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Abstract: An increasing number of people have died as a result of the COVID-19 pandemic's second wave of breakout. As has been 

shown, several nations' healthcare systems are being destroyed by the second wave. Regional routine testing combined contact tracing 

can take the place of regional constraints in preventing the virus from propagating, and the "Track, Test, and Treat" programme has 

straightened the epidemic track in its early phases. Thus, to lower infection rates and minimise the negative effects on medical Machine 

learning along with feature engineering is a potential domain for developing Covid 19 positive as well as negative samples classification, 

a critical research objective in contemporary engineering. While there are effective machine learning-based methods to classify COVID-

19 positive and negative samples like cough audio signals, detection accuracy with the highest possible sensitivity and specificity is still 

not scalable using the majority of contemporary methods. Typically, detection accuracy is proportional to the optimal features used to 

train the classifier. As a result, it is obvious that optimizing features for Covid 19 infection recognition from cough audio signals is a 

possible research objective. In support of this argument, this article suggested and described a novel technique “Adaptive Boosting based 

Supervised Learning (ABSL) Approach for Covid-19 Prediction from Cough Audio Signals”. The spectral features and Mel-frequency 

cepstral coefficients are used in the proposed model. The feature engineering has been done by the diversity assessment model “kruuskal-

wallis test”. In addition, a novel binary classification strategy has been derived by using adaptive boosting strategy.   The experiments 

have been done on benchmark dataset to evaluate the proposed approach's performance against a comparable contemporary method 

Random forest classifier that trained by Mel-frequency cepstral coefficients (MFCCs). The experiments demonstrated that the suggested 

ABSL has the potential to escalate prediction accuracy with a low rate of false alarms. 

Keywords: Random Forest, COVID-19, Cough Audio Signals, Machine Learning, Power spectrum, Optimal Features, Kruskal-Wallis, 

Adaptive Boosting Classifier. 

1 Introduction 

Millions of individuals throughout the world have been 

impacted by the Sars outbreak that produced the 

COVID-19 pandemic. The rapid spread of the virus has 

made it difficult to control, and the lack of effective 

treatments has made it more challenging to manage the 

disease [1]. Early diagnosis as well as isolation of 

infected persons is one of the key approaches to prevent 

the propagation of COVID-19. Traditional diagnostic 

tests for COVID-19 involve collecting samples of 

respiratory fluids or blood, which can be time-consuming 

and may require specialized equipment and trained 

personnel [2]. However, recent research has shown that 

COVID-19 can also be detected through cough analysis, 

which can provide a non-invasive and cost-effective 

approach to early detection and monitoring of the 

disease. 

Studies have shown that the cough audio signal produced 

by individuals infected with COVID-19 contains 

valuable information about the presence and severity of 

the disease [3]. The distinct cough patterns and acoustic 

features exhibited by COVID-19 patients compared to 

healthy individuals or patients with other respiratory 

diseases are believed to be caused by the unique 

pathophysiology of COVID-19, such as inflammation 

and damage to the respiratory system. 

In the early identification and diagnosis of COVID-19, 

machine learning has emerged as a viable technique for 

the interpretation of medical data. In particular, 

supervised learning algorithms have been used to train 

models on large datasets of medical images, genomic 

data, and clinical records to identify patterns and make 

predictions [4]. However, supervised learning 

approaches for COVID-19 detection from cough audio 

signals are relatively unexplored. 

In this study, we propose an adaptive boosting based 

supervised learning approach for COVID-19 prediction 

from cough audio signals. As an ensemble learning 

technique, adaptive boosting (or AdaBoost) takes 

numerous weak classifiers and merges them into a single 

robust one. AdaBoost has been used successfully in a 
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variety of applications, including object detection, face 

recognition, and medical diagnosis. Our approach 

involves preprocessing the cough audio signals to extract 

spectral features, which are used as inputs to the 

AdaBoost classifier. We evaluate the performance of our 

approach using a dataset of cough audio signals collected 

from COVID-19 positive and negative patients. 

In summary, the proposed adaptive boosting based 

supervised learning approach for COVID-19 prediction 

from cough audio signals can potentially provide a non-

invasive, cost-effective, and rapid method for early 

detection and monitoring of COVID-19. The use of 

machine learning for COVID-19 diagnosis from cough 

audio signals is an emerging field that holds great 

promise for improving the accuracy and speed of 

COVID-19 detection. The findings of this study may 

have significant implications for the development of new 

diagnostic tools and early intervention strategies for 

COVID-19. 

The rest of the paper is organized as follows. In Section 

2, we review related work on machine learning 

approaches for COVID-19 detection. Section 3 describes 

methodology for feature extraction and AdaBoost 

classification. In Section 4, we present our results and 

compare our approach to existing methods. Finally, in 

Section 5, we conclude the paper with a discussion of our 

findings and future research directions. 

2 Related Research 

This review aims to offer an insight into the most 

significant research in the domain of cough detection and 

illness diagnosis based on coughing audio samples' 

frequency, length, and severity. The following literature 

review provides an overview of the methods currently 

being used in related investigations, with an eye towards 

emerging technology developments relevant to this 

investigation. 

Dry cough as well as wet cough were the subjects of a 

research by Chatrzarrin et al. [5]. Because coughs can be 

signs of numerous illnesses, this article looked at feature 

extraction techniques for identifying coughs as either wet 

or dry coughs. The article retrieved frequency domain 

characteristics following process of converting.mp3 files 

to.wav files. The major features that were retrieved were 

an approximation of the power ratio as well as the peak 

of the energy envelope. The authors distinguished 

between the first burst of opening, the noisy airflow, and 

the glottal closure stages of the cough waveform. Dry 

and moist cough were distinguished by these three 

stages. In addition, research has demonstrated that a 

classifier built from factors collected from patients' 

cough audios may be used to diagnose a variety of lung-

based disorders [6], [7]. 

The severity and frequency of patients' coughs were 

measured in another research Jaiswal, S et al. [6] in an 

effort to diagnose asthma. Nevertheless, patients' chests 

were fitted with microphones, leading to a mean 

detection accuracy of 82%. To identify cough noises that 

differed from person to person, electromyographic 

(EMG) signals were employed. Keywords identification 

was used to locate cough noises. With 77% accuracy, the 

authors classified asthma patients using HMM (Hidden 

Markov's Model) [6]. Although crackling noises are 

intermittent in composition as well as less than 100ms, 

generated by pressure balance and pressure shift owing 

to abrupt opening of a closed airway in the lungs, Sinem 

U et al., [8] worked on the technique of Auscultation 

using a ML technique to recognise crackling sounds for 

cough detection. Lung sounds were categorised using 

ANN and SVM. 

In a research by Kosasih et al., [7] a method was 

developed to diagnose pneumonia through mathematical 

evaluation of cough audio signals using cough 

characteristics inspired by wavelet-based crackling 

identification work in respiratory audio signal analysis. 

The scientists employed a dual-microphone setup, with 

the main mic used to identify crackles (which are 

frequently present in patients with pneumonia) and the 

secondary mic used to filter out any extraneous sounds. 

After utilising the Logistic Regression Model [7] to 

extract 30 cough characteristics from each sample, 94% 

sensitivity & 88% specificity by composing wavelets and 

other features were observed. 

Monge Á et al., [9] calculated a relatively brief spectral 

feature collection in five predetermined frequency 

ranges. The short-term feature collection was then 

resilient in noisy circumstances by choosing and merging 

elements. High-level data were represented as the mean 

as well as the SD of relatively brief descriptors within 

300ms long-term frames. SVM yields 88.58% 

specificity, 92.71% sensitivity, with 90.69% AUC [9]. 

Acoustic signals were used by X. Renard et al., to 

identify cough. The study used Logistic Regression to 

determine whether an audio clip was indicative of a 

cough or not, and it recorded the models' sensitivity as 

well as specificity. The LR (Logistic 

Regression) Pramono et al. [10] shows that the 

sensitivity of the Leicester cough monitoring and the 

Hull computerized cough counter is 86.78%. In a related 

work, Vikrant et al. used SVM classifier with the 

collection of three characteristics to predict/classify the 

cough audio signals of the individuals into various 

respiratory illnesses. Cough audio may be classified into 

several illnesses using SVM, which acts as a hyperplane 

that separates the data into distinct classes. SVM have 

had an accuracy rate of 98.9%, FNR (False Negative 
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Rate) between 5% and 6%, as well as TPR (True Positive 

Rate) around 94% to 100%  Bhateja et al. [11]. 

Moradshahi et al. [12] as well as Taquee et al. [13] were 

utilised to distinguish cough audio files from a chamber 

with various white noise signal sources. 

Seven microphones were employed using the delay-and-

sum beamforming approach. A cough detector using an 

array of microphones was shown to be superior to a 

solitary mic cough detector for loud environments by 

adjusting the distance range in between microphones 

[12]. A alternative method for isolating cough audio 

from background noise is to use Hard Thresholding in 

conjunction with the Discreate Wavelet Transform 

(DWT). The SNR (Signal-to-Noise Ratio) of the 

coughing audio signals is improved by the three-step 

DWT, hard thresholding, plus IDWT technique [13]. 

To identify COVID-19 patients, Brown et al., from 

Cambridge University gathered cough audio recordings. 

The dataset was provided with us by 7,000 people, 200 

of whom tested positive for COVID-19. CNN 

Convolutional Neural Networks) as well as SVM with 

RBF (Radial Basis Function) and DA (Data 

Argumentation) were utilised to recognise cough noises. 

AUC (Area Under Curve) for positive samples vs. 

negative samples using VGGish observed to be 82% 

[14]. In order to identify coughs and evaluate 

classification model accuracy, this research takes a novel 

strategy by concentrating on spectral but also statistical 

aspects. Using a RF (Random Forest) Classifier using 

thirty trees and Nine characteristics derived from cough 

audio signals, Ramola, R. C. et al., [15], [16], 

[17] identified data from a web-based application with an 

accuracy rate of 66.74%. In contrast to earlier research, 

this study extracts additional characteristics and 

evaluates the accuracy of several classification models in 

order to choose the ML model with the best accuracy 

while also accounting for computational complexity and 

hardware implementation. 

The study "Machine learning based COVID-19 cough 

categorization models-a comparative analysis" (RF-

MFCCs) by Ramana, Kadiyala et al. [18], [19] evaluates 

multiple machine learning models for COVID-19 

identification from cough audio signals. To evaluate 

SVM, LR, and Random Forest models, the authors 

gathered cough audio samples from COVID-19 positive 

and negative patients (RF). The study employed MFCC 

characteristics to train classifiers and discovered that the 

RF model outperformed the other models with an 

accuracy of 85.2%. The authors conclude that machine 

learning models can categorise COVID-19 cough audio 

signals and that MFCCs characteristics can detect 

COVID-19 early. 

Since they reliably capture cough audio signals, spectral 

and Mel-frequency cepstral coefficients (MFCCs) 

properties of cough audio signals may be utilised to train 

machine learning models. Previous research has 

employed spectral characteristics to differentiate distinct 

cough audio signals by capturing the frequency content 

of the cough signal. The spectral envelope of the cough 

signal is captured by mel-frequency cepstral coefficients, 

which are employed in speech recognition. These 

characteristics are excellent for real-time applications 

since they are computationally efficient and easy to 

extract. Given that coughing is a prevalent COVID-19 

symptom, employing these characteristics to train 

machine learning models for COVID-19 identification 

from cough audio signals makes sense. This paper 

suggested an adaptive boosting-based supervised 

learning method that predicts Covid-19 using the spectral 

and Mel-frequency cepstral coefficients (MFCCs) of 

cough audio signals. 

3 Methods and Materials Used 

The process of predicting Covid-19 using a machine 

learning model trained from the features of cough audio 

signals can be broken down into several steps: 

• Data collection: The first step is to collect a dataset of 

cough audio signals from individuals who are 

infected with Covid-19 and those who are not. The 

dataset should be diverse and representative of the 

population being tested. 

• Preprocessing: The raw cough audio signals are 

preprocessed to remove noise and enhance the signal 

quality. This involves filtering, normalization, and 

other signal processing techniques. 

• Feature extraction: The preprocessed cough audio 

signals are then analyzed to extract a set of features 

that are characteristic of Covid-19. These features 

may include spectral and temporal properties of the 

cough audio signal, such as the power spectrum, 

spectral centroid, and RF-MFCCs. 

• Training the machine learning model: The extracted 

features are then used to train a machine learning 

model, such as a neural network or support vector 

machine. The model is trained on a subset of the 

dataset using a supervised learning approach, where 

the features of the cough audio signals are used as 

input and the corresponding Covid-19 status is used 

as output. 

• Testing the machine learning model: Once the 

machine learning model is trained, it is tested on the 

remaining portion of the dataset to evaluate its 

performance. This involves calculating metrics like 

accuracy, precision, recall, as well as F1 score. 
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• Validation: This step intends to validate the 

performance of the machine learning model on new 

and independent datasets. This ensures that the model 

is robust and generalizes well to new data. 

In practice, the process of predicting Covid-19 using 

machine learning models can be iterative, involving 

multiple rounds of data collection, preprocessing, feature 

extraction, and model training. The goal is to develop a 

highly accurate and reliable model that can be used to 

diagnose Covid-19 quickly and non-invasively. 

There is growing evidence that the cough audio signal 

produced by individuals infected with COVID-19 can 

provide valuable information about the presence and 

severity of the disease. Studies have shown that COVID-

19 patients exhibit distinct cough patterns and acoustic 

features compared to healthy individuals or patients with 

other respiratory diseases. These differences are believed 

to be caused by the unique pathophysiology of COVID-

19, such as inflammation and damage to the respiratory 

system, and may be used to develop accurate and non-

invasive diagnostic tools for COVID-19. 

Machine learning models have been shown to be 

effective in identifying patterns and relationships in 

complex and large datasets, such as the cough audio 

signals of COVID-19 patients. By using cough audio 

signals as input to train machine learning models, we can 

extract a set of features that are characteristic of COVID-

19 and can be used to predict the presence and severity 

of the disease. These features may include spectral and 

temporal properties of the cough audio signal, such as 

the power spectrum, spectral centroid, and RF-MFCCs, 

which are sensitive to changes in the vocal tract and 

respiratory system. 

Furthermore, the use of cough audio signals as input to 

machine learning models has several advantages over 

other diagnostic methods for COVID-19. Cough audio 

signals can be collected remotely and non-invasively, 

making it possible to screen large populations quickly 

and without risking exposure to the virus. Additionally, 

cough audio signals are relatively easy to collect and 

analyze, making it possible to develop low-cost and 

scalable diagnostic tools that can be used in resource-

limited settings. 

Adaboost is a popular machine learning algorithm that 

combines multiple weak classifiers to create a strong 

classifier. It works by iteratively training weak classifiers 

on a weighted version of the training data and then 

combining the weak classifiers into a single strong 

classifier. Adaboost has been shown to be effective in a 

wide range of machine learning tasks, including 

classification. 

In the context of predicting Covid-19 from cough audio 

signals, Adaboost can be trained using the spectral 

features of cough audio signals from Covid-19 infected 

and normal patients. The trained Adaboost model can 

then be used to predict whether a new cough signal is 

indicative of Covid-19 infection or not. 

The spectral features of cough audio signals are based on 

the frequency content of the signal and have been shown 

to be informative in distinguishing between Covid-19 

infected and normal patients. The features are extracted 

using signal processing techniques and can be used as 

input to machine learning algorithms such as Adaboost. 

The use of Adaboost in this context is justified by its 

ability to combine multiple weak classifiers into a strong 

classifier, which can improve the accuracy and 

robustness of the prediction model. Additionally, 

Adaboost can handle noisy data and is less prone to 

overfitting than some other machine learning algorithms. 

Overall, the Adaboost algorithm trained on the spectral 

features of cough audio signals from Covid-19 infected 

and normal patients is a promising approach for 

predicting Covid-19 from cough audio signals. However, 

as with any machine learning algorithm, further 

validation and testing on independent datasets is needed 

to fully evaluate its effectiveness and potential clinical 

utility. 

3.1 Features 

There are several features of a cough signal that can be 

used to train a machine learning model to predict 

COVID-19, including Spectral features and Mel-

frequency cepstral coefficients (MFCCs). The Spectral 

features capture the frequency content of the cough 

signal, such as the power spectrum, spectral centroid, and 

spectral entropy. COVID-19 coughs may have a distinct 

frequency spectrum compared to healthy coughs, which 

can be captured by these features. Mel-frequency 

cepstral coefficients (MFCCs) are commonly used in 

speech recognition and capture the spectral envelope of 

the cough signal. COVID-19 coughs may have a distinct 

patterns compared to healthy coughs, which can be used 

to distinguish between the two. In summary, a range of 

features can be extracted from cough audio signals and 

used to train a machine learning model to predict 

COVID-19. The most effective features will depend on 

the specific dataset and machine learning algorithm used, 

and may require further validation and refinement. 

3.2 Extracting the Features  

To extract spectral features from a cough signal that can 

be used to train a machine learning model to predict 

COVID-19, you can follow these general steps: 
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3.2.1 Preprocessing:  

The first step is to preprocess the cough signal to remove 

noise and artifacts that can affect the spectral analysis. 

Common preprocessing steps include filtering, 

normalization, and windowing. Preprocessing is a critical 

step in analyzing cough audio signals for machine 

learning models to predict COVID-19. It involves 

applying a series of signal processing techniques to the 

raw cough signal to prepare it for further analysis. The 

main goal of preprocessing is to remove noise and 

artifacts that can affect the accuracy and reliability of 

subsequent analyses. These can include environmental 

noise, speech artifacts, and other sources of interference 

that can distort the cough signal. There are several 

common preprocessing techniques that can be applied to 

cough audio signals, including: 

• Filtering: This involves applying a digital filter to the 

cough signal to remove unwanted frequencies. 

Common types of filters include high-pass, low-pass, 

and band-pass filters. 

• Normalization: This involves scaling the amplitude of 

the cough signal to a standard range. This can help to 

ensure that the signal has a consistent amplitude 

across different samples. 

• Windowing: This involves dividing the cough signal 

into overlapping segments, or windows, to reduce the 

effects of spectral leakage and improve the resolution 

of the spectral analysis. 

• Resampling: This involves changing the sampling 

rate of the cough signal to match the requirements of 

the subsequent analysis. This can be useful for 

reducing the computational complexity of subsequent 

analyses or for matching the sampling rate of 

different datasets. 

Overall, the preprocessing step is critical for ensuring 

that the cough signal is in a suitable format for further 

analysis. By removing noise and artifacts, preprocessing 

can improve the accuracy and reliability of subsequent 

analyses and help to ensure that the machine learning 

model is able to accurately predict COVID-19. 

The mathematical model of preprocessing in the context 

of analyzing cough audio signals involves applying a 

series of mathematical operations to the raw signal to 

prepare it for further analysis. These operations can be 

represented by mathematical equations, which can be 

implemented using software or programming languages. 

One of the most common mathematical operations used 

in preprocessing cough audio signals is filtering. 

Filtering involves applying a mathematical function, 

called a filter, to the cough signal to remove unwanted 

frequencies. The filter can be represented by a 

mathematical equation, such as:  Eq 1 

( )  ( ) 
0 1

( ) ( ) ( )

1 1

F F

n n k n kk k
k k

y b x a y− −

= =

= −   ... (Eq 1) 

Where 
( )ny is the filtered output signal at sample 

( ), nn x  

is the input signal at sample 
( ), kn b  and ( )a k  are the 

filter coefficients, and 0F and 1F  are the sequence of 

filter in order. 

Another common operation used in preprocessing is 

normalization. This involves scaling the amplitude of the 

cough signal to a standard range, typically between -1 

and 1. This can be achieved using a simple mathematical 

equation, such as: Eq 2 

( ) ( )

( )

( ) ( )

( min )

(max min )

n x

n

x x

x
Nr

−
=

−
... (Eq 2) 

Where 
( )nNr  is the normalized output signal at sample 

n , 
( )nx  is the input signal at sample n , and min( )x  

and max( )x  are the minimum and maximum values of 

the input signal, respectively. 

Windowing is another important operation used in 

preprocessing. This involves dividing the cough signal 

into overlapping segments, or windows, to reduce the 

effects of spectral leakage and improve the resolution of 

the spectral analysis. This can be achieved using a 

mathematical function, such as the Hamming window: 

Eq 3 

( ) 0.54 0.46cos(2 / )w n n N= − ...(Eq 3) 

Where ( )w n  is the window function at sample n , and 

N  is the window length. 

Resampling is another important operation used in 

preprocessing. This involves changing the sampling rate 

of the cough signal to match the requirements of the 

subsequent analysis. This can be achieved using 

mathematical techniques, such as interpolation or 

decimation. 

Overall, the mathematical model of preprocessing 

involves applying a series of mathematical operations to 

the raw cough signal to prepare it for further analysis. 

These operations can be represented by mathematical 

equations, which can be implemented using software or 

programming languages. 

3.2.2 Fourier Transform: 

 The cough signal can be transformed into the frequency 

domain using the Fourier transform. This converts the 

cough signal from the time domain into the frequency 

domain, allowing us to analyze its spectral content. The 
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mathematical model of the Fourier transform involves 

expressing a time-domain signal as a sum of complex 

sinusoids of different frequencies. The Fourier transform 

allows us to analyze the frequency content of a signal 

and is widely used in signal processing applications. 

The Fourier transform of a continuous-time signal ( )x t  

is defined as: Eq 4 

  ( ) ( )( ) , ^ 2X f x t e j ft dt =  −  −  ...(Eq 4) 

//where ( )X f  is the frequency-domain representation 

of the signal, f  is the frequency variable, and 

( )^ 2e j ft−  is the complex exponential function. 

The Fourier transform of a discrete-time signal  x n  is 

defined as: Eq 5 

    ( )0 1 ^ 2 /X k n N x n e j nk N= = − −
...(Eq 5) 

//where  X k  is the frequency-domain representation 

of the signal, k  is the frequency bin index, and N  is 

the number of samples in the signal. 

The inverse Fourier transform is used to recover the 

original time-domain signal from its frequency-domain 

representation: 

 ( ) , ( ) ^ ( 2 )x t X f e j ft df=  −   //for 

continuous-time signals, and

  ( )1/ 0 1 [ ] ^ ( 2 / )x n N k N X k e j nk N= = −  

//for discrete-time signals. 

The Fourier transform has many properties that are 

useful in signal processing, including linearity, time 

shifting, frequency shifting, convolution, and correlation. 

These properties allow us to manipulate signals in the 

frequency domain, which can be more efficient and 

convenient than manipulating signals in the time domain. 

In summary, the mathematical model of the Fourier 

transform involves expressing a time-domain signal as a 

sum of complex sinusoids of different frequencies. The 

Fourier transform allows us to analyze the frequency 

content of a signal and is widely used in signal 

processing applications. The Fourier transform has many 

properties that are useful in signal processing, including 

linearity, time shifting, frequency shifting, convolution, 

and correlation.  

3.2.3 Power Spectrum:  

The power spectrum is the squared magnitude of the 

Fourier transform, which represents the distribution of 

signal energy across different frequencies. It can be 

calculated using the fast Fourier transform (FFT) 

algorithm. The mathematical model of the power 

spectrum involves calculating the distribution of power 

or energy of a signal across different frequencies. This is 

achieved by taking the Fourier transform of the signal 

and then squaring the magnitude of the resulting 

complex values. 

For a continuous-time signal ( )x t , the power spectrum 

( )S f  is given by: 

( ) ( ) ^ 2S f X f= //where ( )X f  is the Fourier 

transform of ( )x t . The magnitude of ( )X f  represents 

the amplitude of the frequency component at a given 

frequency f , and squaring the magnitude gives the 

power or energy at that frequency. 

For a discrete-time signal [ ]x n , the power spectrum 

[ ]S k  is given by: 

[ ] [ ] ^ 2S k X k=  //where [ ]X k  is the Fourier 

transform of [ ]x n . The magnitude of [ ]X k  represents 

the amplitude of the frequency component at a given 

frequency bin k, and squaring the magnitude gives the 

power or energy at that frequency. 

The power spectrum can be thought of as a plot of the 

power or energy of a signal at different frequencies. The 

x-axis represents frequency, and the y-axis represents the 

power or energy at each frequency. The shape of the 

power spectrum can reveal information about the 

frequency content of the signal, such as the dominant 

frequencies and the bandwidth of the signal. 

In the context of predicting COVID-19 from cough audio 

signals using machine learning, the power spectrum is 

often used as a feature for training machine learning 

models. By analyzing the power spectrum of cough 

audio signals from COVID-19 patients and comparing 

them to cough audio signals from healthy individuals, 

machine learning models can learn to distinguish 

between the two groups based on differences in the 

power spectrum. In summary, the mathematical model of 

the power spectrum involves calculating the distribution 

of power or energy of a signal across different 

frequencies, by taking the Fourier transform of the signal 

and squaring the magnitude of the resulting complex 

values. The power spectrum can reveal information 

about the frequency content of a signal and is often used 

as a feature for training machine learning models in the 

context of predicting COVID-19 from cough audio 

signals. 
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3.2.4 Spectral Centroid and Spectral Entropy 

The spectral centroid is a measure of the center of 

gravity of the power spectrum, which can provide 

information about the dominant frequency of the cough 

signal. It can be calculated by taking a weighted average 

of the frequency values of the power spectrum. The 

spectral entropy is a measure of the randomness or 

disorder in the power spectrum, which can provide 

information about the variability of the cough signal 

across different frequencies. It can be calculated by 

computing the Shannon entropy of the power spectrum. 

The mathematical model of spectral centroid and spectral 

entropy involves calculating the weighted average of the 

frequencies and the degree of randomness or uncertainty 

in the power spectrum of a signal, respectively. 

The signal's power spectrum is first determined by 

considering the FT (Fourier transform) to get the spectral 

centroid. The signal's frequency content is represented by 

the power spectrum, which also indicates how much 

power or energy is contained at each frequency bin. The 

spectral centroid is then determined by taking a 

weighted-average of the frequencies included in the 

power spectrum, along with the weights determined by 

the power at each frequency. The following is the 

mathematical expression for the spectral centroid: 

Spectral centroid = 

_ * ( _ ) / ( ( _ ))f i P f i P f i  //where _f i  is 

the frequency of the 
thi  frequency bin in the power 

spectrum, and ( _ )P f i  is the power or energy at that 

frequency. 

Spectral entropy is calculated by first computing the 

power spectrum of a signal using the Fourier transform, 

and then computing the Shannon entropy of the power 

spectrum. The Shannon entropy is a measure of the 

amount of uncertainty or randomness in a probability 

distribution, and for the power spectrum, it gives the 

degree of randomness or structure in the spectral content 

of a signal. The mathematical formula for spectral 

entropy is: 

Spectral entropy = ( ( _ )*log 2( ( _ ))P f i P f i−
//where ( _ )P f i  is the power or energy at the 

thi  

frequency bin in the power spectrum. 

In summary, the mathematical model of spectral centroid 

involves calculating the weighted average of the 

frequencies in the power spectrum of a signal, while the 

mathematical model of spectral entropy involves 

calculating the Shannon entropy of the power spectrum 

to measure the degree of randomness or structure in the 

spectral content of a signal. These features can provide 

valuable information about the spectral content of a 

signal and are often used as input to machine learning 

models for predicting COVID-19 from cough audio 

signals. 

3.2.5 Mel-frequency cepstral coefficients (MFCCs) 

MFCCs are derived from the power spectrum of a signal, 

which is first computed using the Fourier transform. The 

power spectrum represents the energy or power of each 

frequency component in the signal, and is typically 

represented on a linear frequency scale. However, the 

human auditory system is more sensitive to changes in 

pitch at lower frequencies than at higher frequencies, and 

as such, it is often more appropriate to use a logarithmic 

frequency scale, such as the Mel scale, which is a 

perceptual frequency scale based on the human ear's 

response to sound. To compute MFCCs, the power 

spectrum of a signal is first mapped onto the Mel scale 

using a bank of overlapping triangular filters. Each filter 

is designed to mimic the frequency response of the 

human auditory system, with a higher resolution at lower 

frequencies and a coarser resolution at higher 

frequencies. The outputs of each filter are then 

transformed using a logarithmic function, and the 

resulting Mel-frequency spectrum is transformed using 

the discrete cosine transform (DCT) to obtain the 

MFCCs. The resulting MFCCs represent the spectral 

envelope of the signal, and are typically represented as a 

sequence of coefficients, with each coefficient 

representing a particular aspect of the spectral envelope, 

such as the overall shape of the spectrum, the spectral 

peaks, and the spectral valleys. These coefficients are 

often used as features for training machine learning 

models for speech and audio recognition tasks, and have 

been found to be effective in predicting COVID-19 from 

cough audio signals as well. The computation of Mel-

frequency cepstral coefficients (MFCCs) involves 

several mathematical steps: 

• Compute the power spectrum of the signal: The 

power spectrum represents the energy or power of 

each frequency component in the signal, and is 

typically computed using the fast Fourier transform 

(FFT) algorithm. 

• Map the power spectrum onto the Mel scale: The Mel 

scale is a perceptual frequency scale based on the 

human ear's response to sound. It is typically 

computed using a bank of overlapping triangular 

filters that are evenly spaced on the Mel scale. 

• Take the logarithm of the Mel-frequency spectrum: 

The logarithm of the Mel-frequency spectrum is 

computed to compress the dynamic range of the 

spectrum and to emphasize the low-frequency 

components of the signal. 
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• Compute the discrete cosine transform (DCT) of the 

log Mel-frequency spectrum: The DCT is a linear 

transformation that converts a sequence of data points 

into a set of frequency coefficients. In the case of 

MFCCs, the DCT is used to decorrelate the log Mel-

frequency spectrum and obtain a set of coefficients that 

represent the spectral envelope of the signal. 

• Select the first N  coefficients: The resulting MFCCs 

are typically represented as a sequence of coefficients, 

with each coefficient representing a particular aspect of 

the spectral envelope. The first N  coefficients are 

typically retained as features for machine learning 

applications, where N  is a user-defined parameter. 

The resulting MFCCs can be used as features for training 

machine learning models for various signal processing 

and recognition tasks, including speech and audio 

recognition, music analysis, and the prediction of 

COVID-19 from cough audio signals. 

3.3 Selecting Optimal Features 

The Kruskal-Wallis test (KW-test) [19] and  [20], [21], 

[22] is a non-parametric statistical test used to determine 

whether there are significant differences between the 

median values of two or more groups. In the context of 

using features for machine learning, the KW-test can be 

used to determine whether a particular feature is 

significantly different between the two labels (e.g. 

Covid-19 infected vs. normal) and therefore a potentially 

useful feature for machine learning. Here are the steps to 

use the Kruskal-Wallis test to identify whether a given 

feature is optimal or not for machine learning: 

• Select a feature to test: Choose one feature to test at a 

time. Let's call this feature X . 

• Group the data by label: Group the data by label 

(Covid-19 infected vs. normal) and calculate the 

median value of feature X  for each group. 

• Calculate the test statistic: Calculate the Kruskal-

Wallis test statistic using the median values of feature 

X  for each group. The formula for the test statistic is: 

(12 / ( ( 1)))* (( _ ( 1) / 2) ^ 2 / )H n n sum R i n ni= + − +

 //where n is the total sample size, ni  is the 

sample size of the 
thi  group, _R i  is the sum of ranks 

of the 
thi  group, and the sum is over all groups. 

• Calculate the p-value: Calculate the p-value for the 

Kruskal-Wallis test statistic. This can be done using a 

table or statistical software. 

• Interpret the results: If the p-value is less than a 

predetermined significance level (e.g. 0.05), then there 

is evidence to reject the null hypothesis that the median 

values of feature X  are equal between the two labels. 

In other words, feature X  is significantly different 

between the two labels and may be a useful feature for 

machine learning. 

If the p-value is greater than the significance level, then 

there is insufficient evidence to reject the null hypothesis 

and feature X  may not be a useful feature for machine 

learning. 

Repeat these steps for each feature to determine which 

features are optimal for machine learning. 

3.4 Classification Process 

Adaptive Boosting (Adaboost), is a machine learning 

technique that may be used for both classification and 

regression problems. It operates by integrating numerous 

weak as well as simple models to generate a strong but 

rather complex model. In Adaboost, each weak model is 

assigned a weight based on its performance on the 

training data. The models are then combined into a final 

strong model, where each weak model's contribution is 

weighted according to its performance. The algorithm 

works in the following steps: 

• Initialize weights: Each training example is given an 

initial weight of 1/n, where n is the total number of 

training examples. 

• Train a weak model: A simple or weak model is 

trained on the training data using the weights 

assigned to each example. 

• Evaluate the weak model: The weak model is 

evaluated on the training data, and its performance is 

measured using a loss function (such as 

misclassification error). 

• Update weights: The weights of each training 

example are updated based on their performance. 

Misclassified examples are given higher weights, 

while correctly classified examples are given lower 

weights. This ensures that the next weak model will 

focus more on the difficult examples. 

• Combine weak models: The weights of the weak 

models are combined to create a final strong model, 

where each weak model's contribution is weighted 

according to its performance. 

• Repeat steps 2-5: Steps 2-5 are repeated multiple 

times to create multiple weak models and combine 

them into a final strong model. 

In the end, the final strong model is able to correctly 

classify or predict the output for the new input data. 

Adaboost is particularly useful when the data is complex 

and has a lot of noise, as it can effectively reduce the 

noise and improve the accuracy of the predictions. 

The algorithmic steps for Covid-19 prediction using 

Adaboost that trained by the features of cough audio 
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signals covid-19 infected and normal can be summarized 

as follows: 

Preprocessing: 

a. Cough audio signals are recorded using an 

appropriate device 

b. The signals are preprocessed to remove noise and 

artifacts 

c. Spectral features such as MFCCs, spectral centroid, 

and spectral entropy are extracted from the cough 

audio signals 

Data preparation: 

a. The spectral features of the cough audio signals are 

extracted from both Covid-19 infected and normal 

individuals. 

b. The data is split into training and testing sets. 

c. The features are normalized to ensure that each 

feature has equal importance. 

Training the Adaboost model: 

a. An Adaboost model is initialized with a weak 

classifier. 

b. The model is trained on the normalized features of 

cough audio signals from both Covid-19 infected and 

normal individuals. 

c. The model is iteratively trained by adjusting the 

weights of misclassified samples. 

Testing the model: 

a. The testing set is fed into the trained Adaboost 

model. 

b. The model outputs a prediction of whether the cough 

signal belongs to a Covid-19 positive and negative 

individual. 

Evaluation: 

a. Metrics including accuracy, precision, sensitivity, and 

specificity are used to assess Adaboost's 

performance. 

b. If the performance of the model is satisfactory, it can 

be deployed for real-time Covid-19 prediction. 

In summary, the Adaboost algorithm is used to learn a 

model from the spectral features of cough audio signals 

from Covid-19 positive and negative individuals. The 

trained model is then used to predict whether an 

individual is infected with Covid-19 based on their 

cough signal. 

The mathematical model for Covid-19 prediction using 

Adaboost that trained by the features of cough audio 

signals can be defined as follows: 

Preprocessing: 

➢ Let X  be the cough signal of an individual, and 

_X pre  be the preprocessed signal. 

➢ _ Pr ( )X pre eprocess X=  

Data preparation: 

➢ Let F  be the spectral features extracted from the 

cough audio signals, and _F norm  be the 

normalized features. 

➢ _ ( ( )) / ( )F norm F mean F std F= −  

Training the Adaboost model: 

➢ Let D  be the training set, and w  be the weight 

vector for the training samples. 

➢ Adaboost ( )D : 

➢ Initialize a weak classifier h  

➢ for 1t =  to T: 

➢ Train h on D  with weights w  

➢ Compute error rate _e t  of h  on D  

➢ 1/ 2*1 ((1 _ ) / _ )_C t n e t e tompute alpha = −

 

➢ Update w  to give more weight to misclassified 

samples 

➢ Normalize w  to ensure that it is a probability 

distribution 

➢ Combine h  with the weighted ensemble of previous 

classifiers 

Testing the model: 

➢ Let _F test  be the spectral features of the testing 

set, and _Y pred  be the predicted labels. 

➢ _ ( _ )Y pred Adaboostpredict F test=  

Evaluation:  

➢ Let _Y true  be the true labels of the testing set, and 

M  be the performance metric. 

➢ ( _ , _ )M Y true Y pred  

In summary, the Adaboost algorithm iteratively trains a 

weak classifier on the normalized spectral features of 

cough audio signals from Covid-19 infected and normal 

individuals, while adjusting the weights of misclassified 

samples. The trained model is then used to predict 

whether an individual is infected with Covid-19 based on 

their cough signal. Lastly, the efficacy of the 

suggested model is assessed using measures such as 

precision, accuracy, sensitivity, as well as specificity. 

4 Experimental Study 

In this comparative study, we will compare the 

performance of two machine learning models, ABSL and 
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RF-MFCCs [16] using 4-fold cross-validation. We will 

use four performance metrics: precision, sensitivity, 

specificity, and accuracy, to assess the significance of the 

models. The goal of the study is to identify the better-

performing model for the binary classification task at 

hand. 

Dataset: The dataset used in this study is a binary 

classification dataset is having 150 samples. Each record 

represents values for 51 features, and the target variable 

is binary. The dataset is split into a training set including 

a test set, with a ratio of 75:25. The models are being 

trained by the records of training set, whereas the records 

of the test set are being used to evaluate the performance 

of the models. 

Models: The two machine learning models used in this 

study are suggested ABSL and existing RF-MFCCs. 

Both models are ensemble learning models that 

ensembles multiple weak learners. 

Methodology: To assess the effectiveness of the models, 

we employ 4-fold cross-validation. The dataset is divided 

into 4 equal pieces for 4-fold cross-validation. The last 

piece is used to evaluate the model after three of the 

pieces have been used to train it. Each component is 

utilised as that of the test set for each of the four 

iterations of this method. The model's overall 

performance is calculated by averaging the results from 

each fold. 

Performance Metrics: We employ four performance 

indicators to assess the model's efficacy: 

accuracy, sensitivity, precision, and specificity. Precision 

is the percentage of positive forecasts that come true. 

The sensitivity of a model is defined as the percentage of 

true positive situations that it accurately identifies. 

Specificity is the percentage of actual negative situations 

that the model accurately identifies. Accuracy is the 

percentage of true predictions produced by the model. 

We used four performance metrics to evaluate the 

models: precision, sensitivity, specificity, and accuracy. 

Precision is the fraction of actual positive instances 

among all anticipated positive cases. It is defined as: Eq 

6 

Pr
( )

TP
ecision

FP TP
=

+
...(Eq 6) 

Where TP  is the number of real positive instances, 

whereas FP  represents the cases that are falsely 

selected as positive. 

Sensitivity measures the proportion of true positive cases 

among all the actual positive cases. It is defined as: Eq 7 

( )

TP
Sensitivity

FN TP
=

+
...(Eq 7) 

Where TP  represents total number of the true positive 

instances and FN  represents total number of the false 

negatives. 

Specificity measures the proportion of true negative 

cases among all the actual negative cases. It is defined 

as: Eq 8 

/ ( )Specificity TN TN FP= + ...(Eq 8) 

Where FP  is the total number of the true negatives and 

TN is the total number of the false positives. 

Accuracy measures the proportion of correct predictions 

among all the predictions. It is defined as: Eq 9 

TN TP
Accuracy

TN FP TP FN

+ 
=  

+ + + 
 ...(Eq 9) 

Where TP  represents the total number of the true 

positives, TN  represents the total number of 

the negative cases, FP  represents the total number of 

the false positives, whereas FN  represents the 

total number of the false negatives. 

4.1 Results 

The results of the 4-fold cross-validation show that 

ABSL outperforms RF-MFCCs in all four performance 

metrics: precision, sensitivity, specificity, and accuracy. 

4.1.1 Precision: 

ABSL has a precision of 0.97 and a SD (standard 

deviation) of 0.005. RF-MFCCs have a precision of 0.95 

and SD of 0.003. The precision observed from each fold, 

as well as the mean and SD of the precision of both 

suggested and existing models, are shown in the figure 

1 below.
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Fig. 1: Precision of 4-folds of leave-pair-out cross-validation of ABSL, and RF-MFCCs 

The results show that ABSL has a higher precision than 

RF-MFCCs, indicating that ABSL is better at identifying 

positive cases correctly. This is an important 

performance metric in this binary classification task, as it 

is essential to correctly identify positive cases. 

4.1.2 Sensitivity: 

The sensitivity Figure 2 of ABSL is 0.83, with SD as 

0.0003. The sensitivity of RF-MFCCs is 0.73, with SD as 

0.003. The figure 2 below shows the sensitivity values 

for each fold and the mean and SD of the sensitivity for 

both models. 

 

Fig. 2: Sensitivity of 4 folds of leave-pair-out cross-validation of ABSL, and RF-MFCCs 

4.1.3 Specificity 

The model's specificity may be determined for 

each fold in the cross-validation, as shown in Figure 3. 

The specificity represents the percentage of true 

negatives to the total number of real negatives. The 

model's ability to consistently detect the negatives may 

then be estimated by computing the mean including 

SD of the specificity over the four folds. 
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Fig. 3: Specificity exhibited by 4-folds of leave-pair-out cross-validation of ABSL, and RF-MFCCs 

4.1.4 Accuracy:  

Similar to specificity, for each of the four folds in the 4-

fold cross-validation, we can calculate the accuracy. The 

Figure 4 represents accuracy of each fold, which is the 

proportion of correctly classified instances out of the 

total instances for that fold. We can then assess the mean 

with SD of the accuracy across the four folds to get an 

idea of how well the model is performing on average. 

 

Fig. 4: Accuracy of 4-folds of leave-pair-out cross-validation of ABSL, and RF-MFCCs 

In the table, we can see the accuracy and specificity for 

each fold of both ABSL and RF-MFCCs, as well as the 

mean with SD across the four folds. From the table, we 

can see that ABSL has a higher mean accuracy and 

specificity than RF-MFCCs, with lower standard 

deviation, indicating that ABSL is performing better on 

average and is more consistent. 

By analyzing these statistics, we can gain insight into the 

performance of the models and compare them. A model 

with higher mean accuracy and specificity and lower SD 

denotes a more stable and reliable performance, while a 

model with lower accuracy and specificity and higher SD 

indicates a less reliable performance. 

5 Conclusion 

In conclusion, the use of machine learning approaches 

towards Covid-19 prediction from cough audio signals 

shows great promise in providing a non-invasive, 

accurate, and scalable diagnostic tool for Covid-19. In 

particular, the Adaptive Boosting (Adaboost) algorithm 

has shown to be effective in combining multiple weak 

classifiers into a strong classifier, and has the potential to 

improve the accuracy and robustness of the prediction 

model. The spectral features extracted from cough audio 

signals can be used as input to train Adaboost, and the 

resulting model can accurately predict the presence and 
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severity of Covid-19 infection. However, further 

validation and testing on independent datasets is needed 

to fully evaluate the effectiveness and potential clinical 

utility of this approach. With continued research and 

development, machine learning-based Covid-19 

prediction models from cough audio signals could play a 

significant role in controlling the spread of the disease 

and mitigating its impact on global health. 

The proposed Adaboost (Adaptive Boosting) based 

supervised learning strategy for Covid-19 prediction 

using cough audio signals exhibits significant results in 

terms of Precision, accuracy, sensitivity, as well 

as specificity. The model successfully identified Covid-

19 infected patients based on cough audio signals, which 

is exhibiting accuracy of 0.895 and a sensitivity of 0.824. 

Furthermore, the use of Adaboost, which combines 

multiple weak classifiers to create a strong classifier, 

proved to be a suitable approach for this specific task. In 

order to successfully differentiate between patients 

infected with Covid-19 and healthy controls, spectral 

characteristics of cough audio signals were used as input 

to the Adaboost model. The findings of this study show 

that utilising machine learning algorithms to estimate 

Covid-19 from cough audio signals can be a successful 

and non-invasive method. This method has a number of 

benefits, including the ability to handle large populations 

and remote data collection. The study also emphasises 

the need for more investigation to enhance the model's 

precision and reliability. For example, the inclusion of 

more diverse and representative datasets may improve 

the generalizability of the model. In addition, the study 

was limited to binary classification (Covid-19 infected 

vs. normal), and future research could explore the 

adaptation of machine learning algorithms for the 

prediction of disease severity. Overall, the exhibited 

results signifying that Adaboost-based supervised 

learning approach for Covid-19 prediction from cough 

audio signals has potential clinical utility, and further 

research can help to develop accurate, scalable and 

reliable diagnostic tools for Covid-19 detection. 
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