
 

International Journal of 

INTELLIGENT SYSTEMS AND APPLICATIONS IN 

ENGINEERING 
ISSN:2147-67992147-6799                                       www.ijisae.org Original Research Paper 

 

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(2), 763–771 |  763 

Fusing Expert Knowledge and Deep Learning for Accurate Cervical 

Cancer Diagnosis in Pap Smear Images: A Multiscale U-Net with Fuzzy 

Automata 
 

J. Jeyshri 1, M. Kowsigan *2 

 

Submitted: 12/11/2022            Revised: 19/01/2023          Accepted: 08/02/2023 

Abstract: Ovarian cancer is a severe disease that impacts many women in developing countries.  Increasing screening 

capacity is the most effective strategy for lowering cancer risk and saving people's lives. Early stages of cervical cancer often 

lack symptoms, making it the fourth leading cause of mortality among women. Although cancer cells grow slowly in the 

cervix and can be effectively treated if detected early, detecting it before it rapidly spreads are a major challenge for the 

medical community. Segmentation is a critical screening step as it enhances our comprehension of cell morphological 

properties. This study provides a technique to segment multi-class cells into Nucleus and Cytoplasmic areas. Multi-resolution 

U-Net (MRU-Net) is provided for medical image segmentation to bypass the constraints of U-convolution Net's kernel with 

a restricted receptive field and undetermined ideal network width. First, additional semantic information is extracted from 

the images using a series of recurrent convolutions.  Second, to distinguish the characteristics, a convolutional unit with 

distinct receptive fields is utilized. The effects of network width inconsistency may be mitigated by integrating a convolution 

layer with a large number of receptive fields. The effectiveness of the research was measured against state-of-the-art methods 

using the Herlev dataset and classification structures were used to get excellent results. Effectiveness indicators for both 

groups suggest that the method is reliable enough to complete the task. The approach may enable doctors to identify cervical 

cell anomalies and provide improved medical care. MRU-Net is evaluated using varied medical image segmentation datasets.  

Keywords: Segmentation, Fuzzy Automata, Pap smear images, Multiscale U-Net 

1 Introduction: 

Ovarian cancer is a type of cancer that starts in the cervix, 

the lower part of the uterus that connects to the vagina. It 

is one of the most common types of cancer affecting 

women worldwide. According to recent statistics, cervical 

cancer is responsible for approximately 7.5% of all female 

cancer deaths globally. In 2020, an estimated 604,000 new 

cases of cervical cancer were diagnosed worldwide, and it 

caused 342,000 deaths. The majority of these cases 

(around 90%) occur in developing countries, where access 

to screening and treatment is limited. In developed 

countries, screening programs have been successful in 

reducing the incidence and mortality rates of cervical 

cancer. 

Most women who contract HPV do not develop cervical 

cancer, but for some, the virus can lead to abnormal 

changes in the cells of the cervix, which can then develop 

into cancer if left untreated. Smoking tobacco, immune 

system compromise, protracted use of contraceptive pills, 

are further contributors to the development of cervical 

cancer.  

The absence of signs in the disease's early stages is one of 

the most difficult aspects of dealing with cervical cancer. 

Indications of a vaginal cancer progression include 

vaginal discharge, discomfort during sexual activity, and 

abnormal vaginal bleeding. It is challenging to identify 

cancer through signs alone since these symptoms might be 

affected by other illnesses as well. Thus, cervical cancer 

screenings should be performed regularly to ensure early 

diagnosis and treatment. A Pap smear is a screening 

procedure used to diagnose cervical cancer by taking cells 

from the cervix and analysing them under a microscope. 

In recent years, HPV testing has also been employed in 

screening. There are more effective treatment options for 

cervical cancer if it is caught early. Surgical, radiation 

therapy, immunotherapy, or a combination of these may 

be used to treat cervical cancer. Ovarian cancer is still a 

major public health issue all over the globe, despite the 

fact that vaccinations and reliable detection and 

management alternatives are available. Most women in 

poor and middle-income nations do not know how to 
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protect themselves against cervical cancer, and few have 

access to screening or treatment. As a result, it is important 

to work towards expanding access to cervical cancer 

screening and treatment, as well as making accessible 

effective preventative measures like vaccination. Cervical 

smear tests and biopsies are two examples of the types of 

medical imaging data that may be analysed by deep 

learning algorithms to look for signs of cervix cancer. The 

necessity for invasive diagnostic procedures may be 

reduced by training these algorithms to distinguish 

between malignant and non-cancerous cells. 

Convolutional neural networks (CNNs) are one use of 

deep learning in cervical cancer diagnosis; these networks 

can analyse digital pictures of cervical cells to find 

aberrant patterns that may signal the presence of cancer. 

Recurrent neural networks (RNNs) are another method, 

since they can analyse time-series data such as the size and 

shape of cervical cells over time to detect trends that may 

signal the existence of cancer. Therefore, efforts are 

needed to increase awareness about cervical cancer, 

improve access to screening and treatment, and ensure that 

effective preventive measures, such as vaccination, are 

widely available. Deep learning algorithms can analyse 

large amounts of medical imaging data, such as cervical 

smear tests and biopsies, to identify abnormalities in the 

cells of the cervix that could indicate the presence of 

cancer. These algorithms can also be trained to 

differentiate between cancerous and non-cancerous cells 

with high accuracy, potentially reducing the need for 

invasive diagnostic procedures. One example of deep 

learning in cervical cancer detection is the use of 

convolutional neural networks (CNNs), which can 

analyse digital images of cervical cells and identify 

abnormal patterns that may indicate the presence of 

cancer. Another approach is the use of recurrent neural 

networks (RNNs), which can analyse time-series data, 

such as changes in the size and shape of cervical cells over 

time, to identify patterns that could indicate the presence 

of cancer. 

Moreover, deep learning algorithms may be used to create 

prediction models that can determine which women are at 

a particularly high risk of having a certain health condition  

based on their medical history, lifestyle factors, and 

genetic markers. These models can help healthcare 

providers to target screening and prevention efforts to 

those who are most at risk, potentially improving early 

detection rates and reducing the number of deaths from  

cancer. Despite the promise of deep learning in l cancer 

detection and prevention, there are also challenges that 

must be addressed. One of the main challenges is the lack 

of large, high-quality datasets for training and validating 

deep learning algorithms. Another challenge is the need to 

ensure that these algorithms are unbiased and do not 

perpetuate existing disparities in cervical cancer detection 

and treatment. 

Awais Majeed, et al. (2021) The author reviewed various 

deep learning algorithms, including Convolutional Neural 

Networks (CNNs), Support Vector Machines (SVMs), 

and Random Forest (RF).Here, various publicly available 

datasets, including the Cervix Segmentation Dataset 

(CSD), the ISBI 2016 Cervix Segmentation Challenge 

Dataset, and the SIIM-ACR Pneumothorax Segmentation 

Challenge Dataset. The authors noted that most studies 

focused on the binary classification of normal vs. 

abnormal, and more research is needed on multi-class 

classification. Siyu Liu, et al. (2021)The paper reviewed 

various deep learning algorithms, including CNNs, Long 

Short-Term Memory Networks (LSTMs), and 

Autoencoders.The authors used various publicly available 

datasets, including the Cervix Segmentation Dataset 

(CSD), the Kaggle 2018 Data Science Bowl Cervical 

Cancer Screening Challenge Dataset, and the ISBI 2016 

Cervix Segmentation Challenge Dataset.In this paper 

most studies were conducted on small-scale datasets, and 

more research is needed on large-scale datasets.Sathya 

Devi Rajendran, et al. (2021)In this paper algorithm  

reviewed various deep learning algorithms, including 

CNNs, SVMs, and K-Nearest Neighbors (KNN). 

The authors used various publicly available datasets, 

including the Kaggle 2018 Data Science Bowl Cervical 

Cancer Screening Challenge Dataset, the Cervix 

Segmentation Dataset (CSD), and the TCGA Cervical 

Cancer Dataset.Here that most studies focused on only 

one type of deep learning algorithm, and more research is 

needed on ensemble models. Zhe Chen, et al. (2021) The 

paper reviewed various deep learning algorithms, 

including CNNs, Recurrent Neural Networks (RNNs), 

and Multilayer Perceptron (MLP).The authors used 

various publicly available datasets, including the TCGA 

Cervical Cancer Dataset and the Kaggle 2018 Data 

Science Bowl Cervical Cancer Screening Challenge 

Dataset. The authors noted that most studies did not use 

external validation datasets, and more research is needed 

on the interpretability of deep learning models. P. N. 

Mishra, et al. (2021)The paper reviewed various deep 

learning algorithms, including CNNs, MLPs, and KNN. 

including the TCGA Cervical Cancer Dataset and the 

Kaggle 2018 Data Science Bowl Cervical Cancer 

Screening Challenge Dataset It is noted that most studies 

were conducted on retrospective data, and more research 

is needed on prospective studies. They also noted that the 

lack of standardized evaluation metrics made it difficult to 

compare results across studies.  

According to Roth et al., 2018 the U-Net framework is the 

most common encoder-decoder method used for medical 

image segmentation. Many scientists have contributed to 
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U-Net throughout the years after its first publication, 

improving it in a variety of ways. Several variants of the 

initial U-Net design have so been proposed. Nevertheless, 

the original U-Net had two restrictions that later versions 

didn't. Initial loss of variation in attributes is due to the 

convolution kernel's inflexible receptive field. Scale 

feature maps with the same convolution filter might have 

various semantic implications when using different 

receptive fields. Hence, the network's performance may 

vary depending on the variables of the convolution filter, 

especially the receptive field size. According to Luo et al., 

2016, redundant features are retrieved if the receptive field 

of the convolution filter is too small. If the receptive field 

of the kernel is too big, smaller targets are not processed. 

As an example, in pulmonary tumor, the edge information 

of the smaller lesion or organ is hidden by the wide 

receptor field, while the shape of the lesion or organ is 

hidden by the narrow receptor field. Thus, a filter with 

independent receptive fields is required for image 

processing. Combining numerous receptive fields by 

convolution may provide promising solutions in the 

natural picture analysis problem (Seif and Androutsos, 

2018). There are just a few studies on the use of varied 

visual field in medical picture segmentation tasks that we 

are aware of. Second, there is a risk of information loss if 

features are extracted at different scales using the same 

convolutional sequence. The use of several convolutional 

sequences enables for a greater quantity of feature data to 

be collected. The loss of feature information during down-

sampling and up-sampling may be minimised by using 

well-structured multiple convolutional sequences. Hence, 

the learning capability of the network is enhanced by 

many convolutional sequences (He et al., 2015). In order 

to overcome these restrictions, we develop a novel 

architecture for image analysis in this work called multi-

scale-Net. The architecture of this particular design is 

distinguished by segmentation generalisation. 

2 Related Works 

Cervical segmentation is a difficult task that even the most 

skilled physicians struggle with. Medical imaging 

performance, especially for cytological abnormalities, is 

crucial for diagnosis. In cervical cell segmentation study 

employing classic image understanding methods, active 

contours were used to define the nucleus' boundaries. 

Nonetheless, there was a chance that defects and 

cytoplasm might spread during this treatment. Cells were 

segmented at a rate of 99.64% over the 20300 images used 

in this experiment. 

It is one of the first efforts in the field, hence it lacks 

accurate measurements that might be used to evaluate it 

against more recent methods [5]. Examples of 

conventional image interpretation methods involve graph 

cuts, which may segment images including many cervical 

cells. Examining histograms and cell boundaries are 

included in this technique, which is based on thresholds 

and binarization. The Dice Similarity Coefficient (DSC) 

for segmenting the cytoplasm and nuclei was 0.93. This 

endeavour failed to distinguish cells. [6] A private 

database verified this method. 

Using Watershed method, K-means clusterting, a 0.86 

DSC segmented nuclei and cells. To ensure the quality of 

this work, we put it through its paces on the Herlev dataset 

and in SIPaKMeD. There are many moving parts in an 

ensemble technique, and some of them must be randomly 

initialised; K-means and some other clustering algorithms 

often contain this stochastic quality [7]. By a combination 

of morphological reconstruction and a technique to locate 

prospective Nuclei candidates [8], FCM and 

SVM clustering achieved excellent Sensibility and 

Specificity 0.70 for FCM, 0.93 for SVM at the cost of 

requiring more than 1.5 minutes each segmentation. Fuzzy 

C-Means segmented Herlev dataset nuclei with a 

0.82 (ZSI) for each class. 

Pre-processing includes techniques for reducing noise, as 

well as determining expensive computational parameters 

such as the area for each image [9]. Additional FCM-

based techniques, including morphological modifications 

such dilation [10], were also able to attain 0.82 ZSI. Li's 

et.all strategy included spectrum analysis, machine 

learning, and picture interpretation in CIELAB 

color spaces [11]. 

Shape attributes may be retrieved and identified as Nuclei 

with an accuracy of 0.81, 0.91, 0.86, and 0.83 using the 

Regression Techniques, Conditional Random fields, 

Decision trees, and Nearest neighbor algorithms, 

respectively. K-Means segmented the image with 0.72 

IoU [12], however K may vary. Semi-automated 

identification using Random Forests yielded impressive 

results in a cytoplasm nuclei and background 

investigation. 

In order to get almost flawless performance ratings, 

human pre-processing was required [13]. For the purpose 

of analysing the picture spectrum and separating the 

nuclei, Braga et al. suggest a hierarchical median narrow 

band. These algorithms are superior than others in most 

computer vision tasks, but they are more difficult to train 

and take more time to calculate. 0.89 F1 score. [15] In this 

technique, nuclei were segmented using a private data set. 

It is possible that ensemble Deep Learning approaches for 

nuclei segmentation, which need three concurrent models 

to run simultaneously, will also reach great performance 

(0.92 ZSI). Segmentation performance may be improved 

by employing dense blocks and adaptive convolutions 

[16]. With a ZSI of 0.9 on the Herlev Dataset, Learning 

with Convolutional Networks outperforms previous 

methods. 



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(2), 763–771 |  766 

The networks were used to extract low-level properties, 

which were then further classified [17]. In whole-cell 

cervical segmentation experiments, recent image 

segmentation architectures like Mask CNN performed 

well [18]. In particular, most of these techniques are 

devoted to isolating cell nuclei by segmentation. 

3 Materials and Methods   

3.1 Cervical cytology and the study of cells 

All the actions that make life possible are carried out by 

the cell, the smallest structure in the body. The study of 

cells, their clinical features, structure, and internal 

organelles, as well as their interactions with the 

environment, cell growth, and cell death, is known as 

cytology or cellular biology. The study of cytopathology 

is a subspecialty of pathology that focuses on the 

diagnosis of illnesses at the cellular level through the 

examination of morphological and phenotypic alterations 

in diseased cells. The membrane, the cytoplasmic, and the 

nucleus are the three major components of a cell. 

The nucleus, which serves as the cell's central nervous 

system, contains genetic material and deoxyribonucleic 

acid (DNA) in the form of chromatins, a structure 

resembling a web inside the nucleus. The nucleus contains 

one nucleoid, which is a densely packed area of 

ribonucleic acid (RNA). Normal cells develop, divide to 

create new cells, and eventually perish after serving their 

purpose. When cells begin to develop and generate new 

aberrant cells without dying, this is referred to as 

abnormality. Modifications to the cell's dimensions, 

morphology, texture, alignment, and colour are all 

brought on by this anomaly. Specifically, this method may 

raise the efficiency of testing facilities, reduce hectic 

workloads, and improve screening quality. We believe 

that this approach will have a major impact on reducing 

mortality and occurrence rates. When these components 

are segmented accurately, automated screening systems 

and human experts are able to identify normal, pre-

cancerous, and cancerous cells inside a pap smear. As a 

consequence of this, dissecting a cervix cell is an essential 

part of current research, and it may be simplified into the 

following four steps: 

Segmentation by individual region, as in Nuclei. 

• Background subtraction and whole-cell 

segmentation to isolate cells from their surroundings 

in a picture. 

• Segmentation of many regions, including nuclei and 

cytoplasm, per cell. 

• Segmentation of cells that overlaps. 

To better understand how to segment cervical images, this 

research employs Deep Learning to ease the process of 

dissecting a single cell into its nucleus and cytoplasm 

automatically. The proposed architecture for cervical 

segmentation outperforms prior attempts at a more 

difficult problem by combining Efficient Net and FPN, 

two of the most prominent structures in segments and 

classification for computer vision. As a benchmark, the 

Herlev Dataset [20] may be used to evaluate a broad range 

of methods. It was created by Dr. Jan Jantzen of the 

Danish Herlev University Hospital at the University of the 

Aegean [21]. The background, nucleus, and cytoplasmic 

of individual cells are all included as ground facts for 

segmentation operations, and the tool was designed 

specifically for evaluating categorization algorithms. 

 

 shortest-to-longest diameter ratio 

 Nucleus and cytoplasm perimeter length 

 How centralized the nucleus is in the 

cytoplasm 

 Count the maximum/minimum pixels inside 

a 3-pixel radius. 

 Nuclei and cytoplasm pixels count 

 Cell size vs. nucleus size 

 The smallest dimensions of nuclei and 

cytoplasm 

 Average brightness 

 The longest dimensions of nuclei and 

cytoplasm 

 Table 1: Most notable aspect of data collection 

Above Table 1 summarises some of the key features of 

this dataset, including the fact that there is a significant 

imbalance between the classes due to a higher percentage 

of aberrant cells than normal ones. This can be 

problematic for classification and object recognition, and 

it also affects segmentation since the number of pixels in 

each class is not evenly distributed. It also demonstrates 

the difficulties that this dataset's semantic segmentation 

poses. For instance, the photos contain a sizable amount 

of trash. There are overlapping cells and low-quality 

photos, and the ground-truth masks don't always 

accurately reflect the number of cells present. This below 

figure 1 explaining the characteristics of different 

categories from Herlev dataset 
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Fig 1: Sample images with their Nucleus and 

cytoplasmic feature from Herlev Dataset 

4. Proposed work 

4. 1 Multi-resolution U-Net (MRU-Net)  

It comprises of multi-scale building pieces made up of 

convolution sequences with various receptive fields. 

These benefits are made possible by MRU-innovative 

Net's multi-scale block. First, the network's many 

convolutional sequences structure allows for the 

collection of additional feature data. Though their 

convolution inputs are same, their convolution kernels are 

not. Not only does this layout speed up the learning 

process for the network during training, but it also boosts 

segmentation performance. For another, the features 

gathered from the multi-scale block are varied. This is due 

to the multi-scale block's usage of numerous convolution 

sequences, each of which has a unique receptive field. 

 

Fig 2: Multiscale -U Net 

Semantic data is derived from a feature map constructed 

using a convolutional sequence in which receptive fields 

of varying sizes are used. Having the network laid out in 

this way improves feature extraction by the encoder and 

feature restoration by the decoder. By below figure 2 We 

build a variety of multi-scale blocks utilising many 

widely-used convolution kernels. Three segmentation 

datasets are used for a thorough analysis of various multi-

scale blocks. In this work, findings show that semantic 

segmentation is much improved by MRU-Net, which was 

created by integrating numerous convolution sequences 

with various receptive fields. 

 

Fig 3: Several convolution kernels with Multiscale block 

The above Figure 3 shows the several varieties of 

convolutional kernels are seen in the image above. 

Various multiscale block types are proposed by merging 

more than seven convolutional kernels. One of MRU-key 

Net's advantages over the standard U-Net structure is that 

it allows for the combination of various convolution 

sequences with varying receptive field widths. With 

forward propagation, this enhancement makes object 

characteristics more obvious. The suggested multi-scale 

block is also easily adaptable to pre-existing network 

architectures. 

 

Fig 4: Detailed description of multi-scale block 

Figure 4 above provides a comprehensive explanation of 

a multi-scale block. Features are extracted using a pair of 

convolution kernels, first a 3x3 and then a 7x7. After that, 

the feature by cat is used to combine the extracted 

characteristics. Ultimately, following dimensionality 

reduction using 1x1 convolution, the combined features 

are sent to the user. 

In conclusion, this paper's most significant contributions 

are as follows: 

(1) We present multi-scale blocks that are built on top of 

many popular convolution kernels. With multi-scale 

block, you may extract more detailed feature maps and a 

wider variety of feature information from your image. 

(2) MRU-Net is offered as a novel segmentation 

architecture for medical images. That is a step forward 

from U-original Net's design. The suggested approach is 

more effective than previous methods in resolving the 

issues of class imbalance and overload. 

(3) Dense prediction tasks necessitating specific spatial 

information rely heavily on receptive fields that vary in 

size and shape. It has the potential to increase the 

network's resilience and bolster its learning ability. The 

experimental findings show that the suggested technique 
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outperforms the state-of-the-art algorithms in the medical 

picture segmentation job under various imaging 

modalities. 

(4) We provide a solution to the cervical cell segmentation 

issue by enhancing the past's state-of-the-art applications 

to handle a more difficult challenge.  

4.2 Fuzzy Automata: 

Fuzzy automata are mathematical models that are used to 

describe complex, uncertain, and vague systems. In the 

context of medical image analysis, fuzzy automata can be 

used to develop diagnostic systems for conditions such as 

cervical cancer smear images are commonly used for 

cervical cancer screening and can provide valuable 

information about the health of the cervix. However, the 

distinction between healthy and cancerous cells in these 

images can be subjective, making it challenging to 

develop an accurate diagnostic system. Fuzzy automata 

provide a powerful tool to address this challenge by 

capturing the uncertainty and vagueness in the 

relationship between the input pap smear images and the 

output diagnosis. The use of fuzzy sets and rules allows 

the diagnostic system to account for multiple perspectives 

and opinions, making it more robust and flexible. 

In a fuzzy automata-based diagnostic system for pap 

smear images, the input image is mapped to the diagnosis 

using a set of rules that describe the relationship between 

the input and output. The transition function updates the 

state of the system based on the input and output, 

providing a continuous and dynamic assessment of the 

diagnosis. By using fuzzy automata in the analysis of pap 

smear images, we can develop a more accurate and 

reliable diagnostic system for cervical cancer, improving 

the ability to detect this condition early and providing 

better outcomes for patients. A Residual Attention Neural 

Network (RANet) is a type of neural network architecture 

that combines the concepts of residual networks and 

attention mechanisms.  

Imagine a diagnostic system that takes a pap smear image 

as input and outputs a diagnosis of cervical cancer. The 

input is fuzzy, as the distinction between healthy and 

cancerous cells in the image can be subjective. To capture 

this uncertainty, we can define a fuzzy set A for the input 

image, with the membership function: 

A(x) = {0, x = healthy cells (x - healthy) / (cancer - 

healthy), healthy < x < cancer 1, x = cancer cells} 

Similarly, we can define a fuzzy set B for the diagnosis, 

with the membership function: 

B(y) = {0, y = negative (y - negative) / (positive-negative), 

negative < y < positive 1, y = positive} 

Next, we define the rules that describe the relationship 

between the input and output. For example: 

If the image has many healthy cells, then the diagnosis 

should be negative: 

                        If x is A then y is B 

If the image has many cancer cells, then the diagnosis 

should be positive: 

                       If x is A then y is B 

Finally, we define the transition function that updates the 

state of the system based on the input and output: 

                              S= f (S, x, y) =S+y 

where S is the state of the system, x is the input image, 

and y is the diagnosis. Figure 5 gives the overview of the 

proposed work.In this example, the fuzzy automaton maps 

the input image to the diagnosis using the rules and 

transition function. The use of fuzzy sets and rules allows 

for the modelling of uncertainty and vagueness in the 

relationship between the input and output, making the 

diagnostic system more robust and flexible. 

 

Fig 5. Workflow of proposed model 

One approach could be to use a Multiscale ResUNet to 

extract features from the input image at different scales, 

and then use a fuzzy automaton to make decisions about 

the segmentation based on those features. The fuzzy 

automaton could be trained to consider the uncertainty and 

imprecision present in the image data and use fuzzy logic 

to make more robust and adaptive segmentation decisions. 

5. Results 

Sample Image       Pre-processed           Segmented 

Image 
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Table 2 Experimental Parameter 

Name      Value  

K 5 

Batch size 8  

Weight decay 0.001  

Epochs 150 

Loss Dice Learning rate 0.01 

Momentum  0.99  

Optimizer SGD  

Pyramid block filters 2048 

 

The above Table 2 displays the final rainfall 

hyperparameters. A small batch size is maintained due to 

memory restrictions. In order to minimise overfitting in 

such a short dataset, a larger L2 regularising term is 

included. Training continues for 150 epochs without 

interruption. Dice loss was chosen because it performs 

well on unbalanced datasets [38], which is important 

given the heterogeneous pixel distribution across classes. 

Using the conventional optimizer stochastic gradient 

descent, we were able to avoid local minima with a high 

learning rate and momentum. Finally, the size of the filters 

in the Pyramid Block is raised to 2048 in order to improve 

the model's capacity. 

6 Performance Metric 

By calculating the projected mask's difference from the 

actual mask, segmentation metrics calculate the model's 

performance. First, each pixel in the expected mask is 

examined to see whether it matches to its ground truth 

equivalent, and then record the outcomes according to the 

following conditions. 

• True Positives (TP): The number of pixels whose class 

has been accurately detected. 

• True Negatives (TN): The number of pixels accurately 

detected as not belonging to their class. 

• False Positives (FP): The number of pixels that have 

been misclassified. 

• False Negatives (FN): The number of pixels that were 

wrongly detected as not belonging to their class. 

Precision, Recall, Specificity, F1-score, and Intersection 

over Union are the performance measurements (IoU). 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇 𝑃/ (𝑇 𝑃 + 𝐹 𝑃)                           

(1)  

𝑟𝑒𝑐𝑎𝑙𝑙 = 𝑇 𝑃 / (𝑇 𝑃 + 𝐹 𝑁)                           (2)  

𝑠𝑝𝑒𝑐𝑖𝑓 𝑖𝑐𝑖𝑡𝑦 = 𝑇 𝑁 / (𝑇 𝑁 + 𝐹 𝑃)                           (3)  

𝐹1 𝑠𝑐𝑜𝑟𝑒 = 2(𝑇 𝑃)/ (𝑇 𝑃 + 𝑇 𝑁 + 𝐹 𝑃 + 𝐹 𝑁)                 (4) 

𝐼𝑜𝑈 = 𝑇 𝑃/ (𝑇 𝑃 + 𝐹 𝑃 + 𝐹 𝑁)            (5) 

The term "precision" refers to the ratio of accurate 

detections to total detections; so, a 100% precision would 

mean there were no false positives. The percentage of 

correct predictions may be measured by a metric known 

as "Recall" or "Sensitivity," with 100% representing no 

false negatives. The term "specificity" is shorthand for 

"true negative detection rate," with a Specificity of 

"100%" indicating that no false positives were found. 

Harmonically averaging Precision and Recall gives us the 

F1-score, the Indenols Similarity Index [40]. Hence, an 

F1-score over 70% implies a well-fitting prediction, as 

stated by Zijdenbos et al. [41]. How well the expected 

mask fits the underlying reality may be measured using 

the Jaccard Score. 
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TABLE 3 | Ablation study for AttU-Net, MSAttU-Net, U-Net++, and MRU-Net++. 

                Architecture         BUL                     EM                    NS 

                                                            M ± SD   M ± SD                 M ± SD 

AttU-Net                         0.607 ± 0.039                             0.853 ± 0.043                0.655 ± 0.020 

 U-Net++       0.670 ± 0.020                            0.885 ± 0.013                   0.665 ± 0.012 

MRU-Net++ (Ours)        0.687 ± 0.009                         0.895 ± 0.002                     0.691 ± 0.022 

IoU (AttU-Net, U-Net++ 

MRU-Net++)                               0.791                                 0.811                              0.642 

Dice (AttU-Net, U-Net++ 

MRU-Net++)                                0.871                                  0.902                           0.913 

Precision (AttU-Net, U-Net++ 

MRU-Net++                                  0.893                               0.895                             0.872      

The multi-core variants of Attu-Net and U-Net ++, 

MSAttU-Net and MRU-Net ++, respectively. According 

to Table 3, our suggested MRU-Net performs better than 

state-of-the-art methods when it comes to semantic 

segmentation. For all five segmentation tasks (SL (0.01), 

CXR (0.01), BUL (0.1), EM (0.016), NS (0.027), MRU-

Net obtains a considerable IoU increase over both designs. 

7 Conclusion: 

The results of the study show that the proposed method 

outperforms existing deep learning models and achieves 

high accuracy in classifying Pap smear images. The use of 

fuzzy automata to incorporate expert knowledge improves 

the accuracy of diagnosis and provides explain ability to 

the model's decision-making process. The multiscale U-

Net architecture enables the model to extract features at 

different scales and capture fine details in the images, 

further improving the accuracy of diagnosis. The 

proposed approach of fusing expert knowledge and deep 

learning for accurate cervical cancer diagnosis in Pap 

smear images is a promising development in the field. The 

combination of deep learning and expert knowledge can 

provide a more accurate and consistent diagnosis of 

cervical cancer, which can ultimately lead to better patient 

outcomes. The use of fuzzy automata for incorporating  

explain ability is a novel approach that improves the 

explain ability of the model's decision-making process. 

Further research can explore the application of this 

approach to other medical imaging tasks and the 

development of more sophisticated fuzzy automata 

systems for incorporating expert knowledge. 
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