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Abstract: Data mining is the finest technique for extracting knowledge from patient routes. Medical occurrences are intricately 

organized in event logs and frequently documented using several medical codes. Before applying process mining analysis, labeling these 

occurrences properly is challenging. This study presents a new method for managing complex events in medical records. Improved deep 

auto-encoding (IDAE) generates precise labels by grouping similar events in latent space. Also, an explanation is given by decoding the 

instances that correspond to the generated labels. When tested on simulated events, the method successfully uncovered hidden clusters in 

sparse binary data and provided precise justification for created labels. Real medical data are used in a case study. The outcomes support 

the theory's effectiveness in knowledge extraction from complicated event logs depicting patient pathways. 

Keywords: data analysis, learning model, medical data representation, clustering, mining data 

1. Introduction 

The study of data generated in several systems, including 

those used in business, software development, and 

healthcare, combines many techniques. The ability to 

forecast outcomes or merely characterize the truth of facts 

can be achieved by extracting knowledge from such data 

[1]. Event logs present unique challenges for data analysts 

since they contain time, have high variability, and have 

intricate relationships between events. As a result, common 

data mining algorithms may need to be more obscure for 

some applications. To gather relevant data, a careful pre-

processing step can be required [2]. These data describing 

processes can be found in the manufacturing, software 

engineering, and healthcare sectors. A data-driven strategy 

called process mining has been suggested to evaluate event 

logs. Event logs are unbiasedly utilized in addition to 

process modeling and data mining [3]. 

A claim database that is not clinical is French National 

Health Insurance Database (SNIIRAM). The volume of 

information is enormous and includes practically all 

French residents' healthcare reimbursements [4]. This 

database included 66 million people. Patients' 

hospitalizations are included in the SNIIRAM's list of 

payment details. However, the availability of specific 

medical data like vital signs, imaging reports, and test 

results could be improved [5]. The mapping of patient 

pathways, the clustering of medical data, and prediction 

tasks are all relevant tasks that may be performed with a 

database of this type. The intricacy of healthcare 

procedures is multifaceted [6]. Examples include free text, 

the level of detail in the events studied, and the 

simultaneous occurrence of many events that resulted in 

multiple codes defining a single event [7]. There may be a 

large number of these codes, which represent various 

medical tasks, and they frequently inherit hierarchical 

patterns. Since that relies on the pathology or health 

activity being investigated and is not always obvious, it is 

frequently important to employ medical competence to 

choose the optimum level to lead to productive actions [8]. 

The hierarchy still exists even though it might help 

simplify codes and lower total cardinality. One of the 

biggest problems with the non-clinical claim database is its 

complexity [9] – [10]. 

To examine the complexity of events and create 

meaningful labels, a novel methodology is presented in this 

work as its key contribution. The suggested method 

generates artificial labels from basic data using auto-

encoding and clustering. The raw event log changes once 

those labels are applied to events because the overall 

variance of the events is decreased. The strategy offers 

practitioners transparency by explaining each artificially 

manufactured label. To handle these issues, the proposed 

IDAE is anticipated as a method for feature representation. 

It consists of various improved auto-encoders. Features are 

extracted from prior lower-level features. Like traditional 

encoding, every IDAE's output must reconstruct the lower-

level features; however, the input data must reconstruct 

every layer. The layer-wise higher-level features are 

learned to represent prior features and input, which 

determines the data patterns superior to conventional AE. 
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To enhance the performance, the proposed model gives 

better flexibility. 

This essay has the following format. A list of related works 

is given in Chapter 2. Chapter 3 describes the suggested 

methodology. The design of experiments is explained in 

Chapter 4 to validate the strategy, and a research report 

relating to current medical sources is presented. 

Conclusions and points of view are presented in Chapter 5. 

2. Related Works 

The only goals of the complicated healthcare system are 

the prevention, identification, and treatment of illnesses or 

disabilities for human well-being [11]. Medical personnel 

(doctors or other health workers), medical centers (such as 

hospitals and clinics for supplying pharmaceuticals and 

other technology for treatment or diagnosis), and a 

financial institution supporting the first two are the three 

primary elements of the health industry [12] – [13]. The 

healthcare sector comprises many professions, including 

medicine, dentistry, psychology, nursing, midwifery, and 

physiotherapy. Several degrees of medical intervention are 

required based on the severity of the condition [14] – [15]. 

Professionals provide connectivity for primary care, highly 

expertise emergency care, diagnostic treatment and 

surgical/diagnostically treatments (quaternary care) [16]. 

Medical professionals are in charge of keeping an eye on 

the patient's health records, which include details on 

diagnoses and medications, clinical and medical data (such 

as information from radiology and lab examinations), and 

other confidential or personal health records [17]. Such 

patient medical records were traditionally kept as either 

physical copies or computerized records. A paper-based 

file system was used to keep track of all the results of 

medical exams [18]. 

The "All of Us" initiative, recently announced by the 

National Institutes of Health (NIH) and accessible at 

https://allofus.nih. gov, is noteworthy [19]. Over the 

coming years, it plans to gather information from one 

million patients or more, including medical imaging, EHR, 

and environmental and socio-behavioral data [20]. 

Handling recent healthcare-related data has become 

simpler thanks to EHRs. Below is a concise list of a few of 

the special benefits of using EHRs. The fundamental 

benefit of EHRs is that they give medical staff greater 

accessibility to a person's full medical history [21] – [23]. 

The data contains medical diagnoses, demographics, 

clinical narratives, prescriptions, laboratory test results, 

and information on known allergies [24] – [25]. 

Diagnosing and treating medical problems are now more 

time effective due to a lower delay for early test reports. 

With time, there has been a considerable reduction in extra 

and pointless exams, misplaced instructions, and 

discrepancies brought on by inconsistent handwriting [26] 

– [28]. There is a huge enhancement in treatment 

coordination among various medical professionals. The 

prevalence of drug allergies has decreased due to resolving 

such logistical errors in prescription dosage and frequency. 

Medical practitioners now have access to electronic and 

web-based platforms, considerably increasing their ability 

to practice medicine. These platforms provide automated 

alerts and cues for vaccinations, cancer screenings, 

abnormal test results, and routine examinations. 

Encouraging interaction among medical personnel and 

patients would result in better continuity of treatment and 

quick intervention [29]. Due to minimal paperwork, they 

are connected to digital authorization and quick insurance 

clearances. Fast data retrieval, improved public health 

surveillance through timely disease outbreak reporting, and 

improved key healthcare quality indicator reporting to 

organizations are all made possible by electronic health 

records (EHRs). EHRs can help manage the rising costs of 

medical insurance and can offer useful information 

regarding care provided to samples in workplace 

healthcare insurance. EHR reduces or eliminates delays 

and misunderstandings in claims management and billing. 

Millions of bits of important patient-life information are 

made accessible thanks to the internet and EHRs [30]. 

3. Methodology 

This section concentrates on modeling a novel deep auto-

encoder (see Fig 1) for data record analysis. A traditional 

stacking encoder may extract hierarchical characteristics 

based on the data input using a layer-wise pre-training 

method. Therefore, the high-level characteristics can be 

recovered by reducing the reconstruction error for the 

high-level characteristics' preceding low-level features. 

Since the reconstruction is inaccurate, the lowest to highest 

concealed layers have successive information loss. Hence, 

just a portion of the information from the raw data may be 

retained by the top-layer concealed features. Furthermore, 

it needs to be clarified how well each concealed layer's 

learned features specify underlying data. This issue is 

addressed by developing stacked auto-encoding. To help 

find the hidden features, the raw data input is transferred 

from each improved auto-encoder to the output layer that 

reconstructs the input layer. With this strategy, features 

have to reconstruct prior low-level features and the initial 

data. Hierarchical features could be methodically learned 

in a way that captures the observed raw data input from 

low to high layers by stacking several improved auto-

encoders to model deeper network. Additionally, because 

every upgraded auto-encoder must independently rebuild 

the raw input data, information loss only builds up over 

time. 

 

https://allofus.nih/
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Fig 1 Conventional encoder model 

3.1. Auto-encoding 

An improved deep auto-encoder abbreviated as IDAE 

includes the hidden, input, & output layers. IDAE intends 

to reconstruct concurrently using feature and data in input 

layer. Network diagram for the IDAE is shown in Fig 2. 

The hidden and input layers' variable vectors are called ℎ 

and 𝑧, corresponding to traditional auto-encoder. Here, 𝑥 

represents the raw input variable vector. In contrast to AE, 

IDAE's output layer attempts to collect data from the 

reconstructed input layer 𝑧̃ and input 𝑥. The terms 

"encoder parameters" and "decoder parameters" continue 

to be described as  𝑧 ∈ 𝑅𝑑, ℎ ∈ 𝑅1
𝑑, and 𝑧̃ ∈ 𝑅𝑑, 

respectively. Hence, their activation functions are 𝑓 and 𝑓. 

As a result, it is simple to determine that: 

[
𝒛̃
𝒙

] = 𝒈𝜽(𝒛) =  𝒇̃(𝒇(𝒛)) (1) 

At the input layer, using training samples of the raw 

observed data {𝑥1, 𝑥2, … , 𝑥𝑁} and the corresponding feature 

data 𝑧𝑖 ∈ {𝑧1, 𝑧2, . . , 𝑧𝑁}, the reconstruction function is 

minimized to obtain the hidden layer data and the model 

parameters as follows: 

𝑱(𝑾, 𝑾̃, 𝒃, 𝒃̃) =  
𝟏

𝟐𝑵
∑ (||𝒙𝒊 − 𝒙𝒊||

𝟐
𝑵

𝒊=𝟏

+ ||𝒛̃𝒊 − 𝒛𝒊||
𝟐

) 

(2) 

 

It makes it obvious that an improved encoder concentrates 

on restructuring its data from the input layer and aims to 

recreate the data. The input data structure for deep 

networks is crucial. 

 

 

 

 

 

 

 

 

Fig 2 Improved auto-encoding 

 

3.2. Stacking encoder 

A deep network can be built by a hierarchically stacking 

encoder. Fig 2 depicts the proposed encoder model for 

organizational structure. The input 𝑥 is first transmitted to 

the auto-encoder input to construct initial layer feature 

vector ℎ1. Input is reconstructed as 𝑥 at encoders' output. 

Initial auto-encoder pre-processing is done by utilizing the 

BP technique by lowering the reconstruction error among 

initial data 𝑥 and data 𝑥̃ is reconstructed. As this input 

layer only contains raw data, it should be highlighted that 

the encoder is a conventional auto-encoder. The second-

layer feature ℎ2 is created by connecting initial feature 

vector ℎ1 to encoders’ input layer. In output layer, first-
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layer feature ℎ1 and input data 𝑥 have all been 

synchronously recreated and are therefore referred to as ℎ̃1 

and 𝑥̃1, respectively. The second-layer feature data and 

associated network parameters can be obtained by pre-

training the encoder using the BP approach. As a result, 

until the 𝐾𝑡ℎ value is achieved, all 𝐾s can be built and 

trained independently. 

The deep encoder structure may be used to learn 

hierarchical aspects of observed data with encoder 1 and 

moving up to the 𝑘𝑡ℎ auto-encoder. The unique pre-

processing procedure for the auto-encoder is shown in Fig 

3. The first supply of the raw samples of observable data 

{𝑥1, 𝑥2, . . , 𝑥𝑁} is made to input layer of complete encoder. 

Initial feature data {ℎ1
1, ℎ2

1, . . , ℎ𝑁
1 } are produced by the first 

hidden layer employing weight and bias parameters of 

{𝑊1, 𝑏1} and non-linear activation function 𝑓. The feature 

learning technique cannot be applied because {𝑊1, 𝑏1} and 

{ℎ1
1, ℎ2

1 , … , ℎ𝑁
1 } is unknown. Therefore, encoder 1 is 

initially intended for pretraining. The encoder's first-level 

feature, ℎ1, uses the parameter {𝑊̃1, 𝑏̃1} and activation 

function 𝑓 to recreate data as 𝑥 at output layer. The 

encoders’ (1) objective function is reconstruction error 

over training data. 

𝑱𝟏(𝑾𝟏, 𝒃𝟏, 𝑾̃𝟏, 𝒃̃𝟏) =  
𝟏

𝟐𝑵
 ∑||𝒙𝒊 − 𝒙𝒊||

𝟐
𝑵

𝒊=𝟏

 (3) 

 

Because the deep network retains the encoder component 

of the encoder after being pre-trained, the second-level 

features can be trained using {ℎ1
1 , ℎ2

1, … , ℎ𝑁
1 }. The 

remaining hidden-level features ℎ2, ℎ3, … , ℎ𝑘, then 

acquired layer by layer. Assuming that in this scenario, the 

𝑘𝑡ℎ encoder (𝑘 = 1, 2, . . . , 𝐾 − 1) has been trained and 

developed. Then, forward propagation may determine the 

𝑘𝑡ℎ level feature data {ℎ1
𝑘 , ℎ2

𝑘 , … , ℎ𝑁
𝑘 }. The (𝑘 + 1)𝑡ℎ level 

features {ℎ1
𝑘+1, ℎ2

𝑘+1, … , ℎ𝑁
𝑘+1} are then derived using 

activation function 𝑓 with parameter {𝑊𝑘+1, 𝑏𝑘+1}. For 

this, it is necessary to construct (𝑘 + 1), where ℎ𝑘 and 

ℎ𝑘+1 are input and hidden variables. The intrinsic raw data 

is preserved by simultaneously reconstructing the raw 

input data at output layer and feature data at input layer of 

(𝑘 + 1), which are designated as 𝑥̃𝑘 and ℎ̃𝑘, respectively. 

The encoder is pre-trained in the following manner to 

reduce the reconstruction error for 𝑘𝑡ℎ feature and input 

data: 

𝑱𝒌+𝟏(𝑾𝒌+𝟏, 𝒃𝒌+𝟏, 𝑾̃𝒌+𝟏, 𝒃̃𝒌+𝟏)

=  
𝟏

𝟐𝑵
∑ (||𝒙𝒊

𝒌 − 𝒙𝒊||
𝟐

𝑵

𝒊=𝟏

+ ||𝒉̃𝒊
𝒌 − 𝒉𝒊

𝒌||𝟐) 

(4) 

 

In some situations, the deep encoder has an advantage over 

the conventional encoder because it accumulates 

hierarchical data features from lower to higher level. Some 

added constraint is applied to output layer of every auto-

encoder to regain initial data. Each feature is subsequently 

taught to aptly explain the underlying data and low-level 

features. Since every encoder attempts to recreate the 

original input data separately, this approach prevents 

information loss from lower to higher layers. Some learned 

features capture the intrinsic original data. 

3.3. Procedure 

It is beneficial and effectual to employ deep features for 

particular tasks. So, deep auto-encoder is utilized in this 

research for process data modeling, where it predicts the 

challenging quality output variable. Let the training data 

for the quality variable be 𝑌 = {𝑦1, 𝑦2, … , 𝑦𝑁} which 

corresponds to the observed input data that has not been 

processed, 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑁}. The training and testing 

phases make up the modeling process for encoder 

modeling. The 𝐾𝑡ℎ stacked encoders are pre-trained 

network during training step. The parameters are then 

modified using the BP approach by adding an output layer 

for quality variable to the network hidden layer. During 

training, the deep encoder model can forecast the quality 

variable for testing 𝑋𝑡 = {𝑥1, 𝑥2, … , 𝑥𝑁𝑡𝑒𝑠𝑡
}. The following 

are the precise processes for encoder modeling:  

1) As the supervised network fine-tuning and training 

datasets for pre-training, collect the quality output data 

𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑁} and the raw input data 𝑌 =

{𝑦1, 𝑦2, … , 𝑦𝑁}. Then, the network structure is determined.  

2) Reduce the reconstruction error between input data 𝑥 

that has been reconstructed and the raw data input 𝑥, to 

create and pre-train the first encoder. Hence, the parameter 

set {𝑊1, 𝑏1} and first-level feature data 𝐻1 =

{ℎ1
1, ℎ2

1 , … , ℎ𝑁
1 } are both attainable. 

3). Then, using the input data 𝐻1 = {ℎ1
1, ℎ2

2, … , ℎ𝑁
1 }, the 

second encoder model is created. For 𝑘 = 1 in Eq. 4, 

encoder 2 can be trained by reducing reconstructed error 

function for initial feature ℎ𝑙 and unprocessed input 𝑥. 

Then employing encoder 2, next feature data 𝐻2 =

{ℎ1
2, … , ℎ𝑁

2 } can be calculated along with {𝑊2, 𝑏2}. 

4). The entire network is a layer-trained layer-wise to 

acquire bias and weight parameter sets {𝑊𝑘, 𝑏𝑘}𝑘=1,2,…,𝐾.  

 

5. After pre-training is complete, the top layer of the 

encoder is expanded for quality variable. The bias and 

weight are initially set up using pre-trained parameters 

{𝑊𝑘 , 𝑏𝑘}𝑘=1,2,…,𝐾. Using back-propagation, the weight 

parameters can be changed to reduce the identified output 

error on training data. 
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6. After training, it is possible to integrate the tested input 

data 𝑋𝑡 = {𝑥1, 𝑥2, . . , 𝑥𝑁𝑡𝑒𝑠𝑡
} using the learned network. 

Testing samples quality can be predicted using forward 

propagation from input layer to output layer as follows: 

𝑌̂𝑡 = {𝑦̂1, 𝑦̂2, … , 𝑦̂𝑁𝑡𝑒𝑠𝑡}. 

 

 

Fig 3 Improved deep auto-encoder 

 

4. Numerical Results and Discussion 

This section presents an experimental design using 

artificial data. This experiment has several goals: a) to 

validate the precision of the methodology in event logs to 

identify hidden patterns (clusters); b) to illustrate the 

cluster labels' interpretation by the decoder's accuracy; c) 

to evaluate the performance of direct clustering versus 

auto-encoding on sparse data; and d) to compare the 

performance of various auto-encoding techniques. 

Event logs, made up of events whose precise labels have 

been verified by the issue mentioned, serve as input data. 

Hence, hidden labels were reflected in the data by utilizing 

groups of actions from which vectors would be 

constructed. Codes from the same "set" are frequently used 

to define similar hospitalizations; these codes can be 

estimated using clinicians' clinical knowledge. These data 

specialists' discoveries about non-clinical claims data 

served as the inspiration for this structure. For instance, a 

specific operation is entered into the database using 

operation's code and certain codes connected to some 

diagnoses relating patient's health. There are correlations 

between two stays for the same procedure, even though 

they are rarely identical, and some codes are derived from 

the same "set." 

Upon consideration of these comments, synthetic data 

were created to represent an activity matrix with every row 

representing an activity vector and column representing 

activities on a scale of 1 − 𝑜𝑓 − 𝑘. The term "number of 

clusters to find" refers to the variety of hidden labels in the 

data. 𝑁𝑘 vectors were created with the following: 𝑁𝑘  =

 𝑁(𝜇𝑁 =
2500

𝑘
), for every label 𝑘, were created for each 

label 𝑀𝑘
𝐶 ∈ 𝑁∗ vector. The overall number of defining 

activities for every label 𝑘 is denoted by the notation 𝑀𝑘
𝐶 =

𝑁∗, structured in a manner that 𝑀𝑘
𝐶 = 𝑁 (𝜇𝐶 ,

𝜇𝐶

5
), where 

µ𝐶  =  𝛼 ×  𝛽 × µ𝑁. Here, 𝑀 is the sum of all the distinct 

actions engaged. A number 𝑀𝑎  =  𝛼 ×  µ𝑁  ∈  𝑁∗ of 

activities of a particular label 𝑘 were randomly selected to 

generate each activity vector. Here, 𝑀𝑎 is the amount of 

randomly selected activities from a list of common 

activities. The value of the corresponding attribute was set 

to 1 for these activities while remaining 𝑎𝑡 0 for all other 

activities. An overlapping ratio, additionally introduced, 

indicates the number of activities shared between a label 

and the label that is closest to it. Besides that, 𝑁𝑛𝑜𝑖𝑠𝑦  =

 250 noisy occurrences were generated. In the generated 

data set, the actions that composed these noisy occurrences 

were dispersed among all feasible activities, and no 

specific pattern was linked to hidden label 𝑘. Here, 𝑁 

represents total number of rows and defined as 𝑁 =

 𝑁𝑛𝑜𝑖𝑠𝑦  +  ∏ 𝑁𝑘
𝑘
𝑘=1 . The parameters used in the 

experiment design result in an approximation of sparsity 𝑆̃ 

ranging from 0.9 to 0.99.  

 

 

      

       

  
   

𝑍ҧ 

𝑍 

ℎ 

𝑥ҧ 

 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(6s), 96–106 |  101 

4.1. Discussion 

Conventional auto-encoder methods AE, IDAE, and 

IDAE's performance were put into practice. Here, feed-

forward networks with fully connected layers (four) 

totaling 10 × 𝑑𝑙𝑎𝑡𝑒𝑛𝑡 , 5 ×  𝑑𝑙𝑎𝑡𝑒𝑛𝑡 , 𝑎𝑛𝑑 𝑑𝑙𝑎𝑡𝑒𝑛𝑡, where 

dlatent is the dimension of the latent space, equivalent to 

eight. For IDAE, the noise was defined as the arbitrary 

selection of components in vectors with (0-1). Each vector 

is made with 1% noise. Many Gaussian distributional 

parameters were acquired for IDAE (latent variables. The 

inverse estimate was the loss function to be minimized. An 

asymmetric design between the encoder and decoder was 

used for auto-encoder training for every data parameter 

combination. Dropout and 𝐿2 regularisation were utilized 

for each layer to minimize over-fitting during training. 

Adam was the selected optimizer for training, and a 32-

piece mini-batch was used. There would be 1000 epochs 

altogether. 20% of the data is adopted to evaluate 

validation error for termination, while the remaining 80% 

was used for training (with 25 iterations of patience). 

Following auto-encoder training, all training and validation 

data were used to apply 𝐾-mean clustering. 𝐾 was set by 

maximizing the mean for 𝐾 ∈ [𝐾𝑚𝑖𝑛 , 𝐾𝑚𝑎𝑥] 𝑤𝑖𝑡ℎ 𝐾𝑚𝑖𝑛  =

 2 𝑎𝑛𝑑 𝐾𝑚𝑎𝑥  =  15. 

Performances were assessed regarding explainability and 

clustering, respectively. An automated method created 

confusion matrix between detected clusters and hidden 

labels to assess the effectiveness of clustering. To improve 

accuracy, just the detected clusters' columns were 

discretized, allowing the proposed clusters to be compared 

to corresponding potential ones in hidden ones (the sum of 

the diagonal). Accuracy, subsequently determined for the 

resulting confusion matrix, is defined as a method's 

capacity to assign the right label to each occurrence 

precisely. The explaining F-score 𝐹𝜂 is a new metric that 

measures how well the strategy can account for discovered 

clusters. Let the function 𝑐: 𝑘 →  𝑐(𝑘)  ∈  𝐾𝑝𝑟𝑒𝑑 return the 

appropriate cluster label in line with the previously 

specified confusion matrix optimization. Let 𝑘 ∈ [1, 𝜅]  =

 𝐾𝑡𝑟𝑢𝑒 represent the label and hidden cluster, respectively. 

We calculate the cluster 𝑐(𝑘) average of the decoded 

elements and contrast the cluster's typical activities (pred 

c(k)) with those of the associated label (true 𝑘): 

𝑭𝜼 =  
𝟐 ∗ 𝑹𝜼 ∗ 𝑷𝜼

𝑹𝜼 + 𝑷𝜼

 (5) 

𝑹

𝜼= 

∑ ∩
𝒂

𝒄(𝒌)
𝒑𝒓𝒆𝒅𝒌∈𝑲𝒕𝒓𝒖𝒆.𝒂𝒌

𝒕𝒓𝒖𝒆

∑ 𝒄𝒂𝒓𝒅(𝒂𝒌
𝒕𝒓𝒖𝒆)𝒌∈𝑲𝒕𝒓𝒖𝒆

 
(6) 

𝑷𝜼 =   

∑ ∩
𝒂𝒄(𝒌)

𝒑𝒓𝒆𝒅𝒌∈𝑲𝒕𝒓𝒖𝒆 .𝒂𝒌
𝒕𝒓𝒖𝒆

∑ 𝒄𝒂𝒓𝒅(𝒂𝒄(𝒌)
𝒕𝒓𝒖𝒆)𝒌∈𝑲𝒑𝒓𝒆𝒅

  (7) 

 

A high explaining recall demonstrates the capacity of the 

function to link hidden activities of the detected labels with 

matched activities. Besides, high explanatory precision for 

decoding that retains engaging track activities without 

generic. Every label that is found corresponds to hidden 

label. There might be a difference between the number of 

concealed and discovered clusters. The explaining recall 

will be impacted by the number of expected vs. concealed 

clusters and the explaining precision by the number of 

predicted versus true clusters. 

The threshold will significantly affect the metrics that were 

previously specified. Here, an automatic technique was 

applied in the experiment design process. A list of each 

decoded value for a cluster named 𝑙 was generated using 

the average decoding vector 𝑋̅𝑙. This list's items were 

arranged in decreasing order. A distinct list of values was 

produced by differentiating this curve. An appropriate 

threshold for sustaining activities in the connected cluster's 

explanation set was generated instantly using the resulting 

curve's minimum value. Ten datasets were created for each 

set of parameters. Before the rows were shuffled, the 

columns (activities) were shuffled (events). The proposed 

method was evaluated compared to a baseline containing 

straight 𝐾-mean clustering without auto-encoding and the 

previously mentioned auto-encoders (AE, IDAE, and 

IDAE). Performances were examined using the clustering 

and elucidating metrics' mean and standard deviation.  

Table 1 provides a summary of the results. A total of 24 

trials with varying degrees of difficulty were run. The 

evaluation techniques' 𝐹𝜂 score and accuracy are shown for 

every set of parameters. Findings demonstrate that in 

sparse high-dimensional space, auto-encoding approaches 

outperform direct clustering (exceptionally, experiments 

15 and 21 show weak IDAE performances). Consequently, 

for the suggested methodology, auto-encoding is crucial in 

data transformation. The outcomes also show that IDAE 

consistently performs better than the alternative 

approaches regarding accuracy and 𝐹𝜂. Even if the standard 

deviation rises for challenging studies, IDAE exhibits less 

fluctuation than the other approaches. The findings support 

using IDAE as a component of the suggested approach to 

identify and explain precise clusters. 

Table 1 Encoder parameters 

Exponential 

S. No 𝑘 𝛼 𝛽 𝛾 

1 5 0.06 3 0.0 

2 5 0.06 3 0.11 

3 5 0.06 3 0.26 

4 5 0.06 6 0.0 
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5 5 0.06 6 0.11 

6 5 0.06 6 0.26 

7 5 0.11 3 0.0 

8 5 0.11 3 0.11 

9 5 0.11 3 0.26 

10 5 0.11 6 0.0 

11 5 0.11 6 0.11 

12 5 0.11 3 0.26 

13 10 0.06 3 0.0 

14 10 0.06 3 0.11 

15 10 0.06 6 0.26 

16 10 0.06 6 0.0 

17 10 0.06 6 0.11 

18 10 0.06 3 0.26 

19 10 0.11 3 0.0 

20 10 0.11 3 0.11 

21 10 0.11 3 0.26 

22 10 0.11 6 0.0 

23 10 0.11 6 0.11 

24 10 0.11 6 0.26 

 

 

Fig 4 Encoder parameters 

4.2. Dataset description 

Here, the SNIIRAM database was mined for the data. All 

anonymous patients who had an IH within 5 years of the 

procedure and underwent their first laparotomy in 2010 

were chosen. As a result, 7906 patients in total were 

included in the study, from who complete hospitalization 

data was retrieved. Every patient's stay in the hospital was 

converted into a record of prescribed medical procedures. 

As a result, the activity set was divided into the following 

sections: 

𝑨 = 𝑨𝑴𝑫 ∪ 𝑨𝑨𝑫  ∪ 𝑨𝑴𝑷 ∪ 𝑨𝑫 ∪ 𝑨𝑻𝑨𝑫 (8) 

 

➢ In the (AD) ICD-10 classification system, AAD stands 

for a group of extra diagnoses; 

➢ In the (AD) ICD-10 classification system, AAD stands 

for a group of extra diagnoses; 

➢ According to the (MP) Fre0nch CCAM classification 

system, AMP refers to a group of medical operations. 

➢ With coding system (D) related to the ATC 

(anatomical therapeutic chemical) classifications, AD 

gives collection of medications provided; 

➢ In French, ATAD stands for a group of medications 

with temporary delivery permission; AMD stands for 

a group of primary diagnoses or the causes of 

hospitalization. 

For each activity code, the associated activity set also 

contained hierarchical knowledge (codes for the 

hierarchy's higher levels). As a result, relationships 

between activity codes belonging to the same group might 

be enabled during auto-encoding. As evidenced by the data 

below, it improves cluster interpretability by provisioning 

hierarchical knowledge and adjusting the coding precision 

by clusters. The known, highly frequent stays associated 

with chemotherapy or dialyzes have been filtered. The log 

activity set's size was cut by 85.7%, while 95.0% of the 

codes were kept after filtering out codes that appeared 

fewer than 50 times. The study's final event record had 

57533 events (stays), 2228 distinct activity codes, and 

7906 traces (patients). The generated activity matrix, 

measuring 57533 by 2228, was subjected to the previously 

described approach utilizing IDAE as the auto-encoder. 

𝐾 =  15 clusters were used, which is a reasonable 

compromise between clusters and final process. It uses the 

design to medical event logs. For process model 

optimization, the maximum locations, edges, and nodes 

were set to 5, 25, and 15, respectively. 

4.3. Results 

The outcomes of automatic labeling were evaluated by 

comparing them to a process model starting from a 

manually labeled event log based on the authors' prior 

knowledge of pathophysiology. Each process model's 

edges and nodes are scaled by the total number of patients 

they represent. It is best to read the process models from 

left to right. Table 2 fully explains the clustering results 

achieved and displayed in Fig 4. There are commonalities 

in the process models, as seen in Fig 5. Laparotomy-related 

medical procedure codes most frequently fall under the 

hierarchy's "Therapeutic acts on the digestive system" 
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code. The linked cluster (label 7) thus shows up at the start 

of the paths. The pathway's next section features label 2, 

label 14, and other labels, including IH-related codes 

(combining codes for IH and laparotomy). However, the 

process being considered is primarily filled by stays linked 

to diagnostic process (labels 6 and 12), particularly on 

canal (label 10).  

Table 2 Accuracy comparison 

Accuracy 

Basic AE 
General 

AE 
DAE 

VAE IDAE 

Avera

ge 
SD 

Avera

ge 
SD 

Avera

ge 

SD Avera

ge 

SD Avera

ge 

SD 

0.56 
0.0

7 
0.67 

0.1

7 
0.72 

0.0

6 

0.91 0.0

2 

0.93 0.0

4 

0.56 
0.0

8 

0.67 0.1

7 
0.72 

0.0

9 

0.90 0.0

2 

0.93 0.0

4 

0.57 
0.0

8 

0.69 0.1

7 
0.73 

0.0

3 

0.90 0.0

4 

0.93 0.0

6 

0.39 
0.0

7 

0.60 0.1

7 
0.62 

0.1

9 

0.86 0.0

4 

0.88 0.0

6 

0.38 
0.0

5 

0.69 0.1

5 
0.58 

0.1

9 

0.87 0.0

4 

0.89 0.0

6 

0.44 
0.0

7 

0.60 0.2

0 
0.64 

0.1

6 

0.86 0.0

2 

0.88 0.0

3 

0.52 
0.0

8 
0.70 

0.1

4 
0.71 

0.0

8 

0.89 0.0

2 

0.90 0.0

3 

0.55 
0.0

8 

0.64 0.1

7 
0.71 

0.0

9 

0.90 0.0

2 

0.91 0.0

3 

0.40 
0.1

0 

0.69 0.1

7 
0.71 

0.1

3 

0.89 0.0

2 

0.90 0.0

3 

0.37 
0.0

8 

0.58 0.1

7 
0.63 

0.1

6 

0.83 0.0

3 

0.85 0.0

4 

0.46 
0.0

6 

0.61 0.1

9 
0.70 

0.1

4 

0.84 0.0

2 

0.88 0.0

3 

0.50 
0.1

0 

0.56 0.1

8 
0.63 

0.1

8 

0.85 0.0

3 

0.86 0.0

4 

0.55 
0.0

7 
0.62 

0.1

9 
0.63 

0.1

6 

0.88 0.0

5 

0.90 0.0

8 

0.54 
0.0

7 

0.62 0.2

3 
0.67 

0.1

5 

0.89 0.0

6 

0.90 0.0

7 

0.23 
0.1

5 

0.46 0.2

3 
0.39 

0.2

4 

0.87 0.0

6 

0.88 0.0

7 

0.24 
0.0

6 

0.40 0.2

5 
0.71 

0.0

5 

0.83 0.0

5 

0.85 0.0

6 

0.24 
0.0

8 

0.32 0.2

2 
0.53 

0.2

4 

0.84 0.0

3 

0.85 0.0

4 

0.45 
0.0

5 

0.59 0.2

1 
0.43 

0.2

4 

0.84 0.0

3 

0.85 0.0

4 

0.51 
0.0

9 

0.59 0.2

0 
0.67 

0.0

5 

0.87 0.0

4 

0.88 0.0

5 

0.21 
0.0

6 

0.54 0.1

8 
0.62 

0.1

8 

0.87 0.0

3 

0.88 0.0

4 

0.25 
0.1

2 

0.33 0.2

3 
0.45 

0.2

3 

0.87 0.0

3 

0.88 0.0

4 

0.22 
0.0

3 

0.33 0.2

0 
0.54 

0.2

0 

0.83 0.0

3 

0.85 0.0

4 

0.21 
0.0

3 

0.33 0.1

9 
0.50 

0.2

5 

0.83 0.0

4 

0.85 0.0

5 

0.22 
0.0

2 

0.33 0.1

6 
0.51 

0.2

1 

0.80 0.0

4 

0.82 0.0

5 

0.23 
0.0

7 

0.34 0.1

7 
0.52 

0.2

1 

0.80 0.0

4 

0.82 0.0

5 

 

  

Fig 5a Accuracy 

comparison 
Fig 5b SD comparison 

Table 3 𝐹𝜂 comparison 

𝐹𝜂 

Basic AE 
General 

AE 
DAE 

VAE IDEA 

Avera

ge 
SD 

Avera

ge 
SD 

Avera

ge 

SD Avera

ge 

SD Avera

ge 

SD 

0.72 
0.1

4 
0.81 

0.2

8 
0.96 

0.1

2 

1.00 0.0

0 

1.00 0.0

0 

0.69 
0.1

8 

0.82 0.3

3 
0.96 

0.1

5 

1.00 0.0

0 

1.00 0.0

0 

0.72 
0.1

8 

0.83 0.2

6 
0.93 

0.1

3 

0.98 0.0

8 

0.99 0.0

9 

0.38 
0.1

5 

0.74 0.2

8 
0.78 

0.3

2 

1.00 0.0

0 

1.00 1.0

0 

0.38 0.1 0.84 0.2 0.68 0.3 1.00 0.0 1.00 1.0
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2 7 8 0 0 

0.38 
0.1

4 

0.69 0.3

6 
0.88 

0.3

0 

1.00 0.0

0 

1.00 1.0

0 

0.48 
0.1

4 
0.73 

0.2

4 
0.92 

0.1

6 

1.00 0.0

0 

1.00 1.0

0 

0.66 
0.1

6 

0.80 0.2

8 
0.94 

0.1

7 

1.00 0.0

0 

1.00 1.0

0 

0.64 
0.1

4 

0.73 0.2

6 
0.91 

0.2

1 

0.95 0.1

2 

0.96 0.1

1 

0.70 
0.0

9 

0.74 0.2

7 
0.78 

0.2

6 

1.00 0.0

0 

1.00 0.0

0 

0.41 
0.0

8 

0.77 0.2

6 
0.91 

0.2

6 

0.95 0.1

0 

0.96 0.1

1 

0.37 
0.1

5 

0.49 0.2

8 
0.81 

0.2

9 

1.00 0.0

0 

1.00 0.0

0 

0.42 
0.1

1 
0.37 

0.3

0 
0.85 

0.2

5 

0.98 0.0

6 

0.99 0.0

5 

0.63 
0.1

0 

0.25 0.2

8 
0.89 

0.2

6 

0.97 0.1

0 

0.98 0.1

1 

0.72 
0.2

1 

0.66 0.3

0 
0.45 

0.3

8 

0.95 0.1

2 

0.96 0.1

1 

0.73 
0.1

1 

0.74 0.3

8 
0.94 

0.1

0 

0.96 0.0

7 

0.97 0.0

8 

0.23 
0.1

7 

0.69 0.3

4 
0.62 

0.3

6 

0.97 0.1

1 

0.98 0.1

0 

0.25 
0.0

9 

0.32 0.3

1 
0.42 

0.3

9 

0.94 0.1

2 

0.95 0.1

1 

0.18 
0.1

2 

0.31 0.2

7 
0.90 

0.1

4 

1.00 0.0

7 

1.00 0.0

6 

0.60 
0.0

9 

0.29 0.3

1 
0.82 

0.2

8 

0.98 0.0

6 

0.99 0.0

5 

0.73 
0.2

2 

0.30 0.3

7 
0.53 

0.3

9 

0.95 0.0

6 

0.96 0.0

5 

0.70 
0.0

6 

0.31 0.2

8 
0.66 

0.3

4 

0.96 0.0

0 

0.97 0.0

0 

0.15 
0.0

8 

0.33 0.2

5 
0.62 

0.4

2 

0.93 0.1

1 

0.94 0.1

0 

0.18 
0.1

1 

0.29 0.3

1 
0.57 

0.3

2 

0.90 0.1

3 

0.91 0.1

2 

0.22 
0.1

1 

0.33 0.3

3 
0.58 

0.3

1 

0.91 0.0

6 

0.91 0.0

5 

 

  

Fig 6a Accuracy comparison Fig 6b SD comparison 

The automatic labeling method based on raw data brought 

these issues to light even though the stays were not 

considered when manually applied labels. These might be 

connected to the patient's medical monitoring or 

examination, a potential post-operative consequence. With 

just a little initial user input, this example demonstrates 

how raw data can be used to generate other sensitive data. 

Replayability score provides quantitative fitness 

assessments; it is easy to see the difference between 

automatic and manual labeling. The initial laparotomy 

node might offer the primary justification. Laparotomy 

was identified in the database by medical professionals 

employing 549 distinct medical procedure codes from 

various hierarchy chapters. Although label 7 applies to the 

bulk of the codes, the other laparotomy stays are sorted 

into other because of the size limitations of the 

optimization process, do not exist in the final process. 

While the majority of intriguing events were found, 

qualitative interpretation offered by analysis is comparable, 

even though there is still a difference in the quantitative 

replayability between the two techniques. Also, the 

summary of clusters and the final process model provides a 

stimulating starting point for discussions with medical 

experts. 

5. Conclusion 

This research offered an approach to deal with the 

complexity of activity-related event logs. Process mining 

can be used to characterize these occurrences using 

artificial labels that are constructed based on auto-

encoding. Decoding permits the explanation of each label, 

enabling the use of this technology in real-world settings 

like the healthcare sector, in which openness is essential. 

Considering the authors' knowledge, an experimental 

design was given to simulate non-clinical claims databases. 

It was shown that the approach could both produce 

pertinent clusters and provide a precise explanation for 

them. Improved Deep Auto-encoder, in particular, 

outperforms the other studied auto-encoders, encouraging 

the usage of such learning techniques in other applications. 

The proposed methodology shows potential as a pre-

processing strategy for process mining to deal with the 

complex nature of clinical procedures in non-clinical 

datasets and related databases. Future research will apply 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(6s), 96–106 |  105 

the suggested methods to supervise learning on 

complicated event logs on a bigger scale. Particularly for 

data on patient paths, the suggestion of a transparent 

classification method is intriguing. A fascinating study 

area is the integration of deep learning and process mining. 

Recent developments in deep learning have promise for 

prediction, particularly if process mining is used to 

integrate model. 
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