

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-67992147-6799 www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(6s), 267–275 | 267

A Study of Evaluation Measures for Software Effort Estimation Using

Machine Learning

1Rajani Kumari Gora 2Prof. Ripu Ranjan Sinha

Submitted: 11/02/2023 Revised: 16/04/2023 Accepted: 07/05/2023

Abstract- Software effort estimation is a crucial process which involves predicting how much time and money will be needed to

accomplish a software development project. Expert opinion and past data are used in conventional estimating techniques, which may be

inefficient and prone to mistakes. Machine learning offers a promising approach to automate this process by learning from past projects

and predicting effort estimates for new projects. Using machine learning, this article takes an in-depth look at the practise of software

work estimation. In this study, several machine learning models, including support vector machine, KNN, ANN, linear regression,

support vector machine, and neural network, are trained and evaluated on a dataset of software projects. This paper also presents some

comparative results of the various machine learning algorithms, including multilayer perceptron (MLP), support vector machine (SVM),

and linear regression (LR), showing that the MLP model achieves the lowest MMRE value, 13%, while the SVM achieves the highest

PRED(25), 87.65%, for software effort estimation.

Keywords— Software development, Effort estimation, Software development life cycle (SDLC), SDLC models, Machine learning

1. Introduction

A software system's development time may be estimated

by software development effort estimation (SDEE). When

broken down into its component parts, software

development, and maintenance effort estimate (SDEE) may

be thought of as a sub-domain of software engineering. The

words software cost estimate and software effort estimates

are sometimes used interchangeably in the academic

community, despite the fact that the bulk of software

expenses are attributed to effort. Project success relies

heavily on accurate initial development effort estimates

made early in the software life cycle [1]. Estimating

materials and time required to finish a software project in

accordance with the planned schedule and budget is known

as software effort estimation. Man-hours and man-months

are common measures of labour. Estimating how much

time and energy will go into creating a piece of software is

a common first step in the software development process.

Research into software effort estimation has been ongoing

since the 1960s due to the multiple challenges inherent in

producing reliable estimates. Although 69percent of

finished software projects achieved their intended business

goals, 43percent went over budget, 48percent were

delivered late, and 15 percent were rated a failure due to

faulty effort estimates, according to study conducted

by Project Management Institute (PMI) in 2017[2]. [3]

three types of learning: algorithmic, non-algorithmic, and

machine learning. Estimating software development time

using an algorithmic approach relies on a statistical and

mathematical framework. Estimating methods include

COCOMO-II (Constructive Cost Model), FPA (Function

Point Analysis), UCP (Use Case Point), Putnam Software

Life cycle Management (SLIM), and COCOMO-I.

Analytical evaluations and interpretations provide the basis

of nonalgorithmic models. Estimating how much work a

project will take is crucial to the success of any software

development endeavor. The term "effort estimate" refers to

the approach used to determine amount of time and other

resources requirements for achieving a goal and delivering

a product or service which fulfills customer's specified

requirements. To aid in project planning and ensure a

smooth rollout, software engineers need accurate effort

estimate models[4] Software development projects may be

more prosperous if effort estimates are spot-on, but if

they're off, the company might lose money on its marketing

and sales.

2. Software Effort Estimation

Software project management relies heavily on accurate

estimates of time and resources spent developing software.

(SPM). It is also crucial that prediction methods can be

trusted to provide accurate results. Accurate effort

appraisals, especially at the beginning of a project, may

help reduce the high risks associated with developing a

software product. The widespread use of unreliable

estimate methods causes most projects to go over budget

and over schedule. The use of ML (machine learning) in

1Computer Science

S. S. Jain Subodh P.G. College,

Rajasthan Technical University, Kota

rajanigora@gmail.com

2Computer Science

S. S. Jain Subodh P.G. College,

Rajasthan Technical University, Kota

drsinhacs@gmail.com

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(6s), 267–275 | 268

software project estimating, however, may result in more

accurate work estimation.[5].

Estimating a software project requires calculating how long

it will take, how many people will be needed, how much it

will cost, and when it will be finished[6].

Fig. 1. Type of software estimation process [7]

1. Estimating size

The first step in creating a meaningful project estimate is to

create a precise software size estimate. Scope and size

estimation can begin in tandem with the formal

specifications of the project criteria.

2. Estimating effort

 Once you have a ballpark idea of how big a product is

going to be, putting together a time estimate is a breeze. It

is only feasible to convert software size to total project

work estimate if the software development lifecycle of a

project has been determined.

3. Estimating schedule

The third step is to use the effort estimate to create a

schedule for the software development project. It's

important to think about how many people are working on

a project, what kind of work they're doing, how long it's

going to take, and when it's supposed to be finished.

4. Staffing Estimation

When it comes to software project planning, Staffing

Estimation is all about using the right model to solve the

human resource allocation issue[8]

5. Estimating Cost

The whole cost of a project may be broken down into its

component parts, which might include things like labour,

hardware, software, or leasing fees, meetings, testing,

communications, training, office space, etc. All of the

aforementioned elements have some bearing on the

evaluation of effort.[9]

A. Techniques for estimating software work fall

into 3 primary categories:

1. Expert Judgment

The most common approach to software cost assessment is

the expert judgement methodology, in which actual experts

are tasked with making estimates about the product's size

and price. The methodology was developed from the

project manager's prior work on other software projects

like this one. Expert cost-estimating methods are useful

when time and resources are limited [10]. Professional

opinion might be flawed due to human fallibility and

prejudice. The effectiveness of the method relies on the

opinion of experts, who may have different levels of

expertise with the same sort of project, leading to different

cost estimates. It is most useful, however, in smaller to

medium-sized software projects when there has been little

to no change in the development teams or software

characteristics from earlier projects.

2. Algorithmic Estimation

 The algorithmic method gives a set of mathematical

formulas that may be used for software estimation. These

mathematical estimates are based on research and historical

data, and they include variables such as number of

functions, source lines of code, and other cost factors

including language, design technique, etc [11].

3. Machine Learning

The majority of software cost assessment methods rely on

statistical approaches, which lack the rigour and logic to

provide reliable outcomes. Due to its potential to improve

estimate accuracy via the training of estimating rules and

the repetition of run cycles, ML technologies may be well-

suited to this domain. Popular ML methodologies include

Rule Induction, Genetic Algorithm, ANN, case-based

reasoning, trees for regression and classification, SVM

(support vector machines), with augmenting, and

MART[12]. It's not easy to tell which method produces the

most reliable results for a given dataset. Nonetheless, a lot

of work has been done on estimate approaches using ML,

and the literature shows that ML methods may provide

appropriate estimation models.

3. Software Development Life Cycle

Systems Development Life Cycle (SDLC), sometimes

known as Software Development Life Cycle, is a phrase

used in domains of systems engineering, data management,

and software engineering to describe phases involved in the

design and implementation of novel or improved systems.

The term is most often used in reference to digital

infrastructures. There are several SDLC-based software

development approaches that are fundamental to the field

of software engineering. Methodologies such as these

provide a structure for organizing and directing

development of an information system's software[13].

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(6s), 267–275 | 269

Fig. 2: Software Development Life Cycle

The many SDLC stages are shown on cyclical diagram

above. The steps are as follows:

1. Requirement Analysis

2. Defining

3. Designing

4. Coding

5. Testing

6. Development

7. Maintenance.

A. SDLC MODELS

There are different models explained in detail below:

a) Waterfall Model

This is a sequential model, in which procedures are

completed in order listed. There is a pattern here. Stage

one's outputs "flow" into stage two's inputs, which "flow"

into stage three's inputs, and so on. In addition, users can't

go on to the next level until current one is finished. [14].

Fig. 3: Waterfall Model

b) Spiral Model

It's similar to incremental approach, but it puts more

emphasis on analyzing risks. Planning, Risk assessment,

Engineering, Construction, and finally, Release are the four

components. These stages are repeated indefinitely in the

program since they correlate to the many model spirals.

In first stage, called "planning," requirements are gathered

In the risk phase, problems are analyzed and potential

remedies are proposed. The final product of engineering is

software that has been thoroughly tested. Finally, the client

assesses the results of the program.

Fig. 4: Spiral Model

c) V Shaped Model

V-shaped model develops further from waterfall approach.

The V-shaped model illustrates the interdependencies

between various stages of development and corresponding

testing stages. The verification and validation model is

another name for this framework. That's because there's a

validation step for every verification step. Checking the

software's efficiency is the most important part of using it.

It has to be tried and tried again. As a result, the V-shaped

approach places primary emphasis on testing. Although

verification checks for bugs in the code, validation makes

sure it was written properly. A lot of iteration and testing

goes into this procedure. The 'tester's life cycle' outlines

these steps. As it is still difficult to make adjustments after

the fact, this approach is best used when there are no

unanticipated requirements. The model devotes majority of

its attention to testing phase, which corresponds to each

phase[15].

Fig. 5: V-Shaped Model

d) Iterative SDLC Model

The Iterative SDLC model does not require a

comprehensive list of requirements prior to project

commencement. The development process may begin

with functional component's needs, that can be extended

subsequently. The procedure is repeated, allowing

for creation of new product variants with each cycle. Every

iteration (which lasts from 2 to 6 weeks) comprises the

creation of a distinct system component, which is then

added to previously produced functionality.

Mathematically speaking, iterative model is a realization

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(6s), 267–275 | 270

of sequential approximation technique, which results in a

progressive approach to the desired end product form. [16].

Fig. 6: Iterative Model

4. Machine Learning-Based Software Effort

Estimation

Rather of being explicitly programmed by a human expert,

algorithms in the area of ML are trained to carry out tasks

by inferring the appropriate steps based on the data they are

exposed to. The most popular approach is supervised,

although semi-supervised and unsupervised methods also

exist (20). In supervised learning, an algorithm is trained

on a labelled dataset before being asked to classify an

unlabeled data point. For instance, software may be taught

to recognize cancerous from noncancerous skin lesions by

exposing it to a series of images of lesions that have been

manually identified as such. After training the algorithm

with these pictures, it would be evaluated by presenting it

with new, unlabeled photos and asking it to categorize

them as benign or malignant. [17] Unsupervised learning is

the process of learning from data without the use of a

training dataset. The goal of both supervised and

unsupervised learning is to label incoming data with

appropriate categories. In contrast to supervised learning,

unsupervised learning relies on a model's ability to classify

data solely on the basis of its intrinsic properties rather than

labels applied to the data at input. With this ML technique,

we are able to take a more exploratory tack in order to

discover hidden patterns in the data's distribution. Finally,

semi supervised ML combines aspects of supervised and

unsupervised learning into a single methodology. To

simplify data labelling, this method combines a high

number of unlabeled inputs with a small number of

labelled inputs.[18].

Fig. 7: Machine Learning

• K-Nearest Neighbor (KNN)

k-NN is a simple nonparametric method that does not need

any familiarity with the data distribution in advance. The

method relies on the Euclidean distance principle, which

states that data points with similar characteristics tend to

cluster together in a dataset. If the instances have been

labelled with categories, then the label of an unlabeled

instance can be inferred from the labels of its neighbours.

The modelling procedure is carried out three times

(repeats=3), with k set to 10 (number=10) each time, and

average of results is used[19].

• Linear Regression

When dependent variable is anticipated to be a linear

mixture of another properties, linear model of regression

known as linear regression may be used. The purpose of

linear regression is to minimise discrepancy between the

observed and predicted values by adjusting the coefficients

in a linear model.

Some of the benefits of LR are:

• The LR statistical formulas are straightforward

and simple.

• LR makes it simple to interpret data.

Linear regression is a straightforward method with few

restrictions. Yet, the goal feature and its dependent

characteristics were chosen with great care. [20].

• MLP (Multi-Layer perceptron)

Multi-Layer perceptron is yet another supervised learning

technique that relies on a function f(x): Using the formula,

one may learn from a training dataset RmR0where m

represents the quantity of input dimensions and o

represents the quantity of output dimensions. In order to

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(6s), 267–275 | 271

solve a regression or classification problem, the MLP may

be taught a non-linear function by providing it with a set of

features, X= x1, x2,..., xm, and an objective, y. MLPs

diverge from other methods like Linear Regression in large

part because of hidden layers, which are non-linear and

located between input & output layer [21]. This is a one-

hidden-layer Multi-Layer Perceptron (MLP) example:

Fig. 8: Multilayer perceptron

• Artificial Neural Networks (ANN)

ANN are mathematical or computer models inspired by the

human brain. ANN can be trained to perform a variety of

tasks, including pattern recognition and data classification.

ANNs consist of both neurons (the nodes) and synapses

(the connections between them), much like biological

neural networks (weights). For each neuron, there are n

(the number of neurons in layer below) synapses (inputs)

with n [22].

• Support Vector Machine (SVM)

SVM is a prominent ML approach for regression and

classification applications [23]. In infinite or high-

dimensional space, a support vector machine (SVM)

creates a hyper-plane or set of hyper-planes. When an

improvement in margin leads to a reduction

in generalization error of a classifier, hyper-plane which

separates classes by largest average distance from their

nearest training data points is winner. Effective in high-

dimensional spaces, its behaviour depends on the

mathematical function used to define the kernel. You may

use a radial basis function (RBF), sigmoidal, linear,

polynomial, etc.

• Naive Bayes (NB)

NB algorithm takes its cues from Bayes' theorem and

operates under the premise of feature independence. It

performs extremely well for both multi-class and binary

classifications in many real-world applications, such as

document or text categorization, spam filtering, etc. The

NB classifier is a powerful tool for data classification and

creating trustworthy prediction models.[24]. To quickly

and reliably estimate the necessary parameters, unlike more

sophisticated algorithms, just a small quantity of training

data is needed. Yet, its robust assumptions on the

independence of characteristics may compromise its

performance. Some frequent forms of NB classifiers

include Categorical, Multinomial, Complement, Gaussian,

and Bernoulli.

5. Literature Review

In this article, they'll take a look back at some of the latest

studies into the art of software project effort estimate.

Many new studies have been published in this field of

study. In this article, they look at many articles that have

utilized ML methods to predict how long a software project

would take to complete.

Ritu and Garg, (2022) Naive Bayes, Random Forests,

Logistic Regression, stochastic gradient boosting, decision

trees, and narrative points for estimate are only few of the

ML methods suggested. Increasingly, businesses in the

software industry are turning to non-parametric and non-

traditional methods for estimating software development

projects in order to make up for their shortcomings. In this

research, they provide and analyse a comparison of the

aforementioned methods in order to provide an in-depth

analysis of their relative merits [25].

Assefa et al (2022).'s primary motivation for computing

three distinct ML algorithms is to identify the one that

yields the most accurate predictions of future effort. They

have used SVM, multi-layer perception and linear

regression, algorithms on SEERA (Software Engineering

in the Republic of Sudan) data set to predict the time and

effort needed to complete the project. To further assess the

precision with which the predictive model anticipates the

time and resources required to create software, they have

explored the assessment metrics of MSE (mean square

error), MAE (Mean absolute error), and R-squared.

Experiments were conducted on all of the chosen ML

algorithms in a Jupyter notebook. Therefore, the linear

regression R-square score is 0.95, the multi-linear

regression score is 0.83, and the SVR score is less than

0.04. The findings contrast the predictive abilities of the

MLP and SVR models and demonstrate that the linear

regression model is superior[26].

There are many different ML methods that may be utilized

to estimate work, and Brar and Nandal (2022) analyse

some of them. There has been a rise in research over the

last two decades into using ML methods to improve the

precision of effort estimations. Predicting labour needs

may be done using a variety of estimated methods

including COCOMO, analogy-based estimate, expert

judgement, Putnam model, and ML. Substantial software

project risks came from the algorithmic models' poor

accuracy and unstable design. So, it is crucial to make

yearly cost estimates for the project and evaluate them

against other alternatives. Nevertheless, ML has its

limitations in terms of effort prediction since no one

approach can be considered optimal. The primary goal of

this study is to provide an overview of the current state of

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(6s), 267–275 | 272

the art of several ML methods for assessing levels of effort.

[27].

Scrum-based Agile projects that are created over the course

of numerous sprints are the focus of this article by Govil

and Sharma (2022). They proposed a tweak to the existing

method that would account for an extra 36 success factors

and offer a cost and time estimate for bringing the project

to fruition. For this study and calculation, they utilised a

dataset of 30 projects, each of which was classified as

either "low," "mid," or "high”. Experts verify the accuracy

of this data collection. They also compared our findings to

the current method and discovered that, while taking into

account more success variables, they are more cost-

effective and take less work[28].

Based on their findings, Jang and Wu (2022) suggest that

hardware development might benefit from using software

effort estimate. They utilise ML and deep learning to

precisely control product development time by estimating

how long it will take to complete various jobs throughout

the hardware development process. In this study, natural

language processing (NLP) is used to extract the keywords

of the development process challenges using semantic

analysis, which are then used as features in subsequent

analysis. Several ML models, including random forest,

decision tree, XGBoost, and RNN, are used to predict a

time period and their accuracy, MMRE, and PRED are

compared (25). The decision tree outperformed the other

three models in the experiments. This research

demonstrates that task tracking during hardware

development may benefit from the software effort estimate

method[29].

Setiadi et al. (2021) used a publicly available data set to

conduct an attribute selection experiment with Particle

Swarm Optimization (PSO) for the project's parameters

based on an estimation made with the K-NN algorithm.

Kitchenham CSC Desharnais, Maxwell, and Kamrer were

used as software estimation effort datasets for this research.

According to the study's findings, the RMSE value may be

decreased using PSO (Particle Swarm optimization's)

feature selection. This demonstrates which RMSE's

precision increases as its value decreases. This study is

helpful because it can be used by programmers to better

anticipate how long it will take to complete an application

so that it will function as intended[30]

6. Results Illustration
A. Performance Matrix

In this section, we will present results for the experiments

we have done using four ML techniques such as MLP

(multilayer perceptron), SVM, linear regression, and

ensemble learning.

A. MMRE

Mean Magnitude of Relative Error is abbreviated as

MMRE. It's a common way to measure how well software

effort estimation models do their job. The MMRE

calculates an estimate's average percentage error, which is

the absolute difference between estimated and actual effort

dividing by actual effort, on the whole.

It is described as:

MMRE = (1/n) * Σ(|Ei|/Ai)

where n is the number of estimates, Ei is the difference

between the estimated effort and the actual effort for the i-

th estimate, and Ai is the actual effort for the i-th estimate.

The absolute value of the difference is taken to ensure that

errors in both directions (overestimation and

underestimation) are treated equally. For accurate

predictions, a low MMRE score is ideal, and vice

versa[31].

n = Total number of data points.

Ai =Actual value of the data point.

B. PRED 25

PRED (25) is a performance assessment statistic that

assesses the proportion of projected values within 25

percent of actual value. It is often used in the context of

predicting or predictive modeling, where the aim is to

properly anticipate future values based on previous data.

Once the threshold is defined, we can calculate PRED (25)

as follows:

PRED (25) = (number of correct predictions / total number

of predictions) * 100%

Table 1:Comparision of different ML algorithms

Algorithm MMRE PRED (25)

Multilayer

perceptron[32]

15.1 87.65

SVM[33] 13 76.91

Linear

regression[34]

15.0 71.42

The results of Table 1 show that we can compare the

performance of four different algorithms on a predictive

modeling task using two evaluation metrics: Measures of

accuracy include MMRE and PRED (25) percentage of

predicted values that are within 25% of actual value.

MLP got 15.1% MMRE and 87.65% PRED (25), whereas

SVM achieved MMRE 13% and 76.91% PRED (25).

Linear regression got 15.0% MMRE and 71.42 PRED (25).

As can be seen from the findings, SVM achieved the

lowest MMRE(13%) and greatest PRED(25)(76.91%)

compared to the other algorithms. MLP also performed

well with a high PRED(25) of 87.65%, but had a higher

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(6s), 267–275 | 273

MMRE than SVM. Linear regression performed better than

MLP in terms of PRED(25) but had a similar MMRE.

Overall, the choice of algorithm depends on specific tasks

and trade-off between accuracy and computational

efficiency. In this case, SVM would be the recommended

algorithm due to its overall better performance on both

evaluation metrics.

MMRE and 71.42 PRED (25).

Fig. 9: MMRE values for the proposed model

Fig 9 shows the comparison of MMRE for MLP, SVM,

linear regression, and ensemble learning classifier models.

MLP 15.1 has a higher MMRE than the other model.

Fig. 10: PRED (25) values for the proposed model

Fig 10 shows the comparison of PRED (25) for MLP,

SVM, linear regression, and ensemble learning classifier

models. MLP 87.65 has a higher PRED (25) than the other

model.

7. Conclusion

Estimating how much time and money will be needed to

complete a software project is called an "effort estimate,"

and it is an essential part of the software development

process. The purpose of effort estimation is to provide

reliable forecasts of time, money, and other assets needed

to accomplish a software development project. Region of

uncertainty- Uncertainty at the outset of the endeavor is the

greatest challenge. Often, not even the customer has a

thorough understanding of the requirements. This paper

provides a detailed discussion about the software effort

estimation field, and SDLC models, and also this paper

compares various ML techniques for software effort

estimation prediction. A low MMRE value indicates that

the estimates are generally accurate, while a high MMRE

value indicates that the estimates are generally inaccurate.

A high PRED (25) value indicates that a high percentage of

estimates fall within 25% of the actual effort, which

suggests that the estimates are sufficiently accurate for

practical purposes. The use all machine learning algorithms

provides efficient results but the MLP, and SVM model

outperforms the other model with lowest 13% of MMRE,

and highest 87.65% of PRED (25).

References

[1] J. Wen, S. Li, Z. Lin, Y. Hu, and C. Huang,

“Systematic literature review of machine learning

based software development effort estimation

models,” Information and Software Technology.

2012, doi: 10.1016/j.infsof.2011.09.002.

[2] S. M. Satapathy, B. P. Acharya, and S. K. Rath,

“Early stage software effort estimation using

random forest technique based on use case points,”

IET Softw., 2016, doi: 10.1049/iet-sen.2014.0122.

[3] Z. Dan, “Improving the accuracy in software effort

estimation: Using artificial neural network model

based on particle swarm optimization,” 2013, doi:

10.1109/SOLI.2013.6611406.

[4] Tung Khuat and Hanh Le, “ An Effort Estimation

Approach for Agile Software Development using

Fireworks Algorithm Optimized Neural Network.,”

Int. J. Comput. Sci. Inf. Secur., 2016.

[5] M. N. Mahdi et al., “Software Project Management

Using Machine Learning Technique—A Review,”

Appl. Sci., vol. 11, no. 11, 2021, doi:

10.3390/app11115183.

[6] A. T. Raslan and N. R. Darwish, “An enhanced

framework for effort estimation of agile projects,”

Int. J. Intell. Eng. Syst., 2018, doi:

10.22266/IJIES2018.0630.22.

[7] A. A. Abdulmajeed, M. A. Al-Jawaherry, and T.

M. Tawfeeq, “Predict the required cost to develop

Software Engineering projects by Using Machine

Learning,” 2021, doi: 10.1088/1742-

6596/1897/1/012029.

[8] N. A. Mohamed, A. Al-Qasmi, S. Al-Lamki, M.

Bayoumi, and A. Al-Hinai, “An estimation of

staffing requirements in primary care in Oman

using the workload indicators of staffing needs

method,” East. Mediterr. Heal. J., 2018, doi:

10.26719/2018.24.9.823.

[9] E. Meenakshi and E. Sumeet, “Review on Software

15.1

13

15

11
12

13

14
15

16

Multilayer
perceptron[32]

SVM[33] Linear
regression[34]

M
M
R
E

Model

MMRE

87.65
76.91 71.42

0

50

100

Multilayer
perceptron[32]

SVM[33] Linear
regression[34]

P
R
ED

(2
5
)

Model

PRED(25)

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(6s), 267–275 | 274

Effort estimation by machine learning

Approaches,” vol. 9028, pp. 2002–2005, 2018.

[10] J. G. Borade and V. R. Khalkar, “Software Project

Effort and Cost Estimation Techniques,” Int. J.

Adv. Res. Comput. Sci. Softw. Eng., 2013.

[11] Rekha T. and R. P.K., “Machine Learning Methods

of Effort Estimation and It’s Performance

Evaluation Criteria,” Int. J. Comput. Sci. Mob.

Comput., 2017.

[12] R. Malhotra and A. Jain, “Software Effort

Prediction using Statistical and Machine Learning

Methods,” Int. J. Adv. Comput. Sci. Appl., 2011,

doi: 10.14569/ijacsa.2011.020122.

[13] P. Seema Suresh Kute and P. Surabhi Deependra

Thorat, “A Review on Various Software

Development Life Cycle (SDLC) Models,” Int. J.

Res. Comput. Commun. Technol., 2017.

[14] A. M. Kale, V. V Bandal, and K. Chaudhari, “A

Review Paper on Software Testing,” Int. Res. J.

Eng. Technol., vol. 5, no. 2, p. 1268, 2008,

[Online]. Available: www.irjet.net.

[15] G. Gurung, R. Shah, and D. P. Jaiswal, “Software

Development Life Cycle Models-A Comparative

Study,” Int. J. Sci. Res. Comput. Sci. Eng. Inf.

Technol., no. July 2020, pp. 30–37, 2020, doi:

10.32628/cseit206410.

[16] B. Tarika, “A Review of Software Development

Life Cycle Models,” Int. J. Adv. Res. Comput. Sci.

Softw. Eng., vol. 3, pp. 62–68, 2019, doi:

10.31058/j.data.2019.34002.

[17] M. M. Moore, E. Slonimsky, A. D. Long, R. W.

Sze, and R. S. Iyer, “Machine learning concepts,

concerns and opportunities for a pediatric

radiologist,” Pediatr. Radiol., 2019, doi:

10.1007/s00247-018-4277-7.

[18] G. Chartrand et al., “Deep learning: A primer for

radiologists,” Radiographics. 2017, doi:

10.1148/rg.2017170077.

[19] A. Akella and S. Akella, “Machine learning

algorithms for predicting coronary artery disease:

Efforts toward an open source solution,” Futur.

Sci. OA, 2021, doi: 10.2144/fsoa-2020-0206.

[20] A. Kanneganti, “Using Ensemble Machine

Learning Methods in Estimating Software

Development Effort,” no. October, 2020.

[21] F. Pedregosa et al., “Scikit-learn: Machine learning

in Python,” J. Mach. Learn. Res., 2011.

[22] M. Humayun and C. Gang, “Estimating Effort in

Global Software Development Projects Using

Machine Learning Techniques,” Int. J. Inf. Educ.

Technol., 2012, doi: 10.7763/ijiet.2012.v2.111.

[23] I. H. Sarker, “Machine Learning: Algorithms,

Real-World Applications and Research

Directions,” SN Comput. Sci., 2021, doi:

10.1007/s42979-021-00592-x.

[24] I. H. Sarker, “A machine learning based robust

prediction model for real-life mobile phone data,”

Internet of Things (Netherlands), 2019, doi:

10.1016/j.iot.2019.01.007.

[25] Ritu and Y. Garg, “Comparative Analysis of

Machine Learning Techniques in Effort

Estimation,” in 2022 International Conference on

Machine Learning, Big Data, Cloud and Parallel

Computing (COM-IT-CON), 2022, vol. 1, pp. 401–

405, doi: 10.1109/COM-IT-

CON54601.2022.9850592.

[26] Y. Assefa, F. Berhanu, A. Tilahun, and E.

Alemneh, “Software Effort Estimation using

Machine learning Algorithm,” in 2022

International Conference on Information and

Communication Technology for Development for

Africa (ICT4DA), 2022, pp. 163–168, doi:

10.1109/ICT4DA56482.2022.9971209.

[27] P. Brar and D. Nandal, “A Systematic Literature

Review of Machine Learning Techniques for

Software Effort Estimation Models,” in 2022 Fifth

International Conference on Computational

Intelligence and Communication Technologies

(CCICT), 2022, pp. 494–499, doi:

10.1109/CCiCT56684.2022.00093.

[28] N. Govil and A. Sharma, “Estimation of cost and

development effort in Scrum-based software

projects considering dimensional success factors,”

Adv. Eng. Softw., vol. 172, p. 103209, 2022, doi:

https://doi.org/10.1016/j.advengsoft.2022.103209.

[29] H.-C. Jang and S.-C. Wu, “Tracking of Hardware

Development Schedule based on Software Effort

Estimation,” in 2022 IEEE 13th Annual

Information Technology, Electronics and Mobile

Communication Conference (IEMCON), 2022, pp.

305–310, doi:

10.1109/IEMCON56893.2022.9946524.

[30] A. Setiadi, W. F. Hidayat, A. Sinnun, A. Setiawan,

M. Faisal, and D. P. Alamsyah, “Analyze the

Datasets of Software Effort Estimation With

Particle Swarm Optimization,” in 2021

International Seminar on Intelligent Technology

and Its Applications (ISITIA), 2021, pp. 197–201,

doi: 10.1109/ISITIA52817.2021.9502208.

[31] and Z. J. Israr ur Rehman, Zulfiqar Ali, “An

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(6s), 267–275 | 275

Empirical Analysis on Software Development

Efforts Estimation in Machine Learning

Perspective,” ADCAIJ Adv. Distrib. Comput. Artif.

Intell., vol. 10, 2021.

[32] N. Saini and B. Khalid, “Empirical Evaluation of

machine learning techniques for software effort

estimation,” IOSR J. Comput. Eng., 2014, doi:

10.9790/0661-16193438.

[33] H. M. Premalatha and C. V. Srikrishna, “Effort

estimation in agile software development using

evolutionary cost- sensitive deep Belief Network,”

Int. J. Intell. Eng. Syst., vol. 12, no. 2, pp. 261–269,

2019, doi: 10.22266/IJIES2019.0430.25.

[34] M. Vyas and N. Hemrajani, “Predicting effort of

agile software projects using linear regression,

ridge regression and logistic regression,” Int. J.

Tech. Phys. Probl. Eng., 2021.

[35] B. Marapelli*, “Software Development Effort

Duration and Cost Estimation using Linear

Regression and K-Nearest Neighbors Machine

Learning Algorithms,” Int. J. Innov. Technol.

Explor. Eng., 2019, doi:

10.35940/ijitee.k2306.129219.

[36] Alaria, S. K. "A.. Raj, V. Sharma, and V.

Kumar.“Simulation and Analysis of Hand Gesture

Recognition for Indian Sign Language Using

CNN”." International Journal on Recent and

Innovation Trends in Computing and

Communication 10, no. 4 (2022): 10-14.

[37] Satish Kumar Alaria. Design & Analysis of Cost

Estimation for New Mobile-COCOMO Tool for

Mobile Application. IJRITCC 2019, 7, 27-34.

[38] Najneen Qureshi, Manish Kumar Mukhija and

Satish Kumar, "RAFI: Parallel Dynamic Test-suite

Reduction for Software", New Frontiers in

Communication and Intelligent Systems, SCRS,

India, 2021, pp. 165-176.

https://doi.org/10.52458/978-81-95502-00-4-20.

https://doi.org/10.52458/978-81-95502-00-4-20

