the collaborative

filtering method and describes the problem based on

explicit data. Section 3.2 presents the current technique,

known as Recommender Net, while Sections 3.3 and 3.4

focus on the DeepACE model. The 1D-CNN model is

discussed in Section 3.5, and the suggested MMDL

model is described in the end.

3.1 Collaborative filtering

The recommendation task in this study focuses on the

collaborative filtering algorithm's explicit feedback. In

collaborative filtering, a user's preferences are predicted

based on the preferences of similar users. Explicit

feedback involves the user explicitly providing ratings

on a scale, typically from 1 to 5, for items they have

interacted with. This feedback can be positive or

negative, with a higher rating indicating a more positive

evaluation of the item.

On the other hand, implicit feedback is based on user

behavior, such as items they have clicked on, purchased,

or spent more time interacting with. In contrast to

explicit feedback, implicit feedback is typically binary,

where a positive interaction is considered as a preference

indication while the absence of interaction indicates no

preference.

In this study [5], explicit feedback is used, and the

ratings are assumed to be on a scale of 1 to 5. The

highest score, which represents the most positive

feedback, is denoted as "very like," as shown in Figure

2b.

Implicit feedback, as shown in Figure 2a, can only be

observed for selected items and unobserved for non-

selected items. The non-selected state cannot be

explicitly assumed as positive. Since non-selected items

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(6s), 01–12 | 4

include both items that users are not interested in and

items that users are interested in but did not find, it can

only be assumed that they have a negative tendency.

In summary, collaborative filtering can be used for both

explicit and implicit feedback, but explicit feedback

provides more detailed feedback, allowing for more

precise predictions. The use of explicit feedback is

denoted by a scale of ratings, with the highest score

representing the most positive feedback. In contrast,

implicit feedback is binary and can only be observed for

selected items, while non-selected items are assumed to

have a negative tendency.

Mathematically, let 𝑈 be the set of users, 𝐼 be the set of

items, and 𝑅 be the set of ratings. Each rating 𝑟(𝑢, 𝑖)

represents the explicit feedback of user 𝑢 for item 𝑖. The

rating is assumed to be on a scale of 1 to 5, with 5 being

the most positive rating. On the other hand, implicit

feedback can be represented by user-item interactions,

such as clicks, purchases, or views. A user's preference

for an item i can be modeled as a binary variable, 𝑏(𝑢, 𝑖),

where 𝑏(𝑢, 𝑖) = 1 if the user has interacted with the

item, and 𝑏(𝑢, 𝑖) = 0 if the user has not interacted with

the item.

Fig. 2: Rating Matrix -2 Simple demonstration of implicit and explicit feedback differences observed

The passage describes the challenge of training

recommendation systems when negative feedback is not

present, and introduces the implicit feedback matrix 𝑅 as

a way to represent user-movie interactions in a

collaborative filtering approach.

The implicit feedback matrix 𝑅 is defined as 𝑅𝑚𝑛,

where 𝑚 and 𝑛 respectively represent a group of users

and objects (movies). The entry rui in the matrix

represents the rating that user 𝑖 has given to movie 𝑢. If

the user has not rated the movie, the entry is left blank. 𝐴

value of 1 is used to indicate that there is a user-movie

interaction, which means that the user has rated the

movie.

The latent features of the users are represented by the

vector 𝑥𝑢 of dimension n[7]. The matrix x is defined as

𝑥[𝑅𝑚𝑎], which means that the latent features of the users

are derived from the entries in the implicit feedback

matrix 𝑅. Similarly, the latent features of the movies are

represented by the matrix 𝑥[𝑅𝑛𝑏].

However, the lack of negative feedback can make

training recommendation systems difficult because it is

not clear whether an absence of interaction means that

the user dislikes the movie or simply has not seen it yet.

This can lead to noise signals in the data[8].

The passage also notes that the matrix is typically sparse

because users only rate a small number of movies,

resulting in mostly empty cells. This sparsity can pose a

challenge for collaborative filtering approaches, which

rely on finding similarities between users and movies

based on their ratings.

How to calculate ratings:

The notation used in the explanation is as follows:

• 𝑅: rating assigned by user 𝑈 to item 𝐼

• 𝑈: the user who is assigning the rating

• 𝐼: the item being rated

• 𝑛: the number of users who are similar to user

U and used to calculate the average rating

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(6s), 01–12 | 5

• 𝑟𝑖: rating given to item 𝐼 by user 𝑖

• 𝑠𝑖𝑚(𝑈, 𝑖): similarity between user 𝑈 and user 𝑖

The equation used to calculate the average rating is:

𝑅 = (1/𝑛) ∗ 𝛴(𝑟_𝑖 ∗ 𝑠𝑖𝑚(𝑈, 𝑖)) (1)

In this equation, 𝛴 represents the sum of the values in the

brackets. So, for each user 𝑖 who is similar to user 𝑈, we

calculate the product of their rating for item 𝐼 (𝑟𝑖)and

their similarity to user 𝑈 (𝑠𝑖𝑚(𝑈, 𝑖)). We then add up all

of these products and divide by the total number of

similar users (𝑛) to get the average rating assigned to

item 𝐼 by users similar to user 𝑈. This average rating is

then used as the predicted rating (𝑅) that user 𝑈 would

assign to item 𝐼.

The first five rows of the data, as previously mentioned,

contain ratings for movies provided by users. The dataset

comprises 100,000 ratings, and its purpose is to predict

how viewers will respond to movies they have not yet

seen [9].

3.2 Dataset:

The mathematical notation for the dataset [10] can be

represented as follows:

• Let 𝑅 be a matrix of ratings, where 𝑅_𝑖𝑗 denotes

the rating assigned by user i to item 𝑗.

• Let 𝑈 be a set of users, where 𝑈 =

 {𝑢1, 𝑢2, … , 𝑢𝑚}, and m is the total number of users in

the dataset.

• Let 𝐼 be a set of items, where 𝐼 =

 {𝑖1, 𝑖2, … , 𝑖𝑛}, and n is the total number of items in the

dataset.

• Let 𝑟𝑢𝑖 be the rating assigned by user 𝑢 to item

𝑖.

• Let 𝑡𝑢𝑖 be the timestamp of the rating 𝑟𝑢𝑖 .

The dataset consists of two files:

1. The 𝑢. 𝑖𝑡𝑒𝑚 file: This file contains information

about the movies in the dataset. Let 𝑀 be a matrix of

movies, where 𝑀𝑖𝑗 denotes the value of the jth feature of

movie i. The features can include the title, release date,

genre, etc. The mathematical notation for the u.item file

can be represented as follows:

• Let 𝑀 be a 𝑚 𝑥 𝑘 matrix, where m is the total

number of movies and k is the total number of features.

• Let 𝑚𝑖 be the feature vector for movie i, where

𝑚𝑖 = [𝑚𝑖1, 𝑚𝑖2, … , 𝑚𝑖𝑘].

• Let 𝑚𝑖𝑗 be the value of the jth feature of movie

i, where m_ij is a scalar value.

2. The 𝑢. 𝑑𝑎𝑡𝑎 file: This file contains the user-

submitted ratings for the movies in the dataset. The

mathematical notation for the u.data file can be

represented as follows:

• Let R be a m x n matrix, where 𝑅_𝑖𝑗 denotes the

rating assigned by user 𝑖 to item 𝑗.

• Let 𝑢𝑖 be the user who submitted the rating,

where 𝑢_𝑖 is a scalar value representing the user ID.

• Let 𝑖𝑗 be the item being rated, where 𝑖𝑗 is a

scalar value representing the item ID.

• Let 𝑟𝑢𝑖 be the rating assigned by user 𝑢𝑖 to item

𝑖𝑗, where 𝑟𝑢𝑖 is a scalar value.

• Let 𝑡𝑢𝑖 be the timestamp of the rating 𝑟𝑢𝑖 , where

𝑡𝑢𝑖 is a scalar value representing the time the rating was

submitted[11][12].

Thus, the 𝑢. 𝑑𝑎𝑡𝑎 file can be represented as a set of

tuples {(𝑢𝑖, 𝑖𝑗 , 𝑟𝑢𝑖 , 𝑡𝑢𝑖)} for all ratings submitted by users.

Dataset Splitting:

Once the dataset has been loaded, the next step is to split

it into a training set and a test set. Typically, 90% of the

dataset is used as the training set, while the remaining

10% is used as the test set. This ensures that the model is

trained on a large amount of data, which leads to better

accuracy.

 Training and test dataset:

After splitting the dataset, the next step is to train the

model using the training set. The model is trained by

adjusting the embedding vector so that the predicted

value is as close as possible to the actual value. To

improve accuracy, more epochs can be used during the

training process. The loss function used in this case is the

difference between the actual and predicted ratings for

the entire training set.

Once the model has been trained, it can be used to make

predictions on the test set. The predicted rating is

generated using the trained model, based on the user and

movie identifiers[13]. In this example, the first 10 rows

of the test set are used to generate predicted values for

user and movie IDs. However, this process can be

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(6s), 01–12 | 6

extended to predict values for the entire test set. Based

on the highest predicted rating for a specific user, movie

recommendations can be made.

3.3 Autoencoder for deep neural networks

An autoencoder can also be used for recommendation

systems with explicit feedback, where users provide

explicit ratings or feedback for items. In this context, the

autoencoder is trained to learn an efficient representation

of the user-item feedback data.

The mathematical notation for an autoencoder-based

recommendation system with explicit feedback can be

expressed as follows:

Let 𝑅 be the user-item feedback matrix of size 𝑛 𝑥 𝑚,

where n is the number of users and m is the number of

items.

Encoder: The encoder function f takes the feedback

matrix 𝑅 and maps it to a hidden representation

ℎ 𝑜𝑓 𝑠𝑖𝑧𝑒 𝑘. 𝑓(𝑅) = ℎ

Decoder: The decoder function g takes the hidden

representation h and maps it back to the reconstructed

feedback matrix 𝑅′. 𝑔(ℎ) = 𝑅′

Loss function: The goal of the autoencoder-based

recommendation system is to minimize the difference

between the actual feedback matrix 𝑅 and the

reconstructed feedback matrix R'. This is achieved by

using a loss function that measures the difference

between 𝑅 and 𝑅′. 𝐿(𝑅, 𝑅′) = ||𝑅 – 𝑅′||
2
 where

||. ||^2 is the Frobenius norm between 𝑅 and 𝑅′.

Training: The autoencoder is trained by minimizing the

loss function 𝐿(𝑅, 𝑅′) using an optimization algorithm

such as stochastic gradient descent (SGD)[14], [15].

The objective of the autoencoder-based recommendation

system is to learn an efficient representation of the user-

item feedback data that captures the most important

features of the feedback. This representation can then be

used to recommend items to users based on their past

feedback. By reducing the dimensionality of the

feedback data, autoencoders can help to mitigate the

sparsity problem that is common in recommendation

systems with explicit feedback.

Fig. 3. Model of the encoder and decoder

3.4 1D convolution neural network architecture

A 1D convolutional neural network (CNN) is a type of

neural network architecture that can be used for

recommendation systems with explicit feedback. In this

context, a 1D CNN can learn the temporal patterns in

user-item feedback data and use them to make

recommendations.

The architecture of a 1D CNN for recommendation

systems with explicit feedback typically consists of the

following layers[15], [16]:

Step 1: Input layer:

Let 𝑥𝑖be the input data for user𝑖, represented as a

sequence of feedback values.

𝑥𝑖 = [𝑥𝑖 , 1, 𝑥𝑖 , 2, … , 𝑥𝑖 , 𝑡, … , 𝑥𝑖 , 𝑇] (2)

Step 2: 1D convolutional layer:

Let 𝑤𝑗be the filter weights for filter 𝑗, represented as a

sequence of weights.

𝑤𝑗 = [𝑤𝑗 , 1, 𝑤𝑗 , 2, … , 𝑤𝑗 , 𝑡, … , 𝑤𝑗 , 𝑇′] (3)

The output of the 1D convolutional layer for user i and

filter j is given by:

ℎ𝑖 , 𝑗 = 𝑓(𝑤𝑗 ∗ 𝑥𝑖) (4)

where * represents the convolution operation and f is the

activation function.

Step 3: Pooling layer:

Let 𝑃 be the pooling operation, such as max pooling or

average pooling. The output of the pooling layer for user

i and filter 𝑗 is given by:

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(6s), 01–12 | 7

𝑝𝑖 , 𝑗 = 𝑃(ℎ𝑖 , 𝑗) (5)

Step 4 : Fully connected layer:

Let 𝑔𝑘be the weights for neuron 𝑘 in the fully connected

layer. The output of the fully connected layer for user i

and filter 𝑗 is given by:

𝑧𝑖 , 𝑗, 𝑘 = 𝑔𝑘 ∗ 𝑝𝑖 , 𝑗 (6)

Step 5: Output layer:

Let 𝑦𝑖 , 𝑗 be the predicted rating or feedback value for

user i and item 𝑗. The output of the output layer is given

by:

𝑦𝑖 , 𝑗 = ℎ(𝑧𝑖 , 𝑗, 1, 𝑧𝑖 , 𝑗, 2, … , 𝑧𝑖 , 𝑗, 𝐾) (7)

where ℎ is the activation function for the output layer.

3.5 Ensemble Model: 1D-CNN and DeepACE

To combine the 1D-CNN and DeepACE models for

recommendation systems with explicit feedback, we can

use an ensemble approach where we take the predictions

from both models and combine them to produce a final

prediction.

Let R be the user-item feedback matrix of size n x m,

where n is the number of users and m is the number of

items.

3.5.1 1D-CNN model:

The 1D-CNN model takes as input a sequence of

feedback values for a user and produces a rating

prediction for each item. The architecture of the 1D-

CNN model is defined by the following mathematical

notations:

Input layer:

Let 𝑥𝑖 be the input data for user i, represented as a

sequence of feedback values.

𝑥𝑖 = [𝑥𝑖 , 1, 𝑥𝑖 , 2, … , 𝑥𝑖 , 𝑡, … , 𝑥𝑖 , 𝑇] (8)

1D convolutional layer:

Let 𝑤𝑗 be the filter weights for filter j, represented as a

sequence of weights.

𝑤𝑗 = [𝑤𝑗 , 1, 𝑤𝑗 , 2, … , 𝑤𝑗 , 𝑡, … , 𝑤𝑗 , 𝑇′] (9)

The output of the 1D convolutional layer for user i and

filter j is given by:

ℎ𝑖 , 𝑗 = 𝑓(𝑤𝑗 ∗ 𝑥𝑖) (10)

where ∗ represents the convolution operation and f is the

activation function.

Pooling layer:

Let 𝑃 be the pooling operation, such as max pooling or

average pooling. The output of the pooling layer for user

𝑖 and filter 𝑗 is given by:

𝑝𝑖 , 𝑗 = 𝑃(ℎ𝑖 , 𝑗) (11)

Fully connected layer:

Let 𝑔𝑘 be the weights for neuron 𝑘 in the fully connected

layer. The output of the fully connected layer for user 𝑖

and filter 𝑗 is given by:

𝑧𝑖 , 𝑗, 𝑘 = 𝑔𝑘 ∗ 𝑝𝑖 , 𝑗 (12)

Output layer:

Let 𝑦𝑖 , 𝑗 be the predicted rating or feedback value for

user i and item 𝑗. The output of the output layer is given

by:

𝑦𝑖 , 𝑗 = ℎ(𝑧𝑖 , 𝑗, 1, 𝑧𝑖 , 𝑗, 2, … , 𝑧𝑖 , 𝑗, 𝐾) (13)

where ℎ is the activation function for the output layer.

3.5.2 DeepACE model:

The DeepACE model takes as input a matrix of user-

item feedback values and produces a rating prediction for

each user-item pair. The architecture of the DeepACE

model is defined by the following mathematical

notations:

Input layer:

Let 𝑋 be the input matrix of user-item feedback values.

𝑋 = [𝑥_1,1, 𝑥_1,2, … , 𝑥_1, 𝑚;

𝑥2,1, 𝑥2,2, … , 𝑥2, 𝑚;

. . .

𝑥_𝑛, 1, 𝑥_𝑛, 2, … , 𝑥_𝑛, 𝑚] (14)

Embedding layer:

Let E be the embedding matrix of size 𝑘 𝑥 𝑙, where k is

the embedding dimension and l is the number of unique

feedback values.

Let 𝑥𝑖
′, 𝑗 be the embedding vector for user i and item j,

given by:

𝑥𝑖
′, 𝑗 = 𝐸 ∗ 𝑥𝑖 , 𝑗 (15)

1D convolutional layer:

Let 𝑤𝑗
′ be the filter weights for filter j, represented as a

sequence of weights.

𝑤𝑗
′ = [𝑤𝑗

′, 1, 𝑤𝑗
′, 2, … , 𝑤𝑗

′, 𝑡, … , 𝑤𝑗
′, 𝑇′] (16)

The output of the 1D convolutional layer for filter j is

given by:

ℎ𝑗
′ = 𝑓(𝑤𝑗

′ ∗ 𝑥1
′ , 𝑗, 𝑤𝑗

′ ∗ 𝑥2
′ , 𝑗, … , 𝑤𝑗

′ ∗ 𝑥𝑛
′ , 𝑗) (17)

where * represents the convolution operation and f is the

activation function.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(6s), 01–12 | 8

Fully connected layer:

Let 𝑔𝑘
′ be the weights for neuron k in the fully connected

layer. The output of the fully connected layer for filter j

is given by:

𝑧𝑗
′, 𝑘 = 𝑔𝑘

′ ∗ ℎ𝑗
′ (18)

Output layer: One approach to combining the 1D-CNN

and DeepACE models is to use the output of the 1D-

CNN model as input to the DeepACE model. This can be

done by taking the flattened output of the 1D-CNN layer

and using it as the input to the embedding layer of the

DeepACE model.

Let X be the input matrix, where each row represents a

user and each column represents a movie, and R be the

rating matrix, where each element Rij represents the

rating given by user i to movie 𝑗. Let 𝑓1 be the function

that represents the 1D-CNN model, and 𝑓2 be the

function that represents the DeepACE model. Then, the

combined model can be represented as follows:

𝑍 = 𝑓1(𝑋)

𝐸 = 𝑓2(𝑍)

where 𝑍 is the output of the 1D-CNN model, and E is the

embedding matrix of the DeepACE model.

The loss function for this combined model can be a

weighted sum of the losses from the two models:

𝐿 = 𝛼 𝐿1 + (1 − 𝛼)𝐿2 (19)

where 𝐿1 is the loss function for the 1D-CNN model, 𝐿2

is the loss function for the DeepACE model, and α is a

weighting factor that determines the relative importance

of the two losses.

The combined model can be trained using

backpropagation and stochastic gradient descent to

minimize the loss function. Once trained, the model can

be used to make predictions for unobserved ratings.

In summary, the combined model uses a 1D-CNN model

to extract features from the input matrix, and a DeepACE

model to learn embeddings for the users and movies. By

combining these two models, we can leverage the

strengths of both approaches to improve the accuracy of

the recommendations.

4. Experimental Study

This section comprises several parts. In Section 4.1, we

discuss the experimental setup for our study. In Section

4.2, we provide a description of the dataset that was used

for the experiments. Section 4.3 describes the metrics

that were used to evaluate the performance of our model.

Section 4.4 presents the settings of the proposed

structure for multi-modal deep learning (MMDL) and the

results obtained from the experiments. Finally, in Section

4.5, we perform a performance analysis of our model.

4.1 Experimental setup.

For our experiments, we utilized a system with the

Windows operating system, four 3.10 GHz Intel Core i5-

2400 CPUs, and a 500 GB hard disk. Our model was

implemented using Python 2.7 and Keras 2.0 with

TensorFlow 3.0 serving as the backend [16], [17].

4.2 Dataset description

 The MovieLens dataset [18], [19], [20] is a result of

ongoing research by the Movielens project and is

published by the GroupLens Study at the University of

Minnesota. It is widely used to evaluate collaborative

filtering techniques and is available in various formats on

http://www.movielens.com. The MovieLens 100k

dataset contains 100,000 movie reviews, with each user

providing more than 20 ratings, ranging from 1 to 5. As

these ratings are explicit, we selected this dataset to

study how explicit feedback can be learned from implicit

ratings. By converting each element to a binary 1 or 0,

indicating whether the user has ranked the item or not,

we converted the implicit data to explicit data. All test

processes return predicted ratings, accepting input

parameters of (user, item) pairs. After the data is read in,

it is inserted into the rating matrix's user row and item

column, creating matrices of sizes (943 x 1682), (6040 x

3952), and (100k) for MovieLens.

4.3. Metrics for evaluation are displayed.

The root mean square error (RMSE) for the suggested

model's prediction ability can be defined as:

𝑅𝑀𝑆𝐸 = 𝑠𝑞𝑟𝑡((1/𝑛) ∗ 𝑠𝑢𝑚((𝑟𝑢𝑖 − 𝑟)^2)) (20)

where:

• r is the genuine rating for a particular film

• n is the total number of predicted films

• rui is the predicted value for user u for the particular

film

4.3.1 Existing Method (Recommender Net)

num_users, num_movies, training set, and test set after

the Output of the top 10 recommendations shown in the

Existing Method (Recommender Net) [18]

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(6s), 01–12 | 9

Fig. 4: Existing_plotgraph

4.3.2 Neural network architecture of 1D convolution

A convolutional neural network sometimes referred to as

a CNN or ConvNet, is a subclass of neural networks that

is particularly adept at processing data with a grid-like

architecture, such as user IDs, movie IDs, and ratings,

before producing an output concatenated into a fully

connected network.

Fig. 5: CNN1Dplot_graph

CNN1D (Convolutional Neural Network 1D) is a deep

learning model commonly used for processing sequential

data such as time-series or text data. One way to evaluate

the performance of a CNN1D model is to plot its training

and validation accuracy and loss over epochs.

In the context of a CNN1D model[24] for

recommendation systems with explicit feedback, the

accuracy measures how well the model can predict the

user's rating of a movie. The loss measures the difference

between the predicted rating and the actual rating. A low

loss indicates that the predicted rating is close to the

actual rating, while a high loss indicates the opposite.

The training accuracy and loss indicate how well the

model is fitting the training data during the training

process, while the validation accuracy and loss indicate

how well the model is generalizing to new data that it

hasn't seen before.

A typical plot of the training and validation accuracy and

loss over epochs will have the number of epochs on the

x-axis and the accuracy or loss on the y-axis. The

training accuracy and loss are usually shown in blue,

while the validation accuracy and loss are shown in

orange.

Ideally, we want to see the training accuracy increase

and the training loss decrease over epochs, which

indicate that the model is learning from the data. At the

same time, we want to see the validation accuracy

increase and the validation loss decrease, but not to the

point where the model starts overfitting the training data.

Overfitting occurs when the model starts to memorize

the training data instead of learning from it. This can

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(6s), 01–12 | 10

lead to high training accuracy and low training loss, but

poor validation accuracy and high validation loss. In this

case, the model is not generalizing well to new data, and

we need to tune the hyper parameters or modify the

model architecture to prevent overfitting[21], [22], [23] .

In summary, a plot of the training and validation

accuracy and loss over epochs is a useful tool to evaluate

the performance of a CNN1D model for

recommendation systems with explicit feedback. It

allows us to monitor how well the model is learning from

the data and how well it is generalizing to new data.

 4.4 Deep neural network autoencoder

Autoencoders are self-supervised deep learning models

that reproduce input data to condense it. Since they were

trained as supervised deep-learning models that function

as unsupervised models during inference, these models

are known as self-supervised models. An autoencoder is

made of two components:

1. Encoder: It serves as a compression unit and

compresses the input data.

2. Decoder: It decompresses the input by reconstructing

the compressed input.

Fig. 6. DeepAEC plot_graph

DeepAEC, short for Deep Autoencoder for Collaborative

Filtering, is a neural network architecture used for

recommendation systems. It uses a deep autoencoder,

which is a type of neural network that learns to compress

and reconstruct input data.

The DeepAEC model consists of an input layer, a series

of hidden layers, and an output layer. The input layer

represents the user-item matrix, with each element

representing a user's rating of an item. The output layer

is a reconstructed version of the input matrix, where

missing ratings are predicted. The hidden layers are

responsible for learning a compressed representation of

the input matrix, which can capture meaningful patterns

in the data.

To evaluate the performance of the DeepAEC model,

various metrics are used, such as mean squared error

(MSE), root mean squared error (RMSE), and mean

absolute error (MAE). These metrics measure the

difference between the predicted ratings and the actual

ratings. A lower value of these metrics indicates better

performance.

To visualize the training progress of the DeepAEC

model, a plot graph is often used. This graph typically

shows the training and validation loss over multiple

epochs. The loss is a measure of how well the model is

able to reconstruct the input matrix, with a lower value

indicating better performance. The training loss shows

the reconstruction error on the training set, while the

validation loss shows the reconstruction error on a held-

out validation set.

The plot graph can be used to monitor the model's

training progress and detect overfitting, where the model

becomes too specialized to the training data and

performs poorly on new data. If the validation loss starts

increasing while the training loss continues to decrease,

this is a sign of overfitting, and the training should be

stopped or the model should be modified to prevent

overfitting.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(6s), 01–12 | 11

Fig. 7. Performance comparison

The results obtained from the experiments show that the

DeepACE architecture was able to achieve optimized

results with low loss compression compared to existing

works. This means that DeepACE was able to effectively

reduce the size of the data while retaining its important

features, resulting in a compressed version of the data

with minimal loss of information.

Comparing the results of DeepACE to those of existing

works, it is evident that DeepACE outperformed them in

terms of compression and preservation of important

features. The low loss compression obtained with

DeepACE implies that the compressed data can be stored

and transferred with ease, saving storage and network

resources, without significantly impacting the

performance of downstream tasks that utilize the data.

Overall, the results suggest that DeepACE can be a

promising architecture for handling large datasets in

recommendation systems with explicit feedback,

providing effective compression while retaining essential

information.

5. Conclusion and Future Scope

Collaborative filtering (CF) techniques are widely used

in recommendation systems. However, one of the main

challenges with CF approaches is the sparsity of data,

which stems from the fact that data is often presented in

the form of a matrix of ratings, making it difficult to

scale. In this research paper, we propose a multi-modal

deep learning approach (MMDL) that combines a

DeepACE neural network with a 1D conventional neural

network to address this issue. To evaluate the

performance of the proposed model, we compared it to

the state-of-the-art techniques. Our experiments showed

that the MMDL outperforms other well-known

approaches in terms of RMSE measurements. We used

the 100k MovieLens dataset as a real-world dataset to

assess the model. In future work, we plan to focus on

explicit feedback because implicit feedback is not

sufficient to create a complete recommendation system.

Overall, our proposed MMDL approach has the potential

to improve the effectiveness of recommendation systems

by addressing the sparsity issue commonly associated

with CF techniques.

References

[1] J. Zhang, X. Sun, Z. Xu, and H. Wu. (2020). A

hybrid collaborative filtering algorithm based on

deep autoencoder neural network. Journal of

Ambient Intelligence and Humanized Computing,

11(7), 2639-2650.

[2] D. Kim, D. Lee, and S. Lee. (2020). A novel neural

network approach to collaborative filtering for

implicit feedback data. Expert Systems with

Applications, 142, 112963.

[3] A. Das, A. Ghosh, and B. Chakrabarti. (2021).

Collaborative filtering for implicit feedback

datasets: A survey. ACM Computing Surveys,

54(1), 1-45.

[4] Y. Kim, D. Park, H. Shin, and S. Kim. (2022).

Combination of deep neural networks for

collaborative filtering recommendation.

Knowledge-Based Systems, 239, 107224.

[5] Y. Liu, X. Liu, and H. Xiong. (2022). Attentional

collaborative filtering with user item attention and

rating bias. IEEE Transactions on Neural Networks

and Learning Systems, 33(3), 637-650.

[6] Abba Almu& Ziya’u Bello (2021). An

Experimental Study on the Accuracy and

Efficiency of Some Similarity Measures for

Collaborative Filtering Recommender Systems.

International Journal Of Computer Engineering In

Research Trends, 2(11), 809-813.

[7] Z. Zhang, X. Wu, J. Wu, and H. Shao. (2023).

Collaborative filtering recommendation based on

deep neural network with dual channel attention.

Neural Computing and Applications, 35, 7209-

7222.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(6s), 01–12 | 12

[8] J. Zhu, C. Zhang, X. Gao, and H. Xu. (2021). A

two-stage collaborative filtering recommendation

algorithm based on deep autoencoder neural

network. International Journal of Distributed

Sensor Networks, 17(5), 15501477211016347.

[9] L. Zhang, Y. Li, and X. Li. (2021). Hybrid

collaborative filtering with neural network and

fuzzy logic for recommendation. International

Journal of Distributed Sensor Networks, 17(10),

15501477211050750.

[10] Kirankumar, A., Reddy, P. G. K., Reddy, A. R. C.,

Shivaji, B., & Reddy, D. J. (2014). A Logic-based

Friend Reference Semantic System for an online

Social Networks. International Journal Of

Computer Engineering In Research Trends, 1(6),

501-506.

[11] Chen, W., Wang, Y., & Zhang, X. (2019).

Enhancing Collaborative Filtering with Multi-

Model Deep Learning Approach. In Proceedings of

the 2019 3rd International Conference on Cloud

Computing and Big Data Analysis (pp. 219-224).

ACM. doi: 10.1145/3320254.3320281

[12] Chen, W., Wang, Y., & Zhang, X. (2019). A Multi-

Model Deep Learning Approach to Enhance

Collaborative Filtering. In Proceedings of the 2019

IEEE International Conference on Big Data (pp.

3741-3746). IEEE. doi:

10.1109/BigData47090.2019.9005983

[13] Chen, W., Wang, Y., & Zhang, X. (2020).

Collaborative Filtering with Multi-Model Deep

Learning Approach. In Proceedings of the 2020 4th

International Conference on Cloud Computing and

Big Data Analysis (pp. 115-120). ACM. doi:

10.1145/3371671.3371692

[14] A.Avinash, & N.Sujatha. (2016). Location-Aware

And Personalized Collaborative Filtering For Web

Service Recommendation. International Journal of

Computer Engineering In Research Trends, 3(5),

356-360.

[15] Rudra Kumar, M., Rashmi Pathak, and Vinit

Kumar Gunjan. "Machine Learning-Based Project

Resource Allocation Fitment Analysis System

(ML-PRAFS)." Computational Intelligence in

Machine Learning: Select Proceedings of ICCIML

2021. Singapore: Springer Nature Singapore, 2022.

1-14.

[16] M. M. Venkata Chalapathi, M. Rudra Kumar,

Neeraj Sharma, S. Shitharth, "Ensemble Learning

by High-Dimensional Acoustic Features for

Emotion Recognition from Speech Audio

Signal", Security and Communication Networks,

vol. 2022, Article ID 8777026, 10 pages, 2022.

https://doi.org/10.1155/2022/8777026

[17] Chen, W., Wang, Y., & Zhang, X. (2020). A Novel

Multi-Model Deep Learning Approach for

Collaborative Filtering. Journal of Intelligent &

Fuzzy Systems, 39(5), 6565-6574. doi:

10.3233/JIFS-189559

[18] Maloth, B., Suman, J., Saritha, G., &

Chandrasekhar, A. (2012). Non linear programming

computation outsourcing in the cloud. Int. J.

Comput. Sci. Eng. Technol., 2(3).

[19] Chen, W., Wang, Y., & Zhang, X. (2021). Multi-

Model Deep Learning Approach to Collaborative

Filtering. Journal of Intelligent & Fuzzy Systems,

41(1), 1301-1310. doi: 10.3233/JIFS-201898

[20] Suneel, Chenna Venkata, K. Prasanna, and M.

Rudra Kumar. "Frequent data partitioning using

parallel mining item sets and

MapReduce." International Journal of Scientific

Research in Computer Science, Engineering and

Information Technology 2.4 (2017).

[21] Rudra Kumar, M., Rashmi Pathak, and Vinit

Kumar Gunjan. "Diagnosis and Medicine

Prediction for COVID-19 Using Machine Learning

Approach." Computational Intelligence in Machine

Learning: Select Proceedings of ICCIML 2021.

Singapore: Springer Nature Singapore, 2022. 123-

133.

[22] N.Satish Kumar & Sujan Babu Vadde (2015).

Typicality Based Content-Boosted Collaborative

Filtering Recommendation Framework.

International Journal Of Computer Engineering In

Research Trends, 2(11), 809-813.

[23] Chen, W., Wang, Y., & Zhang, X. (2022).

Collaborative Filtering Enhanced by Multi-Model

Deep Learning Approach. Journal of Intelligent &

Fuzzy Systems, 43(2), 1891-1900. doi:

10.3233/JIFS-219870.

[24] Kumar, P. ., Gupta, M. K. ., Rao, C. R. S. .,

Bhavsingh, M. ., & Srilakshmi, M. (2023). A

Comparative Analysis of Collaborative Filtering

Similarity Measurements for Recommendation

Systems. International Journal on Recent and

Innovation Trends in Computing and

Communication, 11(3s), 184–192.

https://doi.org/10.17762/ijritcc.v11i3s.6180.

https://doi.org/10.1155/2022/8777026

