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Abstract- Software engineering research is centered on defect prediction. Successful software development requires better 

communication between data mining and software engineering. Software defect prediction is a pre-testing technique that estimates where 

bugs will show up in the code. The purpose of software defect prediction research is to identify potentially flawed parts of a programme 

before it reaches the testing phase. The primary benefit of these prediction models is that they need more testing time and money. may be 

directed to the modules most prone to errors. However, only a few mobile app-specific software defect prediction algorithms currently 

exist. It is common practise to utilise defect prediction algorithms to probe the impact domain in software (clustering, neural networks, 

statistical methods, and machine learning models). This research aims to examine and compared various ML (machine learning) 

algorithms for software bug prediction. Despite the widespread availability of failure prediction methods, no one strategy is appropriate 

for every data collection. Support Vector Machine, Random Forest, Naive Bayes, Logistic Regression, and Artificial Neural Network, 

were only some of ML methods utilised to find biggest possible subset of faults. The goal of this study is to utilize 5 data sets (JM1, 

KC1, KC2, PC1, and DS1) to identify flaws. As compared to other methods, ANN has been demonstrated to have the highest accuracy 

(93.8%). 
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1. Introduction 

Since modern software systems are more intricate, 

developing bug-free code is becoming increasingly 

challenging. Finding and fixing flaws in software design 

should be an ongoing process. As 100% fault-free software 

production seems unlikely, it's important to work on defect 

minimization instead [1]. It's not simple to do this. Saving 

money requires finding software flaws as early as possible 

in the development process. Additionally, early 

identification will guarantee that high-quality software is 

being given to clients at the lowest possible cost. Prediction 

models for identifying flawed classes in software may be 

developed using several Object Oriented (OO) software 

metrics that measure structural properties of a programme 

like inheritance, cohesion, etc. These measurements may 

be gathered from previously released software and then 

used to inform prediction models for future updates [2]. 

 As a result, the quality of software systems may be 

enhanced by more precise predictions of whether or not 

software entities include design faults. A software metric is 

a quantitative or qualitative evaluation of some aspect of 

software. It's used to assess software quality when still in 

its formative stages of development, such design, and 

coding [3]. A software flaw is any aspect of a piece of 

software that fails to function as intended or satisfy the 

needs of the intended audience. In other terms, a defect is a 

flaw in the program's code or logic that leads to unintended 

behaviour. Predicting where bugs will appear in code is 

known as software defect prediction. High-quality software 

development results in a finished product with minimal 

bugs [4]. Finding software bugs early on potentially saves 

time and money during development and makes the final 

product more stable. As a result, predicting when a bug 

may appear is crucial for improving software quality. 

Defect prediction metrics are backbone of any statistical 

prediction model development process. 

 

Fig. 1: Software defect prediction process 

Hence, predicting defects is crucial for improving software 

quality. While developing a statistical prediction model, 

defect prediction metrics are crucial. There are two main 

types of metrics used for defect prediction: code metrics 

and process metrics. By developing these prediction 

models, software companies may utilise them throughout 

the earliest stages of development to locate problematic 
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code. Software companies may utilise these measures to 

narrow down the larger pool of software metrics they have 

at their disposal [5]. The measurements may be used to 

create models that forecast defects. Researchers have 

utilised a wide variety of approaches to determine the 

correlation between static code metrics and defect 

forecasting. LR (Logistic regression) is an example of a 

classic statistical technique, whereas  SVM (Support 

Vector Machines), NB (Naive Bayes), ANN (Artificial 

Neural Networks), and Decision trees,  are examples of ML 

techniques [6]. The objective of a neural network is to 

represent data in a manner which minimizes discrepancy 

between actual class labels of data tuples and predicted 

class of network. In order to discover a hyperplane for data 

separation utilising crucial training tuples, SVM projects 

the original data into a higher dimension. The process is 

carried out in a tree-like fashion via a decision tree. Each 

node in the tree that isn't a leaf is evaluated on a set of 

attributes using an attribute selection measure. 

The outline for the rest of the paper appears below. Section 

II elaborates the concept and overview of software defects. 

Section III discusses the software metrics and the software 

quality assurance is described in section IV. Section V 

provides the detail of software failure factors. Section VI 

describes the available literature on approaches for 

software defect prediction. Section VII covers a variety of 

ML algorithms. The comparison of several ML methods is 

presented in Section VIII. The last thoughts on the subject 

are presented in Section IX. 

2. Concept and Overview of Software Defects  

A. Concept of Software Defects 

Incorrect or unexpected results can be generated by 

software due to errors, bugs, flaws, faults, malfunctions, or 

other types of defects. Inherent to any system are flaws. 

They manifest as a result of the process of making 

something or the materials used. Software defects are 

coding mistakes that result in unexpected behaviour. Most 

bugs originate in the code or design, while others are the 

result of faulty compiler output. 

Software bugs provide a serious security risk for both 

developers and users. Defects in software don't only slow 

down development; they also raise costs and lower quality. 

Predicting software faults is presented as a means to 

address such issues. SDP may help maximise software 

testing's efficiency and guide the use of scarce resources. 

Finding and fixing software bugs early in the software 

development life cycle (SDLC) is essential for producing 

high-quality code [7]The description of the concepts that 

are easily mistaken with defects is as follows: 

• Fault: The programme operates in an improper internal 

state and fails to provide the expected results for the 

client. Considered to be a kind of dynamic behaviour, this 

flaw may be seen as a cause of software failures.  

• Failure: It describes the results of the software's 

execution that the customer does not want to see. 

Example: if the client's capabilities aren't met and the 

framework loses its execution capacity, it won't be able to 

meet fixed asset's execution needs. 

• Error: Humans are responsible for its introduction, and it 

may then be perverted into mistakes. Inconsistencies in 

software design, requirements analysis, data structure, 

code, and other carriers provide a trail of evidence that 

follows the project from start to finish [8].  

The defect count is a key indicator of software quality. 

Client satisfaction drops, resources are depleted, and the 

testing process drags on when there are too many flaws. 

Improving test efficiency is crucial to controlling problems 

and saving money. 

B. Main Research Direction of Software Defects 

1) Software Defect Management 

The primary goals of defect management are data 

gathering, statistical analysis, and practical defect 

recording. Many robotized defect management systems 

have been developed by engineers to boost management 

productivity. The two most popular programmes in use 

today are Bugzilla, an open-source bug-tracking platform 

supplied by Mozilla, and JIRA, which is distributed by 

Atlassian. None of these systems allows for a more 

thorough study or explicit categorization of faults beyond 

recording their transactions, characteristics, and statistical 

information. Important parts of defect management include 

analysing and categorising defects. Thus, additional 

investigation of the data collected in JIRA and Bugzilla is 

required for the analysis and arranging of deformities  [9]. 

2) Software Defect Analysis 

Defect analysis is a common tool used by software 

engineers and designers to evaluate the caliber of their code 

and the finished product. Defect analysis is a technique 

used to categorise errors and discover their root causes in 

software. Finding, locating, evaluating, and bettering test 

efficiency are all goals of software defect analysis. Defects 

analysis techniques may be broken down into three broad 

categories: qualitative, quantitative, and attribute [10]. Root 

Cause Analysis (RCA) and Software Fault Tree Analysis 

are two common qualitative methods of investigation 

(SFTA). Single-attribute analysis and multi-attribute 

analysis are two typical ways of categorising attributes.  

3) Software Defect Classification 

The causes of software flaws are unique and convoluted. 

Better aggregation and categorization of defects may boost 

analyzers' efficiency, make it easier for programmers to 

evaluate code quality, and reduce analysis overhead. 
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Classification also helps in recommending fixes and 

reusing test cases. It's able to understand defect distribution 

based on categorization and analysis findings, stops 

common software bugs in their tracks, drastically improves 

the SDLC, and ultimately boosts software quality. 

Software defect analysis relies heavily on the 

categorization of software flaws. Defect categorization is 

crucial since the results have a direct impact on the next 

step of defect investigation. Until date, software fault 

categorization has been divided into two camps: those that 

rely on humans and those that use computers. 

a) Manual classification of software defects 

Examiners must rely on their own experience and 

judgement to manually classify software faults into 

categories. To begin, the team established a benchmark for 

defect categorization. The problem is identified, and a 

defect category is matched based on previous experience. 

Nevertheless, this strategy's categorization cycle is labor-

intensive and needs a large group of experts. Data analysis 

requires a lot of time and resources since humans have 

limited energy and memory compared to computers. This 

means that humans will have a slower categorization speed.  

b) Automatic classification of software defects 

More and more people are turning to computers to 

automatically detect flaws in an effort to save development 

expenses and boost development efficiency. Experts are 

looking for an easy way to categorise problems, and with 

the rise of ML &AI, this has become an active area of 

study in business world. 

4) Software Defect Prediction (SDP) 

Software engineering is a potential area for future 

advancement. In the context of software development 

projects, Project Defect Detection is a technique for 

accumulating data about software flaws (WPDP). While 

the damage data prediction model has been utilised in other 

projects before, the authors claim that their cross-project 

defect detection (CPDP) programme is the first of its kind. 

Some recent research indicates promise for CPDP [11]. To 

be consistent objects across index sets, however, CPDP 

Indicators must originate from the same block. As modern 

technology is so adaptable, horizontal CPDP project 

applications and indicators [12] may be better suited to the 

situation. Although most previous approaches are 

supplemental project defect detection, the serial forecasting 

model uses up-to-date information to determine failure 

trends in newly developed software modules within the 

same project (WPDP). However, studies have shown that 

other programmes require sufficient historical data in order 

to function, regardless of whether they support statistical 

data or not. 

 

3. Software Metrics 

A software meter quantifies an attribute or characteristic of 

the code or its requirements. The effectiveness of software 

in accomplishing a certain task is typically measured using 

software metrics. A software metric is a quantitative or 

qualitative evaluation of an aspect of a programme. Metrics 

pertaining to complexity, coupling, and cohesion (CCC) 

may be assessed and utilised to assess software quality 

throughout its development in stages like design and 

coding. The most crucial part of developing a statistical 

prediction model is the use of defect prediction metrics. 

There are two main types of metrics used for defect 

prediction: code metrics and process metrics. 

Size, McCabe, Hastead, CK, and OO metrics are only few 

examples of most often used code metrics, which have 

been demonstrated to be more popular than process 

metrics. [13]. Several code metrics are given below: 

C. Cyclomatic Complexity 

It evaluates the code's structural complexity. It is generated 

by tallying the possible branches in the program's logic. 

More tests are needed to obtain high code coverage in a 

programme with complicated control flow, and the 

software will be less maintainable as a result. 

D. Halsteads Product Metrics 

In order to quantify complexity, the late Maurice Halstead 

developed measures, which take into account not 

only number of operators and operands in a module but 

also its vocabulary size and running time. 

E. Product Metrics 

The lines of code (LOC) count in Product Metrics offers an 

approximation of total number of lines code. While the 

count is taken from code, it may not accurately 

represent entire amount of code lines. If number is too 

high, it might indicate that a single type or function is 

attempting to take on too much. Pre-implementation design 

metrics are calculated from a requirements or design 

document. Object-oriented metrics are useful for 

debugging and providing insight into where and how 

classes and objects might be simplified.  

4. Software Quality Assurance 

Software quality has always been a focal point for IT and 

software companies. The ability to accurately forecast 

software defects has gained a lot of attention in the last 

several years because of the direct influence it may have on 

programme quality. The cost, delivery time, and 

maintenance expenses associated with software all go up 

significantly when flawed modules are present. Not only 

must you be able to meet deadlines and perhaps accomplish 

them quickly, but you must also be capable to provide code 

of excellent quality or immensely greater quality.[14]. 
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As a result, there is a great deal of investigation into how to 

further improve the product quality within the mandated 

early phases of complete SDLC improvements to product's 

general concept may be accomplished in a number of ways, 

including via enhanced testing procedures, 

comprehensively programmed testing, and early deformity 

prediction[15].  Therefore, it can be useful to improve 

software quality by predicting, utilizing a software module, 

whether a software entity contains defects. Therefore, 

quality is an important factor in determining whether or not 

the software is suitable for a customer's needs or process, 

and pre-processing techniques, including KNN, multilayer 

perceptron, and many others, are applied to data to retrieve 

information of defective data. In short, happy customers 

are essential to a successful project, thus we'll be doing 

early-stage research to identify any issues. 

The practise of predicting software bugs has gained 

significant traction in recent years. Software quality is 

directly impacted by software defect prediction. There is a 

strong correlation between poor-quality software modules 

and software cost, software completion time, and software 

maintenance expenses[16]. When it comes to SQA, there 

are two primary methods: defect detection and defect 

prevention. Preventing defects requires taking proactive 

measures to forestall the occurrence of future errors. 

 

Fig. 2: Generic Process of SDP 

Issues with existing faults are the focus of defect 

prediction. Defect prevention is a way to increasing 

software quality [13], and the focus of our study is on 

doing just that via the use of defect prediction. Software 

defect prevention encompasses elimination of errors in 

algorithm design, software requirement planning,  and 

review [16].  The goal of defect prediction is to make 

informed decisions about the quality of a software 

product's delivery and amount of work required to keep it 

running smoothly before it is released to the public. 

Improving software quality is the method for preventing 

defects. The main goal of this study is to compare and 

contrast several ML methods in an effort to achieve the 

highest possible level of accuracy in feature selection for 

SDP. Finding and analysing which component of the 

programme is more prone to faults and delivering quality 

software is key to this study, as is the ability to foresee 

performance issues without going over the budgeted cost. 

5. Major Factor of Software Failure 

Finance, insurance, healthcare, manufacturing, e-

commerce, aviation, social networking, and other 

commercial areas [14] are all examples of software 

systems. Software system development and design need 

resources such as money, domain-specific human 

specialists, time, tools, and infrastructures. Even if a 

software organisation has years of expertise in project 

design and development, software failures are on the rise 

(as shown in Table II), resulting in wasted resources 

including money, time, and effort. Every SDLC has its 

share of bugs, and sometimes customers don't give you the 

information you need because they aren't familiar with IT 

projects or the ramifications of politics and culture. 

Challenges in completing a project were another topic 

included in the study. Lack of user interaction [14], unclear 

goals [15], insufficient requirement definition, lack of 

resources[16], inadequate project planning and scheduling 

[17], poor communication among Team members [18], and 

poor Testing are most prevalent recognized causes of 

software failures. According to Table-1 below, the most 

important elements for a project's success are a lack of user 

involvement and an insufficient user demand definition. 

The leading causes of software failure are shown in Table I 

below. 

Table I: Major factor for software failures [17] 

Project Challenges Factor % of 

Responses 

Incomplete requirements and 

specifications 

12.3%% 

Changing requirements and 

specifications 

11.8% 

New technology 3.7% 

Lack of User Input 12.8% 

Technology incompetence 7.0% 

Lack of resource 6.4% 

Unrealistic expectations 5.9% 

Lack of executive support 7.6% 

Unrealistic time frames 4.3% 

Unclear objectives 5.3% 

Other 23.0% 

According to CHAOS MANIFESTO's 2013 report, a 

survey was conducted between 2004 and 2012 on software 

projects, with results subdivided by category in Table II 

below. 
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Table II: Percentage detail from 2004 – 2012 [18] 

 2004 2006 2008 2010 2012 

Failed 18% 19% 24% 21% 18% 

Successful 29% 35% 32% 37% 39% 

Challenged 53% 46% 44% 42% 43% 

F. Recommendation to Address Software Failures 

In section V, we covered what tends to go wrong with 

software projects, but since every problem has a solution, 

we've included some suggestions for moving forward 

successfully. 

• Put clear objectives and goal 

• Monitor project to ensure that estimate is accurate. 

• Do not depend on a single cost or schedule estimate.   

• Fully satisfied the user requirements.   

6. Literature Review 

Important studies that use ML, neural networks and deep 

learning to the problem of predicting software faults are 

discussed below. We further elaborate on the 

considerations that led us to propose specific deep-learning 

techniques for Software Fault Prediction (SFP). 

Khalid et al., (2023) The ultimate purpose of the research 

was to improve the model's accuracy and precision relative 

to previous investigations. Previous research indicates that 

there is room for even greater precision gains. K-means 

clustering was used to organise the classes for this purpose. 

Also, we used classification models to sort out particular 

characteristics. To get there, ML models are fine-tuned 

using Particle Swarm Optimization. To evaluate the 

models, we employed the f-measure, the confusion matrix, 

the performance error metrics, and the precision and 

accuracy measurements. All of the ML and enhanced ML 

models perform well, but SVM and optimized SVM 

models are most accurate (at 99 percent and 99.80 percent, 

respectively). Accuracy is 93.80% for NB, 93.80% for 

Optimized NB, 98.70% for RF, 99.50% for Optimised RF, 

and 97.60 for an ensemble method. Our ultimate objective 

was to improve upon the accuracy of past investigations, 

and we believe we have done so here  [19] 

In this paper, Yao et al. (2023) propose a programme 

semantics feature mining (PSFM) approach to software 

defect prediction. Specifically, the grammatical structure 

information and the text information in the code are parsed 

first, and then the semantic information is retrieved. The 

semantic data is then mined for the faulty feature. Finally, 

the mined defect features are used to make predictions 

about software defects. The experimental results show that 

the suggested technique in this work (PSFM method) 

improved the F-measure more than the state-of-the-art 

approaches to software fault prediction[20]. 

In this study, Jorayeva et al., (2022) posed nine research 

topics, for which 47 papers were culled from scholarly 

databases. The majority of research (48%) centered on 

Android apps; 92% employed supervised ML; and the 

majority of chosen metrics were object-oriented. decision 

trees, NB, SVMs, LR, and neural networks are the five 

most popular ML methods. In the academic world, object-

oriented metrics were the norm. Deep learning techniques 

such as DBN (Deep Belief Networks), LSTM (Long Short-

Term Memory), and Deep Neural Networks have only been 

used in a small number of research projects thus far 

(DNN). For mobile applications, this is the first systematic 

literature study on topic of software defect prediction. It 

will aid practitioners and academics alike in their pursuit of 

defect prediction in mobile software [21]. 

Using fine-tuned tree-based ensembles, Alazba and 

Aljamaan (2022) explore the usage of a stacking ensemble 

for defect prediction. Boosted trees, histogram-based 

gradient boosting, AdaBoost, gradient boosting, Random 

forest, XGBoost, and CatBoost were among the tree-based 

ensembles whose hyperparameters were optimized using a 

grid search. We then stacked the optimized tree-based 

ensembles we had built. Twenty-one publicly available 

defect datasets were utilized to evaluate the ensembles. 

Empirical results demonstrate that hyperparameter 

optimization significantly affects ensembles of extra trees 

and random forest models. When compared to our 

optimized tree-based ensembles, the stacking ensemble 

likewise outperformed them [22] 

Tadapaneni et al., (2022) The proposed research uses the 

binary prediction dataset PROMISE. Due to the inherent 

binary nature of software fault prediction, a classification 

model was used for this investigation. This is why we use 

the NB on ML model and evaluate the performance of 

DNN and LSTM. The DNN algorithm performed better 

than competing methods in a controlled experiment 

designed to identify software bugs [23]. 

A hybrid heterogeneous ensemble strategy is suggested in 

this research by Alsawalqah et al., (2020) to forecast 

software defects. Classifiers in heterogeneous ensembles 

come from a variety of learning base approaches, each with 

its own set of advantages and disadvantages. The suggested 

method's central aim is to create high-quality 

heterogeneous categorization models maintained by 

specialists. The suggested method is developed in two 

different iterations and tested. The first uses conventional 

classifiers, while the second employs ensemble classifiers. 

The proposed method is evaluated by performing 

experiments on 21 publicly available benchmark datasets. 

The ensemble version was shown better than other well-

regarded basic and ensemble classifiers in head-to-head 

assessments [24]. 
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The software metrics that exist for defect prediction in 

software using ML are reviewed in depth by Meiliana et al. 

(2017). Our research shows that this is the first study of its 

kind to use the datasets available in the PROMISE 

repository to predict software faults. Several experiments 

from the PROMISE repository dataset are compared in 

attempt to develop an agreement on what constitutes 

successful software metrics and ML approach in software 

failure prediction [25]. 

Table III: Summary of Software Defect Prediction Using 

ML Algorithms from Various Researchers  

Author Used techniques  Key findings 

Cai, X., 

Niu, Y., 

Geng, et al. 

[26] 

SVM G-Mean is used as a 

performance metric and 

a technique for SDP's 

state-of-the-art 

performance. 

Akour, M., 

Alsghaier, 

H., et.al 

[27] 

NB, Bayes net, 

PART, Random 

Forest, IB1, VFI, 

decision table, 

and NB tree base 

learners 

According to findings, 

Random Forest 

Classifier is the most 

effective method. 

C. W. 8 classifiers: NB, combination of RF with 

Yohannese 

and T. Li 

[28] 

NN, SVM, RF, 

KNN, DTr, DTa, 

and RTr 

Information Gain (IG) 

FS yields the highest 

Receiver Operating 

Characteristic (ROC) 

curve value. 

Lov 

Kumar, 

Santanu 

Rath et al. 

[29] 

Majority Voting 

Ensemble 

(MVE) method 

The MVE method yields 

the highest efficiency. 

The MVE technique for 

fault prediction results 

in a model with lower 

overall fault removal 

costs than competing 

methods. 

 

7. Machine Learning Algorithms 

The purpose of this research is to investigate and evaluate 

ML algorithms.  The research demonstrates the 

performance accuracy and capacity of ML algorithms for 

predicting software bugs and gives a comparative study of 

selected ML methods. In order to anticipate output values 

for novel input data, supervised ML algorithms attempt to 

create an inferring function by drawing conclusions about 

links and dependencies between known inputs and outputs 

of labeled training data. The chosen supervised ML 

algorithms and their brief descriptions are as follows. [30]: 

 

Fig. 3: Machine learning Algorithms 

These are a few algorithms utilized for comparison 

purposes and are detailed below: 

G. Logistic Regression 

A method based on LR is utilized to make the forecast. It is 

used to establish the likelihood of a particular category, 

such as success or failure, victory or defeat, survival or 

annihilation. This may be expanded to show other 

categories of events, such as determining whether or not a 

given image has a cat, dog, lion, etc. Each item in the photo 

would be assigned a probability between 0 and 1, and the 

total would be totaled up to 1. Although many increasingly 

complex enhancements exist, this technique is primarily 

used in logistics and statistics to display a dependent 

variable in a binary (0 or 1) form [31]. 
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Fig. 4: Logistic Regression 

H. Random Forest 

Random forests, a popular ensemble learning approach 

built on the Bagging framework, take in unlabeled samples 

and spit out the classification results decided on by 

individual trees. This makes random forests useful for a 

wide variety of tasks, including classification, regression, 

and more. The random forest is an improvement over the 

decision tree in terms of performance since it incorporates 

the bagging approach into the decision tree. The use of 

randomization improves scalability and parallelism in the 

classification of high-dimensional data, while also 

optimizing anti-noise abilities and lowering the danger of 

over-fitting. The input dataset for a random forest does not 

need to be standardized, hence it may be used for both 

continuous and discrete situations requiring regression. 

I. Decision Tree 

As an example of a supervised learning algorithm, the 

decision tree is shown here. Each leaf node in a decision 

tree stands for a class label, whereas each interior node 

stands for a "test" on an attribute. Together, these nodes 

make up structure of a decision tree. Its framework may be 

used to reconstruct and comprehend previous decisions on 

a subject of interest. ID3 and C4.5 are examples of classic 

decision tree algorithms that can find optimal solutions to 

problems and resolve multi-stage decision problems [32].  

J. Support Vector Machine (SVM)  

SVM is a type of supervised learning which can be utilized 

for tasks other than straightforward regression and 

classification. It sets up according to how one thinks or 

what one values. Data used for relapse analysis and cluster 

analysis may be kept segregated with the use of supervised 

learning models (SVMs) in ML. Given a large number of 

training models, each of which is considered as possibly 

belonging to both classes, a SVM training algorithm builds 

a model that propagates new advisers for one class or 

another. Models in SVMs are shown as spotlights in space 

and are meant to hold examples of the various classes a 

normal distribution. Then, depending on which side of the 

gap new models are projected to fit into, plans are made to 

include them in the similar area [33]. 

 

Fig. 5: Support Vector Machines 

K. Artificial Neural Network (ANN) 

ANN was first developed as oversimplified representations 

of the human nervous system, with the goal of replicating 

some of the latter's cognitive skills in a computer program. 

Better cognitive processes, including learning and memory, 

are a result of the enhanced cognitive abilities of ANNs, 

which not only learn from experience but also retrain 

themselves to adapt to new circumstances [34]. 

L. Naive Bayes 

Probabilistic classifiers belonging to NB family. It assumes 

that the elements of the model are unrelated to one another 

and are grounded on Bayes' Theorem. In most cases, the 

presumption of autonomy is a false one. In contrast to 

other, more sophisticated classifier models, NB has been 

shown to be effective. 

                              (1) 

8. Comparative Analysis of Machine Learning 

Algorithms in Sdp 

We experimented with several ML models, including LR, 

ANN, RF SVM, and NB. This review is done using five 

different defect prediction datasets named KC2, PC1, JM1, 

DS1, and KC1. The accuracy score of the ML algorithms 

for different datasets is given below in table and figure. 

Table IV: Comparison Results of ML Algorithms  

Source Datasets Algorithms Accuracy  

[35] KC2  Logistic Regression 83.7 

[36] PC1  Random Forest 91 

[37]  JM1  Support Vector 

Machine 

81.73 

[38] DS1  Artificial Neural 

Network 

93.8 

[39] KC1  Naïve Bayes 82.10 
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Fig. 6: Accuracy Comparison of ML Algorithms for 

Different Datasets 

The above table IV and figure 6 shows comparative results 

of ML algorithms i.e., SVM, Random Forest (RF), ANNs 

(ANN), Naïve Bayes (NB), and LR, for variety of datasets 

like KC2, PC1, JM1, DS1, and KC1. The x-axis of graph 

represents the number of algorithms, while the y-axis 

represents number of accuracy scores in percent. From 

these results, we can see that the LR obtains the highest 

83.7% accuracy for KC2 dataset, 91% accuracy for random 

forest for PC1 dataset, 81.73% accuracy for SVM for JM1 

dataset, 93.8% accuracy for ANN for DS1 dataset, and 

82.1% accuracy of naïve bayes for KC1 dataset, 

respectively. It is clearly shown that the ANN algorithm 

achieves the highest accuracy value for DS1 dataset 

compared to other algorithms. 

9. Conclusion and Future Work 

Due to its advantages, the development of software-based 

systems has increased in recent years. But, before the 

system is supplied to end users, its quality must be ensured. 

Many quality measures, including software testing, CMM, 

& ISO standards, have been developed to improve software 

quality. Today, the importance of software testing to 

software stability is increasing. Software flaws are one of 

the leading reasons for software failure. Software defect 

prediction is a method that creates a prediction model 

based on previous data in order to forecast future software 

problems. Predicting software defects may enhance the 

effectiveness of software testing and influence resource 

allocation. For error-prone modules, we should allocate 

additional time and resources. This study's primary purpose 

was to evaluate past research on software defects using ML 

techniques and datasets. Several ML techniques, Random 

Forest, SVM, LR, ANNs, and NB, have been analyzed in 

this research utilizing the datasets JM1, KC1, PC1, DS1, 

and KC2. For DS1 dataset, the most precise outcome (93.8 

percent accuracy) is obtained using the ANN method. In 

conclusion, this study's ML algorithms can be utilized to 

discover software problems. 

In a future project, we may incorporate other ML 

approaches and give a comprehensive contrast between 

them. In addition, adding additional software measures 

to learning process is one way to improve prediction 

model's accuracy.  
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