

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-67992147-6799 www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(6s), 257–266 | 257

Machine Learning-Based Defect Prediction for Software Efficiency

1Jayanti Goyal 2Dr. Ripu Ranjan Sinha

Submitted: 10/02/2023 Revised: 17/04/2023 Accepted: 08/05/2023

Abstract- Software engineering research is centered on defect prediction. Successful software development requires better

communication between data mining and software engineering. Software defect prediction is a pre-testing technique that estimates where

bugs will show up in the code. The purpose of software defect prediction research is to identify potentially flawed parts of a programme

before it reaches the testing phase. The primary benefit of these prediction models is that they need more testing time and money. may be

directed to the modules most prone to errors. However, only a few mobile app-specific software defect prediction algorithms currently

exist. It is common practise to utilise defect prediction algorithms to probe the impact domain in software (clustering, neural networks,

statistical methods, and machine learning models). This research aims to examine and compared various ML (machine learning)

algorithms for software bug prediction. Despite the widespread availability of failure prediction methods, no one strategy is appropriate

for every data collection. Support Vector Machine, Random Forest, Naive Bayes, Logistic Regression, and Artificial Neural Network,

were only some of ML methods utilised to find biggest possible subset of faults. The goal of this study is to utilize 5 data sets (JM1,

KC1, KC2, PC1, and DS1) to identify flaws. As compared to other methods, ANN has been demonstrated to have the highest accuracy

(93.8%).

Keywords—Software Metrics, Software Defect Prediction, Software Failure Factors, Software Quality Assurance, Machine Learning

1. Introduction

Since modern software systems are more intricate,

developing bug-free code is becoming increasingly

challenging. Finding and fixing flaws in software design

should be an ongoing process. As 100% fault-free software

production seems unlikely, it's important to work on defect

minimization instead [1]. It's not simple to do this. Saving

money requires finding software flaws as early as possible

in the development process. Additionally, early

identification will guarantee that high-quality software is

being given to clients at the lowest possible cost. Prediction

models for identifying flawed classes in software may be

developed using several Object Oriented (OO) software

metrics that measure structural properties of a programme

like inheritance, cohesion, etc. These measurements may

be gathered from previously released software and then

used to inform prediction models for future updates [2].

 As a result, the quality of software systems may be

enhanced by more precise predictions of whether or not

software entities include design faults. A software metric is

a quantitative or qualitative evaluation of some aspect of

software. It's used to assess software quality when still in

its formative stages of development, such design, and

coding [3]. A software flaw is any aspect of a piece of

software that fails to function as intended or satisfy the

needs of the intended audience. In other terms, a defect is a

flaw in the program's code or logic that leads to unintended

behaviour. Predicting where bugs will appear in code is

known as software defect prediction. High-quality software

development results in a finished product with minimal

bugs [4]. Finding software bugs early on potentially saves

time and money during development and makes the final

product more stable. As a result, predicting when a bug

may appear is crucial for improving software quality.

Defect prediction metrics are backbone of any statistical

prediction model development process.

Fig. 1: Software defect prediction process

Hence, predicting defects is crucial for improving software

quality. While developing a statistical prediction model,

defect prediction metrics are crucial. There are two main

types of metrics used for defect prediction: code metrics

and process metrics. By developing these prediction

models, software companies may utilise them throughout

the earliest stages of development to locate problematic

1Computer Science Department

Rajasthan Technical University (RTU)

Kota

goyal.jayanti@gmail.com

2Computer Science Department

Rajasthan Technical University (RTU)

Kota

drsinhacs@gmail.com

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(6s), 257–266 | 258

code. Software companies may utilise these measures to

narrow down the larger pool of software metrics they have

at their disposal [5]. The measurements may be used to

create models that forecast defects. Researchers have

utilised a wide variety of approaches to determine the

correlation between static code metrics and defect

forecasting. LR (Logistic regression) is an example of a

classic statistical technique, whereas SVM (Support

Vector Machines), NB (Naive Bayes), ANN (Artificial

Neural Networks), and Decision trees, are examples of ML

techniques [6]. The objective of a neural network is to

represent data in a manner which minimizes discrepancy

between actual class labels of data tuples and predicted

class of network. In order to discover a hyperplane for data

separation utilising crucial training tuples, SVM projects

the original data into a higher dimension. The process is

carried out in a tree-like fashion via a decision tree. Each

node in the tree that isn't a leaf is evaluated on a set of

attributes using an attribute selection measure.

The outline for the rest of the paper appears below. Section

II elaborates the concept and overview of software defects.

Section III discusses the software metrics and the software

quality assurance is described in section IV. Section V

provides the detail of software failure factors. Section VI

describes the available literature on approaches for

software defect prediction. Section VII covers a variety of

ML algorithms. The comparison of several ML methods is

presented in Section VIII. The last thoughts on the subject

are presented in Section IX.

2. Concept and Overview of Software Defects

A. Concept of Software Defects

Incorrect or unexpected results can be generated by

software due to errors, bugs, flaws, faults, malfunctions, or

other types of defects. Inherent to any system are flaws.

They manifest as a result of the process of making

something or the materials used. Software defects are

coding mistakes that result in unexpected behaviour. Most

bugs originate in the code or design, while others are the

result of faulty compiler output.

Software bugs provide a serious security risk for both

developers and users. Defects in software don't only slow

down development; they also raise costs and lower quality.

Predicting software faults is presented as a means to

address such issues. SDP may help maximise software

testing's efficiency and guide the use of scarce resources.

Finding and fixing software bugs early in the software

development life cycle (SDLC) is essential for producing

high-quality code [7]The description of the concepts that

are easily mistaken with defects is as follows:

• Fault: The programme operates in an improper internal

state and fails to provide the expected results for the

client. Considered to be a kind of dynamic behaviour, this

flaw may be seen as a cause of software failures.

• Failure: It describes the results of the software's

execution that the customer does not want to see.

Example: if the client's capabilities aren't met and the

framework loses its execution capacity, it won't be able to

meet fixed asset's execution needs.

• Error: Humans are responsible for its introduction, and it

may then be perverted into mistakes. Inconsistencies in

software design, requirements analysis, data structure,

code, and other carriers provide a trail of evidence that

follows the project from start to finish [8].

The defect count is a key indicator of software quality.

Client satisfaction drops, resources are depleted, and the

testing process drags on when there are too many flaws.

Improving test efficiency is crucial to controlling problems

and saving money.

B. Main Research Direction of Software Defects

1) Software Defect Management

The primary goals of defect management are data

gathering, statistical analysis, and practical defect

recording. Many robotized defect management systems

have been developed by engineers to boost management

productivity. The two most popular programmes in use

today are Bugzilla, an open-source bug-tracking platform

supplied by Mozilla, and JIRA, which is distributed by

Atlassian. None of these systems allows for a more

thorough study or explicit categorization of faults beyond

recording their transactions, characteristics, and statistical

information. Important parts of defect management include

analysing and categorising defects. Thus, additional

investigation of the data collected in JIRA and Bugzilla is

required for the analysis and arranging of deformities [9].

2) Software Defect Analysis

Defect analysis is a common tool used by software

engineers and designers to evaluate the caliber of their code

and the finished product. Defect analysis is a technique

used to categorise errors and discover their root causes in

software. Finding, locating, evaluating, and bettering test

efficiency are all goals of software defect analysis. Defects

analysis techniques may be broken down into three broad

categories: qualitative, quantitative, and attribute [10]. Root

Cause Analysis (RCA) and Software Fault Tree Analysis

are two common qualitative methods of investigation

(SFTA). Single-attribute analysis and multi-attribute

analysis are two typical ways of categorising attributes.

3) Software Defect Classification

The causes of software flaws are unique and convoluted.

Better aggregation and categorization of defects may boost

analyzers' efficiency, make it easier for programmers to

evaluate code quality, and reduce analysis overhead.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(6s), 257–266 | 259

Classification also helps in recommending fixes and

reusing test cases. It's able to understand defect distribution

based on categorization and analysis findings, stops

common software bugs in their tracks, drastically improves

the SDLC, and ultimately boosts software quality.

Software defect analysis relies heavily on the

categorization of software flaws. Defect categorization is

crucial since the results have a direct impact on the next

step of defect investigation. Until date, software fault

categorization has been divided into two camps: those that

rely on humans and those that use computers.

a) Manual classification of software defects

Examiners must rely on their own experience and

judgement to manually classify software faults into

categories. To begin, the team established a benchmark for

defect categorization. The problem is identified, and a

defect category is matched based on previous experience.

Nevertheless, this strategy's categorization cycle is labor-

intensive and needs a large group of experts. Data analysis

requires a lot of time and resources since humans have

limited energy and memory compared to computers. This

means that humans will have a slower categorization speed.

b) Automatic classification of software defects

More and more people are turning to computers to

automatically detect flaws in an effort to save development

expenses and boost development efficiency. Experts are

looking for an easy way to categorise problems, and with

the rise of ML &AI, this has become an active area of

study in business world.

4) Software Defect Prediction (SDP)

Software engineering is a potential area for future

advancement. In the context of software development

projects, Project Defect Detection is a technique for

accumulating data about software flaws (WPDP). While

the damage data prediction model has been utilised in other

projects before, the authors claim that their cross-project

defect detection (CPDP) programme is the first of its kind.

Some recent research indicates promise for CPDP [11]. To

be consistent objects across index sets, however, CPDP

Indicators must originate from the same block. As modern

technology is so adaptable, horizontal CPDP project

applications and indicators [12] may be better suited to the

situation. Although most previous approaches are

supplemental project defect detection, the serial forecasting

model uses up-to-date information to determine failure

trends in newly developed software modules within the

same project (WPDP). However, studies have shown that

other programmes require sufficient historical data in order

to function, regardless of whether they support statistical

data or not.

3. Software Metrics

A software meter quantifies an attribute or characteristic of

the code or its requirements. The effectiveness of software

in accomplishing a certain task is typically measured using

software metrics. A software metric is a quantitative or

qualitative evaluation of an aspect of a programme. Metrics

pertaining to complexity, coupling, and cohesion (CCC)

may be assessed and utilised to assess software quality

throughout its development in stages like design and

coding. The most crucial part of developing a statistical

prediction model is the use of defect prediction metrics.

There are two main types of metrics used for defect

prediction: code metrics and process metrics.

Size, McCabe, Hastead, CK, and OO metrics are only few

examples of most often used code metrics, which have

been demonstrated to be more popular than process

metrics. [13]. Several code metrics are given below:

C. Cyclomatic Complexity

It evaluates the code's structural complexity. It is generated

by tallying the possible branches in the program's logic.

More tests are needed to obtain high code coverage in a

programme with complicated control flow, and the

software will be less maintainable as a result.

D. Halsteads Product Metrics

In order to quantify complexity, the late Maurice Halstead

developed measures, which take into account not

only number of operators and operands in a module but

also its vocabulary size and running time.

E. Product Metrics

The lines of code (LOC) count in Product Metrics offers an

approximation of total number of lines code. While the

count is taken from code, it may not accurately

represent entire amount of code lines. If number is too

high, it might indicate that a single type or function is

attempting to take on too much. Pre-implementation design

metrics are calculated from a requirements or design

document. Object-oriented metrics are useful for

debugging and providing insight into where and how

classes and objects might be simplified.

4. Software Quality Assurance

Software quality has always been a focal point for IT and

software companies. The ability to accurately forecast

software defects has gained a lot of attention in the last

several years because of the direct influence it may have on

programme quality. The cost, delivery time, and

maintenance expenses associated with software all go up

significantly when flawed modules are present. Not only

must you be able to meet deadlines and perhaps accomplish

them quickly, but you must also be capable to provide code

of excellent quality or immensely greater quality.[14].

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(6s), 257–266 | 260

As a result, there is a great deal of investigation into how to

further improve the product quality within the mandated

early phases of complete SDLC improvements to product's

general concept may be accomplished in a number of ways,

including via enhanced testing procedures,

comprehensively programmed testing, and early deformity

prediction[15]. Therefore, it can be useful to improve

software quality by predicting, utilizing a software module,

whether a software entity contains defects. Therefore,

quality is an important factor in determining whether or not

the software is suitable for a customer's needs or process,

and pre-processing techniques, including KNN, multilayer

perceptron, and many others, are applied to data to retrieve

information of defective data. In short, happy customers

are essential to a successful project, thus we'll be doing

early-stage research to identify any issues.

The practise of predicting software bugs has gained

significant traction in recent years. Software quality is

directly impacted by software defect prediction. There is a

strong correlation between poor-quality software modules

and software cost, software completion time, and software

maintenance expenses[16]. When it comes to SQA, there

are two primary methods: defect detection and defect

prevention. Preventing defects requires taking proactive

measures to forestall the occurrence of future errors.

Fig. 2: Generic Process of SDP

Issues with existing faults are the focus of defect

prediction. Defect prevention is a way to increasing

software quality [13], and the focus of our study is on

doing just that via the use of defect prediction. Software

defect prevention encompasses elimination of errors in

algorithm design, software requirement planning, and

review [16]. The goal of defect prediction is to make

informed decisions about the quality of a software

product's delivery and amount of work required to keep it

running smoothly before it is released to the public.

Improving software quality is the method for preventing

defects. The main goal of this study is to compare and

contrast several ML methods in an effort to achieve the

highest possible level of accuracy in feature selection for

SDP. Finding and analysing which component of the

programme is more prone to faults and delivering quality

software is key to this study, as is the ability to foresee

performance issues without going over the budgeted cost.

5. Major Factor of Software Failure

Finance, insurance, healthcare, manufacturing, e-

commerce, aviation, social networking, and other

commercial areas [14] are all examples of software

systems. Software system development and design need

resources such as money, domain-specific human

specialists, time, tools, and infrastructures. Even if a

software organisation has years of expertise in project

design and development, software failures are on the rise

(as shown in Table II), resulting in wasted resources

including money, time, and effort. Every SDLC has its

share of bugs, and sometimes customers don't give you the

information you need because they aren't familiar with IT

projects or the ramifications of politics and culture.

Challenges in completing a project were another topic

included in the study. Lack of user interaction [14], unclear

goals [15], insufficient requirement definition, lack of

resources[16], inadequate project planning and scheduling

[17], poor communication among Team members [18], and

poor Testing are most prevalent recognized causes of

software failures. According to Table-1 below, the most

important elements for a project's success are a lack of user

involvement and an insufficient user demand definition.

The leading causes of software failure are shown in Table I

below.

Table I: Major factor for software failures [17]

Project Challenges Factor % of

Responses

Incomplete requirements and

specifications

12.3%%

Changing requirements and

specifications

11.8%

New technology 3.7%

Lack of User Input 12.8%

Technology incompetence 7.0%

Lack of resource 6.4%

Unrealistic expectations 5.9%

Lack of executive support 7.6%

Unrealistic time frames 4.3%

Unclear objectives 5.3%

Other 23.0%

According to CHAOS MANIFESTO's 2013 report, a

survey was conducted between 2004 and 2012 on software

projects, with results subdivided by category in Table II

below.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(6s), 257–266 | 261

Table II: Percentage detail from 2004 – 2012 [18]

 2004 2006 2008 2010 2012

Failed 18% 19% 24% 21% 18%

Successful 29% 35% 32% 37% 39%

Challenged 53% 46% 44% 42% 43%

F. Recommendation to Address Software Failures

In section V, we covered what tends to go wrong with

software projects, but since every problem has a solution,

we've included some suggestions for moving forward

successfully.

• Put clear objectives and goal

• Monitor project to ensure that estimate is accurate.

• Do not depend on a single cost or schedule estimate.

• Fully satisfied the user requirements.

6. Literature Review

Important studies that use ML, neural networks and deep

learning to the problem of predicting software faults are

discussed below. We further elaborate on the

considerations that led us to propose specific deep-learning

techniques for Software Fault Prediction (SFP).

Khalid et al., (2023) The ultimate purpose of the research

was to improve the model's accuracy and precision relative

to previous investigations. Previous research indicates that

there is room for even greater precision gains. K-means

clustering was used to organise the classes for this purpose.

Also, we used classification models to sort out particular

characteristics. To get there, ML models are fine-tuned

using Particle Swarm Optimization. To evaluate the

models, we employed the f-measure, the confusion matrix,

the performance error metrics, and the precision and

accuracy measurements. All of the ML and enhanced ML

models perform well, but SVM and optimized SVM

models are most accurate (at 99 percent and 99.80 percent,

respectively). Accuracy is 93.80% for NB, 93.80% for

Optimized NB, 98.70% for RF, 99.50% for Optimised RF,

and 97.60 for an ensemble method. Our ultimate objective

was to improve upon the accuracy of past investigations,

and we believe we have done so here [19]

In this paper, Yao et al. (2023) propose a programme

semantics feature mining (PSFM) approach to software

defect prediction. Specifically, the grammatical structure

information and the text information in the code are parsed

first, and then the semantic information is retrieved. The

semantic data is then mined for the faulty feature. Finally,

the mined defect features are used to make predictions

about software defects. The experimental results show that

the suggested technique in this work (PSFM method)

improved the F-measure more than the state-of-the-art

approaches to software fault prediction[20].

In this study, Jorayeva et al., (2022) posed nine research

topics, for which 47 papers were culled from scholarly

databases. The majority of research (48%) centered on

Android apps; 92% employed supervised ML; and the

majority of chosen metrics were object-oriented. decision

trees, NB, SVMs, LR, and neural networks are the five

most popular ML methods. In the academic world, object-

oriented metrics were the norm. Deep learning techniques

such as DBN (Deep Belief Networks), LSTM (Long Short-

Term Memory), and Deep Neural Networks have only been

used in a small number of research projects thus far

(DNN). For mobile applications, this is the first systematic

literature study on topic of software defect prediction. It

will aid practitioners and academics alike in their pursuit of

defect prediction in mobile software [21].

Using fine-tuned tree-based ensembles, Alazba and

Aljamaan (2022) explore the usage of a stacking ensemble

for defect prediction. Boosted trees, histogram-based

gradient boosting, AdaBoost, gradient boosting, Random

forest, XGBoost, and CatBoost were among the tree-based

ensembles whose hyperparameters were optimized using a

grid search. We then stacked the optimized tree-based

ensembles we had built. Twenty-one publicly available

defect datasets were utilized to evaluate the ensembles.

Empirical results demonstrate that hyperparameter

optimization significantly affects ensembles of extra trees

and random forest models. When compared to our

optimized tree-based ensembles, the stacking ensemble

likewise outperformed them [22]

Tadapaneni et al., (2022) The proposed research uses the

binary prediction dataset PROMISE. Due to the inherent

binary nature of software fault prediction, a classification

model was used for this investigation. This is why we use

the NB on ML model and evaluate the performance of

DNN and LSTM. The DNN algorithm performed better

than competing methods in a controlled experiment

designed to identify software bugs [23].

A hybrid heterogeneous ensemble strategy is suggested in

this research by Alsawalqah et al., (2020) to forecast

software defects. Classifiers in heterogeneous ensembles

come from a variety of learning base approaches, each with

its own set of advantages and disadvantages. The suggested

method's central aim is to create high-quality

heterogeneous categorization models maintained by

specialists. The suggested method is developed in two

different iterations and tested. The first uses conventional

classifiers, while the second employs ensemble classifiers.

The proposed method is evaluated by performing

experiments on 21 publicly available benchmark datasets.

The ensemble version was shown better than other well-

regarded basic and ensemble classifiers in head-to-head

assessments [24].

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(6s), 257–266 | 262

The software metrics that exist for defect prediction in

software using ML are reviewed in depth by Meiliana et al.

(2017). Our research shows that this is the first study of its

kind to use the datasets available in the PROMISE

repository to predict software faults. Several experiments

from the PROMISE repository dataset are compared in

attempt to develop an agreement on what constitutes

successful software metrics and ML approach in software

failure prediction [25].

Table III: Summary of Software Defect Prediction Using

ML Algorithms from Various Researchers

Author Used techniques Key findings

Cai, X.,

Niu, Y.,

Geng, et al.

[26]

SVM G-Mean is used as a

performance metric and

a technique for SDP's

state-of-the-art

performance.

Akour, M.,

Alsghaier,

H., et.al

[27]

NB, Bayes net,

PART, Random

Forest, IB1, VFI,

decision table,

and NB tree base

learners

According to findings,

Random Forest

Classifier is the most

effective method.

C. W. 8 classifiers: NB, combination of RF with

Yohannese

and T. Li

[28]

NN, SVM, RF,

KNN, DTr, DTa,

and RTr

Information Gain (IG)

FS yields the highest

Receiver Operating

Characteristic (ROC)

curve value.

Lov

Kumar,

Santanu

Rath et al.

[29]

Majority Voting

Ensemble

(MVE) method

The MVE method yields

the highest efficiency.

The MVE technique for

fault prediction results

in a model with lower

overall fault removal

costs than competing

methods.

7. Machine Learning Algorithms

The purpose of this research is to investigate and evaluate

ML algorithms. The research demonstrates the

performance accuracy and capacity of ML algorithms for

predicting software bugs and gives a comparative study of

selected ML methods. In order to anticipate output values

for novel input data, supervised ML algorithms attempt to

create an inferring function by drawing conclusions about

links and dependencies between known inputs and outputs

of labeled training data. The chosen supervised ML

algorithms and their brief descriptions are as follows. [30]:

Fig. 3: Machine learning Algorithms

These are a few algorithms utilized for comparison

purposes and are detailed below:

G. Logistic Regression

A method based on LR is utilized to make the forecast. It is

used to establish the likelihood of a particular category,

such as success or failure, victory or defeat, survival or

annihilation. This may be expanded to show other

categories of events, such as determining whether or not a

given image has a cat, dog, lion, etc. Each item in the photo

would be assigned a probability between 0 and 1, and the

total would be totaled up to 1. Although many increasingly

complex enhancements exist, this technique is primarily

used in logistics and statistics to display a dependent

variable in a binary (0 or 1) form [31].

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(6s), 257–266 | 263

Fig. 4: Logistic Regression

H. Random Forest

Random forests, a popular ensemble learning approach

built on the Bagging framework, take in unlabeled samples

and spit out the classification results decided on by

individual trees. This makes random forests useful for a

wide variety of tasks, including classification, regression,

and more. The random forest is an improvement over the

decision tree in terms of performance since it incorporates

the bagging approach into the decision tree. The use of

randomization improves scalability and parallelism in the

classification of high-dimensional data, while also

optimizing anti-noise abilities and lowering the danger of

over-fitting. The input dataset for a random forest does not

need to be standardized, hence it may be used for both

continuous and discrete situations requiring regression.

I. Decision Tree

As an example of a supervised learning algorithm, the

decision tree is shown here. Each leaf node in a decision

tree stands for a class label, whereas each interior node

stands for a "test" on an attribute. Together, these nodes

make up structure of a decision tree. Its framework may be

used to reconstruct and comprehend previous decisions on

a subject of interest. ID3 and C4.5 are examples of classic

decision tree algorithms that can find optimal solutions to

problems and resolve multi-stage decision problems [32].

J. Support Vector Machine (SVM)

SVM is a type of supervised learning which can be utilized

for tasks other than straightforward regression and

classification. It sets up according to how one thinks or

what one values. Data used for relapse analysis and cluster

analysis may be kept segregated with the use of supervised

learning models (SVMs) in ML. Given a large number of

training models, each of which is considered as possibly

belonging to both classes, a SVM training algorithm builds

a model that propagates new advisers for one class or

another. Models in SVMs are shown as spotlights in space

and are meant to hold examples of the various classes a

normal distribution. Then, depending on which side of the

gap new models are projected to fit into, plans are made to

include them in the similar area [33].

Fig. 5: Support Vector Machines

K. Artificial Neural Network (ANN)

ANN was first developed as oversimplified representations

of the human nervous system, with the goal of replicating

some of the latter's cognitive skills in a computer program.

Better cognitive processes, including learning and memory,

are a result of the enhanced cognitive abilities of ANNs,

which not only learn from experience but also retrain

themselves to adapt to new circumstances [34].

L. Naive Bayes

Probabilistic classifiers belonging to NB family. It assumes

that the elements of the model are unrelated to one another

and are grounded on Bayes' Theorem. In most cases, the

presumption of autonomy is a false one. In contrast to

other, more sophisticated classifier models, NB has been

shown to be effective.

 (1)

8. Comparative Analysis of Machine Learning

Algorithms in Sdp

We experimented with several ML models, including LR,

ANN, RF SVM, and NB. This review is done using five

different defect prediction datasets named KC2, PC1, JM1,

DS1, and KC1. The accuracy score of the ML algorithms

for different datasets is given below in table and figure.

Table IV: Comparison Results of ML Algorithms

Source Datasets Algorithms Accuracy

[35] KC2 Logistic Regression 83.7

[36] PC1 Random Forest 91

[37] JM1 Support Vector

Machine

81.73

[38] DS1 Artificial Neural

Network

93.8

[39] KC1 Naïve Bayes 82.10

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(6s), 257–266 | 264

Fig. 6: Accuracy Comparison of ML Algorithms for

Different Datasets

The above table IV and figure 6 shows comparative results

of ML algorithms i.e., SVM, Random Forest (RF), ANNs

(ANN), Naïve Bayes (NB), and LR, for variety of datasets

like KC2, PC1, JM1, DS1, and KC1. The x-axis of graph

represents the number of algorithms, while the y-axis

represents number of accuracy scores in percent. From

these results, we can see that the LR obtains the highest

83.7% accuracy for KC2 dataset, 91% accuracy for random

forest for PC1 dataset, 81.73% accuracy for SVM for JM1

dataset, 93.8% accuracy for ANN for DS1 dataset, and

82.1% accuracy of naïve bayes for KC1 dataset,

respectively. It is clearly shown that the ANN algorithm

achieves the highest accuracy value for DS1 dataset

compared to other algorithms.

9. Conclusion and Future Work

Due to its advantages, the development of software-based

systems has increased in recent years. But, before the

system is supplied to end users, its quality must be ensured.

Many quality measures, including software testing, CMM,

& ISO standards, have been developed to improve software

quality. Today, the importance of software testing to

software stability is increasing. Software flaws are one of

the leading reasons for software failure. Software defect

prediction is a method that creates a prediction model

based on previous data in order to forecast future software

problems. Predicting software defects may enhance the

effectiveness of software testing and influence resource

allocation. For error-prone modules, we should allocate

additional time and resources. This study's primary purpose

was to evaluate past research on software defects using ML

techniques and datasets. Several ML techniques, Random

Forest, SVM, LR, ANNs, and NB, have been analyzed in

this research utilizing the datasets JM1, KC1, PC1, DS1,

and KC2. For DS1 dataset, the most precise outcome (93.8

percent accuracy) is obtained using the ANN method. In

conclusion, this study's ML algorithms can be utilized to

discover software problems.

In a future project, we may incorporate other ML

approaches and give a comprehensive contrast between

them. In addition, adding additional software measures

to learning process is one way to improve prediction

model's accuracy.

References

[1] M. Shepperd, D. Bowes, and T. Hall, “Researcher

bias: The use of machine learning in software defect

prediction,” IEEE Trans. Softw. Eng., 2014, doi:

10.1109/TSE.2014.2322358.

[2] M. Shepperd, T. Hall, and D. Bowes, “Authors’ reply

to ‘comments on “researcher bias: The use of machine

learning in software defect prediction,”’” IEEE Trans.

Softw. Eng., 2018, doi: 10.1109/TSE.2017.2731308.

[3] C. Tantithamthavorn, S. McIntosh, A. E. Hassan, and

K. Matsumoto, “Comments on Researcher Bias: The

Use of Machine Learning in Software Defect

Prediction,” IEEE Trans. Softw. Eng., 2016, doi:

10.1109/TSE.2016.2553030.

[4] G. Czibula, Z. Marian, and I. G. Czibula, “Software

defect prediction using relational association rule

mining,” Inf. Sci. (Ny)., 2014, doi:

10.1016/j.ins.2013.12.031.

[5] M. Shepperd, Q. Song, Z. Sun, and C. Mair, “Data

quality: Some comments on the NASA software

defect datasets,” IEEE Trans. Softw. Eng., 2013, doi:

10.1109/TSE.2013.11.

[6] R. Malhotra, “Comparative analysis of statistical and

machine learning methods for predicting faulty

modules,” Appl. Soft Comput. J., 2014, doi:

10.1016/j.asoc.2014.03.032.

[7] N. Kalaivani, R. Beena, and A. Professor, “Overview

of Software Defect Prediction using Machine

Learning Algorithms,” Int. J. Pure Appl. Math., vol.

118, no. 20, pp. 3863–3873, 2018.

[8] X. Peng, “Research on Software Defect Prediction

and Analysis Based on Machine Learning,” 2022. doi:

10.1088/1742-6596/2173/1/012043.

[9] B. Yalciner and M. Ozdes, “Software Defect

Estimation Using Machine Learning Algorithms,”

UBMK 2019 - Proceedings, 4th Int. Conf. Comput.

Sci. Eng., no. 01, pp. 487–491, 2019, doi:

10.1109/UBMK.2019.8907149.

[10] J. Gao, L. Zhang, F. Zhao, and Y. Zhai, “Research on

Software Defect Classification,” in 2019 IEEE 3rd

Information Technology, Networking, Electronic and

Automation Control Conference (ITNEC), 2019, pp.

748–754. doi: 10.1109/ITNEC.2019.8729440.

[11] Z. Cai, L. Lu, and S. Qiu, “An Abstract Syntax Tree

Encoding Method for Cross-Project Defect

Prediction,” IEEE Access, 2019, doi:

10.1109/ACCESS.2019.2953696.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(6s), 257–266 | 265

[12] Q. Yu, J. Qian, S. Jiang, Z. Wu, and G. Zhang, “An

Empirical Study on the Effectiveness of Feature

Selection for Cross-Project Defect Prediction,” IEEE

Access, 2019, doi: 10.1109/ACCESS.2019.2895614.

[13] P. Paramshetti and D. A. Phalke, “Survey on Software

Defect Prediction Using Machine Learning

Techniques,” Int. J. Sci. Res., 2014.

[14] H. K. Dam, J. Grundy, T. Kim, and C. Kim, “A deep

tree-based model for software defect prediction”.

[15] G. Esteves, E. Figueiredo, A. Veloso, M. Viggiato,

and N. Ziviani, “Understanding machine learning

software defect predictions,” Autom. Softw. Eng.,

2020, doi: 10.1007/s10515-020-00277-4.

[16] E. A. Felix and S. P. Lee, “Integrated Approach to

Software Defect Prediction,” IEEE Access, 2017, doi:

10.1109/ACCESS.2017.2759180.

[17] T. Clancy, “The Standish Group Report CHAOS,”

Proj. Smart, pp. 1–16, 2014.

[18] V. Chomal and J. Saini, “Cataloguing Most Severe

Causes that Lead Software Projects to Fail,” 2014.

[19] A. Khalid, G. Badshah, N. Ayub, M. Shiraz, and M.

Ghouse, “Software Defect Prediction Analysis Using

Machine Learning Techniques,” Sustainability, vol.

15, no. 6, 2023, doi: 10.3390/su15065517.

[20] W. Yao, M. Shafiq, X. Lin, and X. Yu, “A Software

Defect Prediction Method Based on Program

Semantic Feature Mining,” Electronics, vol. 12, no. 7,

2023, doi: 10.3390/electronics12071546.

[21] M. Jorayeva, A. Akbulut, C. Catal, and A. Mishra,

“Machine Learning-Based Software Defect Prediction

for Mobile Applications: A Systematic Literature

Review,” Sensors, vol. 22, no. 7, 2022, doi:

10.3390/s22072551.

[22] A. Alazba and H. Aljamaan, “Software Defect

Prediction Using Stacking Generalization of

Optimized Tree-Based Ensembles,” Appl. Sci., vol.

12, no. 9, 2022, doi: 10.3390/app12094577.

[23] P. Tadapaneni, N. C. Nadella, M. Divyanjali, and Y.

Sangeetha, “Software Defect Prediction based on

Machine Learning and Deep Learning,” in 2022

International Conference on Inventive Computation

Technologies (ICICT), 2022, pp. 116–122. doi:

10.1109/ICICT54344.2022.9850643.

[24] H. Alsawalqah et al., “Software Defect Prediction

Using Heterogeneous Ensemble Classification Based

on Segmented Patterns,” Appl. Sci., vol. 10, no. 5,

2020, doi: 10.3390/app10051745.

[25] Meiliana, S. Karim, H. L. H. S. Warnars, F. L. Gaol,

E. Abdurachman, and B. Soewito, “Software metrics

for fault prediction using machine learning

approaches: A literature review with PROMISE

repository dataset,” in 2017 IEEE International

Conference on Cybernetics and Computational

Intelligence (CyberneticsCom), 2017, pp. 19–23. doi:

10.1109/CYBERNETICSCOM.2017.8311708.

[26] X. Cai et al., “An under-sampled software defect

prediction method based on hybrid multi-objective

cuckoo search,” Concurr. Comput. Pract. Exp., 2020,

doi: 10.1002/cpe.5478.

[27] M. Akour, H. Al Sghaier, and O. Al Qasem, “The

effectiveness of using deep learning algorithms in

predicting students achievements,” Indones. J. Electr.

Eng. Comput. Sci., 2020, doi:

10.11591/ijeecs.v19.i1.pp388-394.

[28] C. W. Yohannese and T. Li, “A Combined-Learning

based framework for improved software fault

prediction,” Int. J. Comput. Intell. Syst., 2017, doi:

10.2991/ijcis.2017.10.1.43.

[29] L. Kumar, S. Rath, and A. Sureka, “Using Source

Code Metrics and Ensemble Methods for Fault

Proneness Prediction,” 2017.

[30] M. M. Moore, E. Slonimsky, A. D. Long, R. W. Sze,

and R. S. Iyer, “Machine learning concepts, concerns

and opportunities for a pediatric radiologist,” Pediatr.

Radiol., 2019, doi: 10.1007/s00247-018-4277-7.

[31] S. MwanjeleMwagha, M. Muthoni, and P. Ochieng,

“Comparison of Nearest Neighbor (ibk), Regression

by Discretization and Isotonic Regression

Classification Algorithms for Precipitation Classes

Prediction,” Int. J. Comput. Appl., 2014, doi:

10.5120/16919-6729.

[32] P. Xu, “Review on Studies of Machine Learning

Algorithms,” 2019. doi: 10.1088/1742-

6596/1187/5/052103.

[33] C. Pan, M. Lu, B. Xu, and H. Gao, “An improved

CNN model for within-project software defect

prediction,” Appl. Sci., 2019, doi:

10.3390/app9102138.

[34] S. Chen and D. Tan, “A SA-ANN-Based Modeling

Method for Human Cognition Mechanism and the

PSACO Cognition Algorithm,” Complexity, 2018,

doi: 10.1155/2018/6264124.

[35] M. Assim, Q. Obeidat, and M. Hammad, “Software

Defects Prediction using Machine Learning

Algorithms,” 2020 Int. Conf. Data Anal. Bus. Ind. W.

Towar. a Sustain. Econ. ICDABI 2020, 2020, doi:

10.1109/ICDABI51230.2020.9325677.

[36] M. Azam, M. Nouman, and A. R. Gill, “Comparative

analysis of machine learning techniques to improve

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(6s), 257–266 | 266

software defect prediction,” KIET J. Comput. Inf. Sci.

[KJCIS], vol. 5, no. 2, pp. 41–66, 2022.

[37] A. Alsaeedi and M. Z. Khan, “Software Defect

Prediction Using Supervised Machine Learning and

Ensemble Techniques: A Comparative Study,” J.

Softw. Eng. Appl., 2019, doi:

10.4236/jsea.2019.125007.

[38] A. Hammouri, M. Hammad, M. Alnabhan, and F.

Alsarayrah, “Software Bug Prediction using machine

learning approach,” Int. J. Adv. Comput. Sci. Appl.,

2018, doi: 10.14569/IJACSA.2018.090212.

[39] S. Aleem, L. F. Capretz, and F. Ahmed,

“Benchmarking Machine Learning Techniques for

Software Defect Detection,” Int. J. Softw. Eng. Appl.,

2015, doi: 10.5121/ijsea.2015.6302.

[40] Alaria, S. K. "A.. Raj, V. Sharma, and V.

Kumar.“Simulation and Analysis of Hand Gesture

Recognition for Indian Sign Language Using

CNN”." International Journal on Recent and

Innovation Trends in Computing and

Communication 10, no. 4 (2022): 10-14.

[41] Satish Kumar Alaria. Design & Analysis of Cost

Estimation for New Mobile-COCOMO Tool for

Mobile Application. IJRITCC 2019, 7, 27-34.

[42] Najneen Qureshi, Manish Kumar Mukhija and Satish

Kumar, "RAFI: Parallel Dynamic Test-suite

Reduction for Software", New Frontiers in

Communication and Intelligent Systems, SCRS,

India, 2021, pp. 165-176.

https://doi.org/10.52458/978-81-95502-00-4-20.

https://doi.org/10.52458/978-81-95502-00-4-20

