
 

International Journal of 

INTELLIGENT SYSTEMS AND APPLICATIONS IN 

ENGINEERING 
ISSN:2147-67992147-6799                                       www.ijisae.org Original Research Paper 

 

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(6s), 267–275 |  267 

A Study of Evaluation Measures for Software Effort Estimation Using 

Machine Learning 

 

1Rajani Kumari Gora 2Prof. Ripu Ranjan Sinha 

 

Submitted: 11/02/2023                Revised: 16/04/2023               Accepted: 07/05/2023 
 

Abstract- Software effort estimation is a crucial process which involves predicting how much time and money will be needed to 

accomplish a software development project. Expert opinion and past data are used in conventional estimating techniques, which may be 

inefficient and prone to mistakes. Machine learning offers a promising approach to automate this process by learning from past projects 

and predicting effort estimates for new projects. Using machine learning, this article takes an in-depth look at the practise of software 

work estimation. In this study, several machine learning models, including support vector machine, KNN, ANN, linear regression, 

support vector machine, and neural network, are trained and evaluated on a dataset of software projects. This paper also presents some 

comparative results of the various machine learning algorithms, including multilayer perceptron (MLP), support vector machine (SVM), 

and linear regression (LR), showing that the MLP model achieves the lowest MMRE value, 13%, while the SVM achieves the highest 

PRED(25), 87.65%, for software effort estimation. 
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1. Introduction 

A software system's development time may be estimated 

by software development effort estimation (SDEE). When 

broken down into its component parts, software 

development, and maintenance effort estimate (SDEE) may 

be thought of as a sub-domain of software engineering. The 

words software cost estimate and software effort estimates 

are sometimes used interchangeably in the academic 

community, despite the fact that the bulk of software 

expenses are attributed to effort. Project success relies 

heavily on accurate initial development effort estimates 

made early in the software life cycle  [1]. Estimating 

materials and time required to finish a software project in 

accordance with the planned schedule and budget is known 

as software effort estimation. Man-hours and man-months 

are common measures of labour. Estimating how much 

time and energy will go into creating a piece of software is 

a common first step in the software development process. 

Research into software effort estimation has been ongoing 

since the 1960s due to the multiple challenges inherent in 

producing reliable estimates. Although 69percent of 

finished software projects achieved their intended business 

goals, 43percent went over budget, 48percent were 

delivered late, and 15 percent were rated a failure due to 

faulty effort estimates, according to study conducted 

by Project Management Institute (PMI) in 2017[2]. [3] 

three types of learning: algorithmic, non-algorithmic, and 

machine learning. Estimating software development time 

using an algorithmic approach relies on a statistical and 

mathematical framework. Estimating methods include 

COCOMO-II (Constructive Cost Model), FPA (Function 

Point Analysis), UCP (Use Case Point), Putnam Software 

Life cycle Management (SLIM), and COCOMO-I. 

Analytical evaluations and interpretations provide the basis 

of nonalgorithmic models. Estimating how much work a 

project will take is crucial to the success of any software 

development endeavor. The term "effort estimate" refers to 

the approach used to determine amount of time and other 

resources requirements for achieving a goal and delivering 

a product or service which fulfills customer's specified 

requirements. To aid in project planning and ensure a 

smooth rollout, software engineers need accurate effort 

estimate models[4] Software development projects may be 

more prosperous if effort estimates are spot-on, but if 

they're off, the company might lose money on its marketing 

and sales.  

2. Software Effort Estimation  

Software project management relies heavily on accurate 

estimates of time and resources spent developing software. 

(SPM). It is also crucial that prediction methods can be 

trusted to provide accurate results. Accurate effort 

appraisals, especially at the beginning of a project, may 

help reduce the high risks associated with developing a 

software product. The widespread use of unreliable 

estimate methods causes most projects to go over budget 

and over schedule. The use of ML (machine learning) in 
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software project estimating, however, may result in more 

accurate work estimation.[5]. 

Estimating a software project requires calculating how long 

it will take, how many people will be needed, how much it 

will cost, and when it will be finished[6]. 

 

Fig. 1. Type of software estimation process [7] 

1. Estimating size  

The first step in creating a meaningful project estimate is to 

create a precise software size estimate. Scope and size 

estimation can begin in tandem with the formal 

specifications of the project criteria. 

2. Estimating effort 

 Once you have a ballpark idea of how big a product is 

going to be, putting together a time estimate is a breeze. It 

is only feasible to convert software size to total project 

work estimate if the software development lifecycle of a 

project has been determined. 

3. Estimating schedule  

The third step is to use the effort estimate to create a 

schedule for the software development project. It's 

important to think about how many people are working on 

a project, what kind of work they're doing, how long it's 

going to take, and when it's supposed to be finished. 

4. Staffing Estimation 

When it comes to software project planning, Staffing 

Estimation is all about using the right model to solve the 

human resource allocation issue[8] 

5. Estimating Cost  

The whole cost of a project may be broken down into its 

component parts, which might include things like labour, 

hardware, software, or leasing fees, meetings, testing, 

communications, training, office space, etc. All of the 

aforementioned elements have some bearing on the 

evaluation of effort.[9] 

A. Techniques for estimating software work fall 

into 3 primary categories: 

1. Expert Judgment 

The most common approach to software cost assessment is 

the expert judgement methodology, in which actual experts 

are tasked with making estimates about the product's size 

and price. The methodology was developed from the 

project manager's prior work on other software projects 

like this one. Expert cost-estimating methods are useful 

when time and resources are limited [10]. Professional 

opinion might be flawed due to human fallibility and 

prejudice. The effectiveness of the method relies on the 

opinion of experts, who may have different levels of 

expertise with the same sort of project, leading to different 

cost estimates. It is most useful, however, in smaller to 

medium-sized software projects when there has been little 

to no change in the development teams or software 

characteristics from earlier projects. 

2. Algorithmic Estimation 

 The algorithmic method gives a set of mathematical 

formulas that may be used for software estimation. These 

mathematical estimates are based on research and historical 

data, and they include variables such as number of 

functions, source lines of code, and other cost factors 

including language, design technique, etc [11]. 

3. Machine Learning 

The majority of software cost assessment methods rely on 

statistical approaches, which lack the rigour and logic to 

provide reliable outcomes. Due to its potential to improve 

estimate accuracy via the training of estimating rules and 

the repetition of run cycles, ML technologies may be well-

suited to this domain. Popular ML methodologies include 

Rule Induction, Genetic Algorithm, ANN, case-based 

reasoning, trees for regression and classification, SVM 

(support vector machines), with augmenting, and 

MART[12]. It's not easy to tell which method produces the 

most reliable results for a given dataset. Nonetheless, a lot 

of work has been done on estimate approaches using ML, 

and the literature shows that ML methods may provide 

appropriate estimation models. 

3. Software Development Life Cycle 

Systems Development Life Cycle (SDLC), sometimes 

known as Software Development Life Cycle, is a phrase 

used in domains of systems engineering, data management, 

and software engineering to describe phases involved in the 

design and implementation of novel or improved systems. 

The term is most often used in reference to digital 

infrastructures. There are several SDLC-based software 

development approaches that are fundamental to the field 

of software engineering. Methodologies such as these 

provide a structure for organizing and directing 

development of an information system's software[13]. 
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Fig. 2: Software Development Life Cycle 

The many SDLC stages are shown on cyclical diagram 

above. The steps are as follows: 

1. Requirement Analysis 

2. Defining 

3. Designing 

4. Coding 

5. Testing  

6. Development  

7. Maintenance. 

 

A. SDLC MODELS 

There are different models explained in detail below: 

a) Waterfall Model 

This is a sequential model, in which procedures are 

completed in order listed. There is a pattern here. Stage 

one's outputs "flow" into stage two's inputs, which "flow" 

into stage three's inputs, and so on. In addition, users can't 

go on to the next level until current one is finished. [14]. 

 

Fig. 3: Waterfall Model 

b) Spiral Model 

It's similar to incremental approach, but it puts more 

emphasis on analyzing risks. Planning, Risk assessment, 

Engineering, Construction, and finally, Release are the four 

components. These stages are repeated indefinitely in the 

program since they correlate to the many model spirals. 

In first stage, called "planning," requirements are gathered 

In the risk phase, problems are analyzed and potential 

remedies are proposed. The final product of engineering is 

software that has been thoroughly tested. Finally, the client 

assesses the results of the program. 

 

Fig. 4: Spiral Model 

c) V Shaped Model 

V-shaped model develops further from waterfall approach. 

The V-shaped model illustrates the interdependencies 

between various stages of development and corresponding 

testing stages. The verification and validation model is 

another name for this framework. That's because there's a 

validation step for every verification step. Checking the 

software's efficiency is the most important part of using it. 

It has to be tried and tried again. As a result, the V-shaped 

approach places primary emphasis on testing. Although 

verification checks for bugs in the code, validation makes 

sure it was written properly. A lot of iteration and testing 

goes into this procedure. The 'tester's life cycle' outlines 

these steps. As it is still difficult to make adjustments after 

the fact, this approach is best used when there are no 

unanticipated requirements. The model devotes majority of 

its attention to testing phase, which corresponds to each 

phase[15]. 

 

Fig. 5: V-Shaped Model 

d) Iterative SDLC Model 

The Iterative SDLC model does not require a 

comprehensive list of requirements prior to project 

commencement. The development process may begin 

with functional component's needs, that can be extended 

subsequently. The procedure is repeated, allowing 

for creation of new product variants with each cycle. Every 

iteration (which lasts from 2 to 6 weeks) comprises the 

creation of a distinct system component, which is then 

added to previously produced functionality. 

Mathematically speaking,  iterative model is a realization 
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of sequential approximation technique, which results in a 

progressive approach to the desired end product form. [16]. 

 

 

Fig. 6: Iterative Model 

4. Machine Learning-Based Software Effort 

Estimation 

Rather of being explicitly programmed by a human expert, 

algorithms in the area of ML are trained to carry out tasks 

by inferring the appropriate steps based on the data they are 

exposed to. The most popular approach is supervised, 

although semi-supervised and unsupervised methods also 

exist (20). In supervised learning, an algorithm is trained 

on a labelled dataset before being asked to classify an 

unlabeled data point. For instance, software may be taught 

to recognize cancerous from noncancerous skin lesions by 

exposing it to a series of images of lesions that have been 

manually identified as such. After training the algorithm 

with these pictures, it would be evaluated by presenting it 

with new, unlabeled photos and asking it to categorize 

them as benign or malignant. [17] Unsupervised learning is 

the process of learning from data without the use of a 

training dataset. The goal of both supervised and 

unsupervised learning is to label incoming data with 

appropriate categories. In contrast to supervised learning, 

unsupervised learning relies on a model's ability to classify 

data solely on the basis of its intrinsic properties rather than 

labels applied to the data at input. With this ML technique, 

we are able to take a more exploratory tack in order to 

discover hidden patterns in the data's distribution. Finally, 

semi supervised ML combines aspects of supervised and 

unsupervised learning into a single methodology. To 

simplify data labelling, this method combines a high 

number of unlabeled inputs with a small number of 

labelled inputs.[18]. 

 

Fig. 7: Machine Learning 

• K-Nearest Neighbor (KNN) 

k-NN is a simple nonparametric method that does not need 

any familiarity with the data distribution in advance. The 

method relies on the Euclidean distance principle, which 

states that data points with similar characteristics tend to 

cluster together in a dataset. If the instances have been 

labelled with categories, then the label of an unlabeled 

instance can be inferred from the labels of its neighbours. 

The modelling procedure is carried out three times 

(repeats=3), with k set to 10 (number=10) each time, and 

average of results is used[19]. 

• Linear Regression  

When dependent variable is anticipated to be a linear 

mixture of another properties, linear model of regression 

known as linear regression may be used. The purpose of 

linear regression is to minimise discrepancy between the 

observed and predicted values by adjusting the coefficients 

in a linear model. 

Some of the benefits of LR are:  

• The LR statistical formulas are straightforward 

and simple. 

• LR makes it simple to interpret data. 

Linear regression is a straightforward method with few 

restrictions. Yet, the goal feature and its dependent 

characteristics were chosen with great care. [20]. 

• MLP (Multi-Layer perceptron) 

Multi-Layer perceptron is yet another supervised learning 

technique that relies on a function f(x): Using the formula, 

one may learn from a training dataset RmR0where m 

represents the quantity of input dimensions and o 

represents the quantity of output dimensions. In order to 
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solve a regression or classification problem, the MLP may 

be taught a non-linear function by providing it with a set of 

features, X= x1, x2,..., xm, and an objective, y. MLPs 

diverge from other methods like Linear Regression in large 

part because of hidden layers, which are non-linear and 

located between input & output  layer [21]. This is a one-

hidden-layer Multi-Layer Perceptron (MLP) example: 

 

Fig. 8: Multilayer perceptron 

• Artificial Neural Networks (ANN) 

ANN are mathematical or computer models inspired by the 

human brain. ANN can be trained to perform a variety of 

tasks, including pattern recognition and data classification. 

ANNs consist of both neurons (the nodes) and synapses 

(the connections between them), much like biological 

neural networks (weights). For each neuron, there are n 

(the number of neurons in layer below) synapses (inputs) 

with n  [22]. 

• Support Vector Machine (SVM) 

SVM is a prominent ML approach for regression and 

classification applications [23]. In infinite or high-

dimensional space, a support vector machine (SVM) 

creates a hyper-plane or set of hyper-planes. When an 

improvement in margin leads to a reduction 

in generalization error of a classifier, hyper-plane which 

separates classes by largest average distance from their 

nearest training data points is winner. Effective in high-

dimensional spaces, its behaviour depends on the 

mathematical function used to define the kernel. You may 

use a radial basis function (RBF), sigmoidal, linear, 

polynomial, etc. 

• Naive Bayes (NB)  

NB algorithm takes its cues from Bayes' theorem and 

operates under the premise of feature independence. It 

performs extremely well for both multi-class and binary 

classifications in many real-world applications, such as 

document or text categorization, spam filtering, etc. The 

NB classifier is a powerful tool for data classification and 

creating trustworthy prediction models.[24]. To quickly 

and reliably estimate the necessary parameters, unlike more 

sophisticated algorithms, just a small quantity of training 

data is needed. Yet, its robust assumptions on the 

independence of characteristics may compromise its 

performance. Some frequent forms of NB classifiers 

include Categorical, Multinomial, Complement, Gaussian, 

and Bernoulli. 

5. Literature Review 

In this article, they'll take a look back at some of the latest 

studies into the art of software project effort estimate. 

Many new studies have been published in this field of 

study. In this article, they look at many articles that have 

utilized ML methods to predict how long a software project 

would take to complete. 

Ritu and Garg, (2022) Naive Bayes, Random Forests, 

Logistic Regression, stochastic gradient boosting, decision 

trees, and narrative points for estimate are only few of the 

ML methods suggested. Increasingly, businesses in the 

software industry are turning to non-parametric and non-

traditional methods for estimating software development 

projects in order to make up for their shortcomings. In this 

research, they provide and analyse a comparison of the 

aforementioned methods in order to provide an in-depth 

analysis of their relative merits [25]. 

Assefa et al (2022).'s primary motivation for computing 

three distinct ML algorithms is to identify the one that 

yields the most accurate predictions of future effort. They 

have used SVM, multi-layer perception and linear 

regression, algorithms on SEERA (Software Engineering 

in the Republic of Sudan) data set to predict the time and 

effort needed to complete the project. To further assess the 

precision with which the predictive model anticipates the 

time and resources required to create software, they have 

explored the assessment metrics of MSE (mean square 

error), MAE (Mean absolute error), and R-squared. 

Experiments were conducted on all of the chosen ML 

algorithms in a Jupyter notebook. Therefore, the linear 

regression R-square score is 0.95, the multi-linear 

regression score is 0.83, and the SVR score is less than 

0.04. The findings contrast the predictive abilities of the 

MLP and SVR models and demonstrate that the linear 

regression model is superior[26]. 

There are many different ML methods that may be utilized 

to estimate work, and Brar and Nandal (2022) analyse 

some of them. There has been a rise in research over the 

last two decades into using ML methods to improve the 

precision of effort estimations. Predicting labour needs 

may be done using a variety of estimated methods 

including COCOMO, analogy-based estimate, expert 

judgement, Putnam model, and ML. Substantial software 

project risks came from the algorithmic models' poor 

accuracy and unstable design. So, it is crucial to make 

yearly cost estimates for the project and evaluate them 

against other alternatives. Nevertheless, ML has its 

limitations in terms of effort prediction since no one 

approach can be considered optimal. The primary goal of 

this study is to provide an overview of the current state of 
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the art of several ML methods for assessing levels of effort. 

[27]. 

Scrum-based Agile projects that are created over the course 

of numerous sprints are the focus of this article by Govil 

and Sharma (2022). They proposed a tweak to the existing 

method that would account for an extra 36 success factors 

and offer a cost and time estimate for bringing the project 

to fruition. For this study and calculation, they utilised a 

dataset of 30 projects, each of which was classified as 

either "low," "mid," or "high”. Experts verify the accuracy 

of this data collection. They also compared our findings to 

the current method and discovered that, while taking into 

account more success variables, they are more cost-

effective and take less work[28]. 

Based on their findings, Jang and Wu (2022) suggest that 

hardware development might benefit from using software 

effort estimate. They utilise ML and deep learning to 

precisely control product development time by estimating 

how long it will take to complete various jobs throughout 

the hardware development process. In this study, natural 

language processing (NLP) is used to extract the keywords 

of the development process challenges using semantic 

analysis, which are then used as features in subsequent 

analysis. Several ML models, including random forest, 

decision tree, XGBoost, and RNN, are used to predict a 

time period and their accuracy, MMRE, and PRED are 

compared (25). The decision tree outperformed the other 

three models in the experiments. This research 

demonstrates that task tracking during hardware 

development may benefit from the software effort estimate 

method[29]. 

Setiadi et al. (2021) used a publicly available data set to 

conduct an attribute selection experiment with Particle 

Swarm Optimization (PSO) for the project's parameters 

based on an estimation made with the K-NN algorithm. 

Kitchenham CSC Desharnais, Maxwell, and Kamrer were 

used as software estimation effort datasets for this research. 

According to the study's findings, the RMSE value may be 

decreased using PSO (Particle Swarm optimization's) 

feature selection. This demonstrates which RMSE's 

precision increases as its value decreases. This study is 

helpful because it can be used by programmers to better 

anticipate how long it will take to complete an application 

so that it will function as intended[30] 

6. Results Illustration 
A. Performance Matrix 

In this section, we will present results for the experiments 

we have done using four ML techniques such as MLP 

(multilayer perceptron), SVM, linear regression, and 

ensemble learning. 

A. MMRE 

Mean Magnitude of Relative Error is abbreviated as 

MMRE. It's a common way to measure how well software 

effort estimation models do their job. The MMRE 

calculates an estimate's average percentage error, which is 

the absolute difference between estimated and actual effort 

dividing by actual effort, on the whole. 

It is described as: 

MMRE = (1/n) * Σ(|Ei|/Ai) 

where n is the number of estimates, Ei is the difference 

between the estimated effort and the actual effort for the i-

th estimate, and Ai is the actual effort for the i-th estimate. 

The absolute value of the difference is taken to ensure that 

errors in both directions (overestimation and 

underestimation) are treated equally. For accurate 

predictions, a low MMRE score is ideal, and vice 

versa[31]. 

n = Total number of data points. 

Ai =Actual value of the data point. 

B. PRED 25 

PRED (25) is a performance assessment statistic that 

assesses the proportion of projected values within 25 

percent of actual value. It is often used in the context of 

predicting or predictive modeling, where the aim is to 

properly anticipate future values based on previous data. 

Once the threshold is defined, we can calculate PRED (25) 

as follows: 

PRED (25) = (number of correct predictions / total number 

of predictions) * 100% 

Table 1:Comparision of different ML algorithms 

Algorithm MMRE PRED (25) 

Multilayer 

perceptron[32] 

15.1 87.65 

SVM[33] 13  76.91 

Linear 

regression[34] 

15.0 71.42 

The results of Table 1 show that we can compare the 

performance of four different algorithms on a predictive 

modeling task using two evaluation metrics: Measures of 

accuracy include MMRE and PRED (25) percentage of 

predicted values that are within 25% of actual value. 

MLP got 15.1% MMRE and 87.65% PRED (25), whereas 

SVM achieved MMRE 13% and 76.91% PRED (25). 

Linear regression got 15.0% MMRE and 71.42 PRED (25). 

As can be seen from the findings, SVM achieved the 

lowest MMRE(13%) and greatest PRED(25)(76.91%) 

compared to the other algorithms. MLP also performed 

well with a high PRED(25) of 87.65%, but had a higher 
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MMRE than SVM. Linear regression performed better than 

MLP in terms of PRED(25) but had a similar MMRE.  

Overall, the choice of algorithm depends on specific tasks 

and trade-off between accuracy and computational 

efficiency. In this case, SVM would be the recommended 

algorithm due to its overall better performance on both 

evaluation metrics.  

MMRE and 71.42 PRED (25).  

 

Fig. 9: MMRE values for the proposed model 

Fig 9 shows the comparison of MMRE for MLP, SVM, 

linear regression, and ensemble learning classifier models. 

MLP 15.1 has a higher MMRE than the other model. 

 

Fig. 10: PRED (25) values for the proposed model 

Fig 10 shows the comparison of PRED (25) for MLP, 

SVM, linear regression, and ensemble learning classifier 

models. MLP 87.65 has a higher PRED (25) than the other 

model. 

7. Conclusion 

Estimating how much time and money will be needed to 

complete a software project is called an "effort estimate," 

and it is an essential part of the software development 

process. The purpose of effort estimation is to provide 

reliable forecasts of time, money, and other assets needed 

to accomplish a software development project. Region of 

uncertainty- Uncertainty at the outset of the endeavor is the 

greatest challenge. Often, not even the customer has a 

thorough understanding of the requirements. This paper 

provides a detailed discussion about the software effort 

estimation field, and SDLC models, and also this paper 

compares various ML techniques for software effort 

estimation prediction. A low MMRE value indicates that 

the estimates are generally accurate, while a high MMRE 

value indicates that the estimates are generally inaccurate. 

A high PRED (25) value indicates that a high percentage of 

estimates fall within 25% of the actual effort, which 

suggests that the estimates are sufficiently accurate for 

practical purposes. The use all machine learning algorithms 

provides efficient results but the MLP, and SVM model 

outperforms the other model with lowest 13% of MMRE, 

and highest 87.65% of PRED (25). 

References 

[1] J. Wen, S. Li, Z. Lin, Y. Hu, and C. Huang, 

“Systematic literature review of machine learning 

based software development effort estimation 

models,” Information and Software Technology. 

2012, doi: 10.1016/j.infsof.2011.09.002. 

[2] S. M. Satapathy, B. P. Acharya, and S. K. Rath, 

“Early stage software effort estimation using 

random forest technique based on use case points,” 

IET Softw., 2016, doi: 10.1049/iet-sen.2014.0122. 

[3] Z. Dan, “Improving the accuracy in software effort 

estimation: Using artificial neural network model 

based on particle swarm optimization,” 2013, doi: 

10.1109/SOLI.2013.6611406. 

[4] Tung Khuat and Hanh Le, “ An Effort Estimation 

Approach for Agile Software Development using 

Fireworks Algorithm Optimized Neural Network.,” 

Int. J. Comput. Sci. Inf. Secur., 2016. 

[5] M. N. Mahdi et al., “Software Project Management 

Using Machine Learning Technique—A Review,” 

Appl. Sci., vol. 11, no. 11, 2021, doi: 

10.3390/app11115183. 

[6] A. T. Raslan and N. R. Darwish, “An enhanced 

framework for effort estimation of agile projects,” 

Int. J. Intell. Eng. Syst., 2018, doi: 

10.22266/IJIES2018.0630.22. 

[7] A. A. Abdulmajeed, M. A. Al-Jawaherry, and T. 

M. Tawfeeq, “Predict the required cost to develop 

Software Engineering projects by Using Machine 

Learning,” 2021, doi: 10.1088/1742-

6596/1897/1/012029. 

[8] N. A. Mohamed, A. Al-Qasmi, S. Al-Lamki, M. 

Bayoumi, and A. Al-Hinai, “An estimation of 

staffing requirements in primary care in Oman 

using the workload indicators of staffing needs 

method,” East. Mediterr. Heal. J., 2018, doi: 

10.26719/2018.24.9.823. 

[9] E. Meenakshi and E. Sumeet, “Review on Software 

15.1

13

15

11
12

13

14
15

16

Multilayer
perceptron[32]

SVM[33] Linear
regression[34]

M
M
R
E

Model

MMRE

87.65
76.91 71.42

0

50

100

Multilayer
perceptron[32]

SVM[33] Linear
regression[34]

P
R
ED

(2
5
)

Model

PRED(25)



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(6s), 267–275 |  274 

Effort estimation by machine learning 

Approaches,” vol. 9028, pp. 2002–2005, 2018. 

[10] J. G. Borade and V. R. Khalkar, “Software Project 

Effort and Cost Estimation Techniques,” Int. J. 

Adv. Res. Comput. Sci. Softw. Eng., 2013. 

[11] Rekha T. and R. P.K., “Machine Learning Methods 

of Effort Estimation and It’s Performance 

Evaluation Criteria,” Int. J. Comput. Sci. Mob. 

Comput., 2017. 

[12] R. Malhotra and A. Jain, “Software Effort 

Prediction using Statistical and Machine Learning 

Methods,” Int. J. Adv. Comput. Sci. Appl., 2011, 

doi: 10.14569/ijacsa.2011.020122. 

[13] P. Seema Suresh Kute and P. Surabhi Deependra 

Thorat, “A Review on Various Software 

Development Life Cycle ( SDLC ) Models,” Int. J. 

Res. Comput. Commun. Technol., 2017. 

[14] A. M. Kale, V. V Bandal, and K. Chaudhari, “A 

Review Paper on Software Testing,” Int. Res. J. 

Eng. Technol., vol. 5, no. 2, p. 1268, 2008, 

[Online]. Available: www.irjet.net. 

[15] G. Gurung, R. Shah, and D. P. Jaiswal, “Software 

Development Life Cycle Models-A Comparative 

Study,” Int. J. Sci. Res. Comput. Sci. Eng. Inf. 

Technol., no. July 2020, pp. 30–37, 2020, doi: 

10.32628/cseit206410. 

[16] B. Tarika, “A Review of Software Development 

Life Cycle Models,” Int. J. Adv. Res. Comput. Sci. 

Softw. Eng., vol. 3, pp. 62–68, 2019, doi: 

10.31058/j.data.2019.34002. 

[17] M. M. Moore, E. Slonimsky, A. D. Long, R. W. 

Sze, and R. S. Iyer, “Machine learning concepts, 

concerns and opportunities for a pediatric 

radiologist,” Pediatr. Radiol., 2019, doi: 

10.1007/s00247-018-4277-7. 

[18] G. Chartrand et al., “Deep learning: A primer for 

radiologists,” Radiographics. 2017, doi: 

10.1148/rg.2017170077. 

[19] A. Akella and S. Akella, “Machine learning 

algorithms for predicting coronary artery disease: 

Efforts toward an open source solution,” Futur. 

Sci. OA, 2021, doi: 10.2144/fsoa-2020-0206. 

[20] A. Kanneganti, “Using Ensemble Machine 

Learning Methods in Estimating Software 

Development Effort,” no. October, 2020. 

[21] F. Pedregosa et al., “Scikit-learn: Machine learning 

in Python,” J. Mach. Learn. Res., 2011. 

[22] M. Humayun and C. Gang, “Estimating Effort in 

Global Software Development Projects Using 

Machine Learning Techniques,” Int. J. Inf. Educ. 

Technol., 2012, doi: 10.7763/ijiet.2012.v2.111. 

[23] I. H. Sarker, “Machine Learning: Algorithms, 

Real-World Applications and Research 

Directions,” SN Comput. Sci., 2021, doi: 

10.1007/s42979-021-00592-x. 

[24] I. H. Sarker, “A machine learning based robust 

prediction model for real-life mobile phone data,” 

Internet of Things (Netherlands), 2019, doi: 

10.1016/j.iot.2019.01.007. 

[25] Ritu and Y. Garg, “Comparative Analysis of 

Machine Learning Techniques in Effort 

Estimation,” in 2022 International Conference on 

Machine Learning, Big Data, Cloud and Parallel 

Computing (COM-IT-CON), 2022, vol. 1, pp. 401–

405, doi: 10.1109/COM-IT-

CON54601.2022.9850592. 

[26] Y. Assefa, F. Berhanu, A. Tilahun, and E. 

Alemneh, “Software Effort Estimation using 

Machine learning Algorithm,” in 2022 

International Conference on Information and 

Communication Technology for Development for 

Africa (ICT4DA), 2022, pp. 163–168, doi: 

10.1109/ICT4DA56482.2022.9971209. 

[27] P. Brar and D. Nandal, “A Systematic Literature 

Review of Machine Learning Techniques for 

Software Effort Estimation Models,” in 2022 Fifth 

International Conference on Computational 

Intelligence and Communication Technologies 

(CCICT), 2022, pp. 494–499, doi: 

10.1109/CCiCT56684.2022.00093. 

[28] N. Govil and A. Sharma, “Estimation of cost and 

development effort in Scrum-based software 

projects considering dimensional success factors,” 

Adv. Eng. Softw., vol. 172, p. 103209, 2022, doi: 

https://doi.org/10.1016/j.advengsoft.2022.103209. 

[29] H.-C. Jang and S.-C. Wu, “Tracking of Hardware 

Development Schedule based on Software Effort 

Estimation,” in 2022 IEEE 13th Annual 

Information Technology, Electronics and Mobile 

Communication Conference (IEMCON), 2022, pp. 

305–310, doi: 

10.1109/IEMCON56893.2022.9946524. 

[30] A. Setiadi, W. F. Hidayat, A. Sinnun, A. Setiawan, 

M. Faisal, and D. P. Alamsyah, “Analyze the 

Datasets of Software Effort Estimation With 

Particle Swarm Optimization,” in 2021 

International Seminar on Intelligent Technology 

and Its Applications (ISITIA), 2021, pp. 197–201, 

doi: 10.1109/ISITIA52817.2021.9502208. 

[31]  and Z. J. Israr ur Rehman, Zulfiqar Ali, “An 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(6s), 267–275 |  275 

Empirical Analysis on Software Development 

Efforts Estimation in Machine Learning 

Perspective,” ADCAIJ Adv. Distrib. Comput. Artif. 

Intell., vol. 10, 2021. 

[32] N. Saini and B. Khalid, “Empirical Evaluation of 

machine learning techniques for software effort 

estimation,” IOSR J. Comput. Eng., 2014, doi: 

10.9790/0661-16193438. 

[33] H. M. Premalatha and C. V. Srikrishna, “Effort 

estimation in agile software development using 

evolutionary cost- sensitive deep Belief Network,” 

Int. J. Intell. Eng. Syst., vol. 12, no. 2, pp. 261–269, 

2019, doi: 10.22266/IJIES2019.0430.25. 

[34] M. Vyas and N. Hemrajani, “Predicting effort of 

agile software projects using linear regression, 

ridge regression and logistic regression,” Int. J. 

Tech. Phys. Probl. Eng., 2021. 

[35] B. Marapelli*, “Software Development Effort 

Duration and Cost Estimation using Linear 

Regression and K-Nearest Neighbors Machine 

Learning Algorithms,” Int. J. Innov. Technol. 

Explor. Eng., 2019, doi: 

10.35940/ijitee.k2306.129219. 

[36]      Alaria, S. K. "A.. Raj, V. Sharma, and V. 

Kumar.“Simulation and Analysis of Hand Gesture 

Recognition for Indian Sign Language Using 

CNN”." International Journal on Recent and 

Innovation Trends in Computing and 

Communication 10, no. 4 (2022): 10-14. 

[37]        Satish Kumar Alaria. Design & Analysis of Cost 

Estimation for New Mobile-COCOMO Tool for 

Mobile Application. IJRITCC 2019, 7, 27-34. 

[38]        Najneen Qureshi, Manish Kumar Mukhija and 

Satish Kumar, "RAFI: Parallel Dynamic Test-suite 

Reduction for Software", New Frontiers in 

Communication and Intelligent Systems, SCRS, 

India, 2021, pp. 165-176. 

https://doi.org/10.52458/978-81-95502-00-4-20. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://doi.org/10.52458/978-81-95502-00-4-20

