

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-67992147-6799 www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(6s), 417–427 | 417

Enhanced Bug Localization through Version Tag Embedding: A

Comprehensive Approach to Efficient Software Development

1* N Rama Rao, K. Suresh2

Submitted: 12/02/2023 Revised: 13/04/2023 Accepted: 10/05/2023

Abstract: In order to localize bugs, this study suggests putting version markers in software delivery files. The article focuses on the

importance and method of the planned build process, in which developers upgrade internal version numbers prior to registration to aid

with precise problem localization. It is suggested that version tagging automation be used as a workable solution to problems like

identifying file sources and exploiting vulnerabilities. The suggested solution has advantages in better managing project complexity,

protecting against software infiltration, lowering costs, improving quality, and boosting productivity and dependability. The use of date

tagging and external release numbers for software identification and compatibility testing is also covered in the article. Operating

systems, version control, build tools, web servers, application servers, scripting languages, bug tracking tools, databases, and

programming languages are all used in the research's specialised testing and development environment. The branching, merging, check-

out, check-in, parameters, build numbering approach, and tagging operations are all thoroughly detailed. The suggested approach shows

how to embed and update internal version tags in deliverable files, improving traceability and facilitating problem fixes throughout the

build process. Discussions of the approach's importance in terms of bug detection and eradication, release management, complexity

handling, intrusion defence, cost savings, and dependability are included. The page includes graphs that show the number of builds and

the link between the number of builds and the state of problems that have been discovered and repaired before and after releases. Overall,

the research offers workable solutions for effective software development and problem management by presenting a unique bug

localization technique employing version tagging.

Keywords: Build and Release Management, Software Configuration Management, Embedding Version Tag, Integration, Software

Release Management, Version Control System.

1. Introduction

A key component of software development and

maintenance is bug localization, which is locating and

fixing flaws or problems in software systems. Traditional

bug localization techniques can be time-consuming and

error-prone since they frequently rely on manual labour.

This research report suggests a unique bug localization

strategy by inserting version tags in software deliverable

files to solve these issues.

The suggested method makes use of the software's

internal version numbers in an effort to increase the

precision and effectiveness of bug localization. Before

registration, developers update the internal version

numbers to make sure that the precise file sources may

be quickly identified [1]. This article goes into great

depth on the expected build process, which includes this

upgrading procedure as a crucial step.

The automation of the suggested process is one of its

main benefits. Developers may lower the risk of human

mistakes by automating the version tagging process and

ensuring that the fields are updated accurately during

check-in. This automation not only saves time but also

improves the overall traceability of defects and lessens

the likelihood that unauthorized parties would exploit a

vulnerability [2].

The suggested approach gives software development

projects various advantages in addition to resolving the

difficulties associated with bug localization. It makes it

possible to manage more complicated projects, offers

protection against software infiltration, lowers costs,

boosts software performance and quality, and increases

productivity and dependability [3]. By implementing the

provided strategy, businesses may manage software

development and bug fixes efficiently while streamlining

their release management procedures.

The suggested approach also emphasizes the value of

date marking and external release numbers for software

identification and compatibility testing. Users may

quickly determine if the programmer they are running

has been updated or not by adding dates to release tags.

This makes it easier to choose software versions and

compatibility, which improves user experience and

minimizes compatibility problems.

* Associate Professor, School of Engineering, Department of CSE

(AIML), Mallareddy University, Hyderabad, Email ID:

ram.narvaneni@gmail.com.
*2 Associate Professor in School of Information Technology, JNTUH,
India. Email Id:2kare_suresh@jntuh.ac.in

mailto:ram.narvaneni@gmail.com
mailto:2kare_suresh@jntuh.ac.in

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(6s), 417–427 | 418

The research makes use of a particular setting for testing

and development in order to assess the efficacy of the

suggested approach. Operating systems, version control

software (CVS or SVN), build tools (Ant and Make),

web servers (Apache), application servers (Tomcat),

scripting languages (JavaScript, shell scripting), bug

tracking software (Bugzilla), databases (MySQL), and

programming languages (C, C++, Java) are some of the

components that make up this environment.

The suggested solution heavily relies on the build

numbering scheme. Project ID, major, minor, revision,

build, and timestamp are some of the factors taken into

account throughout the build numbering process. With

the help of these attributes, every build is guaranteed to

have a distinctive identity that enables effective tracking

and management throughout the development lifecycle.

The study also discusses branching, merging, tagging,

check-in, check-out, and other crucial build process

elements. To provide readers a thorough grasp of how

the suggested strategy combines with current software

development practises, these procedures are described in

depth.

The paper also provides a case-based examination of the

bug localization process, highlighting the difficulties

encountered and the suggested remedies. Discussions of

the approach's importance in terms of bug detection and

eradication, release management, complexity handling,

intrusion defence, cost savings, and dependability are

included.

Overall, this study proposes a unique method for

localising bugs using software deliverable files that

incorporate version identifiers. The suggested approach

provides workable solutions to increase build process

efficiency, software quality and stability, and bug

localization accuracy and efficiency. The article has

graphs that show how the suggested strategy affects bug

fixes and release management. By using this strategy,

businesses may enhance their bug management

procedures and streamline their software development

procedures.

The following describes the structure of this document.

The second segment investigates the review of the

literature. The suggested construction procedure is

discussed in section 3. The implementation plan and

outcomes are presented in section 4 of the document.

The fifth and final section examines conclusions and

future contributions.

2. Related Literature

The studies in [1] and [4] emphasise how important it is

to apply the appropriate "software configuration

management" (SCM) during project development since it

enables effective change management. To increase

efficiency and enhance the quality of software

development with SCM, consistent and organised change

management is required. Improvements must be

duplicated and tested in order to increase system

reliability and quality. Additionally, [5] describes change

management as a process for handling alterations to

specified objects while preserving quality and

uniformity.

In order to find, track, and fix problems, version control

systems (VCS), which are often used in project

development, must be utilised with a "change

management procedure" (CMP) that is clearly defined

[6]. Software creation, release management, and file

version recognition are some of these duties.

Furthermore, the usual practises of branching, merging,

and tagging in VCS [7] provide appropriate programme

enhancements and problem solutions. The build system

is similarly important since stakeholders communicate

throughout the development phase. Engineering releases

include information about the stability and quality of

application releases, both qualitatively and quantitatively

[8].

The costs and missed market opportunities resulting

from product delivery delays highlight the need of risk

management through revised timelines [9] [10].

Successful risk management techniques may increase

revenue, lessen project flaws, reduce costs, and create

opportunities for new projects. Additionally, it ensures

on-time completion of projects [10, 11].

Utilising consistent naming conventions and tagging

builds in VCS helps speed up project delivery [12]. To

efficiently manage a high volume of mistakes, it is also

required for large software systems to stay up to date on

which files have been changed in subsequent releases

[13]. Automating build processes has several benefits,

such as boosting productivity and enabling the

compilation of Java and C modules using build tools like

Ant and Maven [14].

There is always room for development in the realm of

software maintenance, despite the fact that there have

been several contributions to the literature on bug

localization. Recently, the promise of a "convolutional

neural network" (CNN)-based method that combines

natural language processing with programming language

processing was shown [15]. However, because they

primarily focus on search-based bug localization, these

techniques' performance is still limited, frequently falling

between 65% and 80%. This constraint resulted in

performance improvements over other contemporary

methods when taking the input of the programming

structure into account.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(6s), 417–427 | 419

This study offers a novel approach that uses version tags

to get over the drawbacks mentioned in the literature.

This method seeks to promptly inform developers of the

intended sources of issue reporting. By automating the

build process and making internal adjustments to each

delivery, the recommended method raises product

quality, makes module compilation simpler, minimises

repetition, prevents the creation of erroneous builds, and

lessens dependence on key people. Release management

is a crucial part of the IT industry, and the timing of

software releases is essential for reducing errors during

runtime. "Continuous build integration" (CBI) is advised

as a tool to track changes during integration [8] as

opposed to build automation systems like Maven and

Ant.

The literature review closes by providing a complete

summary of relevant studies and highlighting the

significance of SCM, managing changes, controlling

versions, automating build processes, localising bugs,

and continuous integration in the development of

software. While addressing present issues, the

recommended build method seeks to improve software

development practises.

3. Proposed Build Process

One of the most important parts of this study

contribution is the suggested construction method. It

focuses on the internal and external version numbers

connected with software builds and discusses the

importance and method of the build process. The build

process' goal is to make sure that programmers update

their internal version numbers before registering in order

to provide precise file source recognition.

The suggested approach places a strong emphasis on

automating the version tagging process in order to get

around problems with manual updates and potential

vulnerability abuse. During check-in, developers may

accomplish the desired results and lower the risk of

unauthorised access by automating the modifications of

version data. A crucial component of the suggested

approach is this automation solution, which provides

workable methods to improve the build process.

The recommended approach assists software

development initiatives in a number of ways. It makes it

possible to create complex projects, protects against

software infiltration, lowers costs, boosts performance

and quality, and increases productivity and

dependability. External release numbers are assigned by

marketing staff and begin with "Release 1.0," with

following iterations designated as "Release 1.1,"

"Release 1.2," and so on. This numbering scheme makes

bug localization procedures' communication easier.

Users may also find updates more quickly by connecting

release tags and dates. Informed decisions regarding

which software versions to employ and which are

compatible with one another are made by end users as a

result. A particular collection of hardware and software,

such as an OS, VCS, build tools, application servers,

web servers, scripting languages, bug tracking tools,

programming languages, and databases are used to

develop and test the proposed build system. The

proposed build process as follows:

Operating System: Red-hot Linux and Windows are just

two of the operating systems that are supported by the

suggested build method. These operating systems offer a

solid and dependable platform for the creation and use of

software.

Version control: Tools for managing revisions such as

CVS and SVN may be used in conjunction with the build

method. Version control solutions help engineers

collaborate effectively by enabling precise versioning

and tracking of code changes.

Build Tools: Versatile build tools like Ant and Make are

used during the build process. The compilation,

packaging, and deployment of software components are

all automated by these technologies. While Make is

frequently used for C and C++ projects, Ant is

particularly helpful for creating Java programme.

Web servers: Apache, a popular web server, is supported

by the build process. Web applications may be hosted on

a stable and scalable platform using Apache, making the

deployment and maintenance of web-based projects

simple.

Application Servers: The build process incorporates

Tomcat, a well-known Java application server. Java-

based web applications may be deployed and operated

using Tomcat, which also offers a dependable runtime

environment for server-side processing.

Web technologies are supported by the build process,

including XML, HTML, DHTML, and style sheets. The

development of dynamic and visually attractive web

pages requires these technologies.

Scripting: The build process supports shell scripting

using programmes like sed and awk, as well as scripting

languages like JavaScript. These scripting languages

enable the execution of personalised scripts for certain

jobs and improve the construction process's automation

capabilities.

The build procedure interfaces with Bugzilla, a well-

known bug tracking programme. Software faults may be

efficiently tracked, managed, and resolved with the help

of Bugzilla, ensuring that problems are found and fixed

in a methodical way.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(6s), 417–427 | 420

Database: MySQL, a popular open-source database

management system, is utilised during the construction

process. MySQL is appropriate for a variety of

applications since it offers dependable data storage and

retrieval capabilities.

Programming Languages: C, C++, and Java are just a

few of the many languages that may be used throughout

the construction process. The presence of these

languages, which are extensively used for software

development, guarantees flexibility and compatibility

with various project needs. Additionally, the build

procedure notably connects with the J2EE framework,

including technologies like the Struts framework for

developing Java web applications.

Server technologies such as Active Directory or LDAP

for authentication, file servers for file management, and

DHCP (Dynamic Host setup Protocol) and Domain

Naming System (DNS) for network setup are all

smoothly integrated into the development process. By

offering necessary services for efficient operation, these

server components improve the software system's overall

functionality and performance.

Software releases will now use a versioning system

thanks to the suggested build procedure. The external

version number is defined as

"PROJID_MAJNO_MINNO_REVNO_BUILD_NO_TI

MESTAMP". The project ID (PROJID), major number

(MAJNO), minor number (MINNO), revision number

(REVNO), build number (BUILD_NO), and timestamp

(TIMESTAMP) are all included in this external version

number. It acts as a distinctive identification for each

software release.

The internal version number, on the other hand, is

denoted by the notation

"PROJID_MAJNO_MINNO_REVNO_BUILD_NO".

Along with the project ID, it also contains the major

number, minor number, revision number, and build

number (BUILD_NO). The internal version number is

mostly utilised throughout the software development and

testing process to keep track of various programme

iterations and updates.

The build process provides accurate identification and

administration of software releases by differentiating

between the external and internal version numbers. Users

and stakeholders may easily identify and follow software

upgrades thanks to the external version number's distinct

and useful identification. On the other hand, the internal

version number enables developers to organise and keep

track of the many phases of software development,

testing, and issue repair.

The major, minor, revision, build, and date, as well as

the pID ("project ID"), are taken into consideration by

the build numbering mechanism. The timestamp and

internal version number are combined to create the

external version number, which is represented by the

string PID_MaN_MiN_RN_BN_TIMESTAMP. When

there are major functional or technological changes, new

software versions are generated, but new releases might

happen when bugs are resolved.

PID_MaN_MiN_RN_BN_TIMESTAMP.jar is one of

the six fields in the external release tag, while

PROJID_MAJNO_MINNO_REVNO_BUILD_NO is

one of the five fields in the internal release tag. The code

repository then receives a separate file with the release

tag of the updated build.

On a file server, all publicly accessible *.jar files are

saved in one location. The BN ("build number"), MiN

("minor number"), pID ("product ID"), and MaN ("major

number") are taken into account while creating the

release tag. The major number indicates more elements

of the solution, whereas the minor number indicates

slight alterations. The BN and RN both display the build

version information.

Modern build processes stand out for being automated

and flexible, enabling them to run immediately when

new code is checked in. The project moves onto the

tagging phase when all of the code has been produced,

tested, and adjusted as necessary. There are specific

guidelines for checking in, labelling cases, and checking

out.

In order to improve software development, the suggested

build process combines automation, flexibility, and

labelling. In order to facilitate effective and dependable

software development, it solves issues with version

control, file source identification, and vulnerability

abuse.

3.1 Check out

It is standard procedure to complete the check-out

procedure before starting work at the neighbourhood

workplace. The repository's server configuration should

be ready. At check-out, fresh folders are created and

filled with the pertinent source files. The repository's

original source files can then be updated or modified by

programmers. The following step is to confirm the

repository's updated status.

3.2 Check in

Developers check their code in to ensure that it is

consistent with everyone else's. However, it is often

desirable to assess, test, and complete the programme

before doing a check-in. The development procedure

proceeds without a hitch since all contemporary

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(6s), 417–427 | 421

developers are kept abreast of the most recent

modifications.

A workaround is to construct a bug-fixed version

utilising version 1.0 if the product version 1.3 is not

trustworthy enough for distribution because of a serious

problem introduced in version 1.0. The fixed problems

must to be applied to crucial portions of the code to

guarantee the security of next releases. Upgrading or

merging is the process through which two separate

development streams combine to create version 1.4.

3.3 Branching, Merging, and Tagging

The "version control systems" (VCS) aspect of

branching enables developers to designate different

development paths for their projects. A fork's

modifications do not spread to the others. Branching

enables the administration of distinct product versions,

facilitating the distribution of updated and supplementary

features. The method by which these branches are

entirely assimilated into the main stem is known as

"merging."

The VCS repository employs tags to build a new branch

after each software release that will serve as a guide for

future bug fixes and assessments of the effectiveness of

the operations. This branch is created when there is a bug

fix or a minor release. While the main trunk is used for

upkeep and improvements, this branch is used to produce

patches. After a branch has been made public, all

modifications must be merged back into the mainline.

This merging process might cause additional issues for

the VCS, thus branch tags like "branch_name" and

"merged" "branch_name" are added to stop merging the

same branch twice.

Tags are the norm when distributing new software

versions. Before it can be made public, all of the source

code for the next release must be checked out with the

proper tag. Unlike check-ins, tags can be modified and

used as a benchmark for comparison. The releases for the

build are saved on a central server and often take the

form of build.jars.

3.4 Case-Based Reasoning of Bug Localization by

Embedding Version Tags

The case study in this section demonstrates how to use

version tags. The research shows the issues that came up

when attempting to incorporate version metadata in the

deliverable files prior to the release of the constructed

programme. Learning how to obtain version data from

the repository server's code at first proved to be

challenging. Other challenges may be encountered when

analysing data from output files like obj or class, finding

dependencies for certain deliverables, and identifying the

updated file list. Uncertainty around the proper version

tag format and how it should be introduced hindered the

process of coming up with a solution.

Developers frequently write code and then check it into

the VCS. After the code is complete, the files must be

tagged to prevent confusion between the old and new

versions. The code is given the LIVE tag when it has

been tested and any required adjustments have been

made. The next region of growth is the trunk. The

suggested construction method, which include

embedding internal version tags, is described in the

phases that follow.

Step 1: Clean out the local workspace of any

unnecessary files or folders.

Step 2 is to retrieve the code from the version control

system's repository.

Step 3: Extract the source files and the version details

from the repository to create the lvf

("latest_versions_file").

The VCS repository's components each handle VCS files

under corresponding folders that contain the file

locations, names, and most recent versions of the files.

In order to include version information in each of the

deliverable files, mapping between the source and the

deliverable files is required. Get the repository's whole

collection of file revisions.

Write the names of all the VCS files connected to the

development module to the vef ("vcs_entries_file").

Step 4: Identify the files that have changed since the

application's last build. For adding or updating version

information in updated files, this is crucial.

To find out which files have changed since the last build,

compare the ovf ("old_ver_file") and lvf. The difficulty

in identifying updated files is involved here.

To keep track of file changes, use the dlf

("dependent_list_file"), which provides dependence

information. If a file is changed, it should be added to the

"modified_files_list" (mfl).

New versions of files should be added to the mfl with a

version number of 0.0.

The source and output files for each Java file are

identical to one another. However, when compiling

collections of C++ or C files using many-to-one

mapping, dependency information is utilised. The

"internal version tag" (ivt) should be updated to reflect

the change.

Step 6: Find the version of the code and check it in.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(6s), 417–427 | 422

Create a new build by committing the modifications to

the server.

Step 7: Run the automatic build that compiles all of the

modules.

Include rt ("release_tag") checks in the automated build

process. The rt is made up of the MiN, BN, and. A

timestamp will only be added to.tar or.jar files that have

been made accessible for analysis, quality assurance, or

production.

Utilise programmes like Ant, which may provide results

in C++, Java, or even C. These software control log files,

check-ins, branches, VCS merges, check-outs, tags, and

data used for troubleshooting.

Make sure the build includes all recently updated files.

Step 8: Add the MiN, BN, RN, MaN, as well as

timestamp to the final deliverable.

Step 9: Log the troubleshooting details in the lfbn

("log_file_build_no") if the build fails at any step.

To improve the product in terms of qualitative and

quantitative characteristics, more investigations were

made. An better change control method was produced by

combining the suggested build process with the updating

of the "internal version tag" for each deliverable file [5].

Figure 1 provides an illustration of this integration.

Fig. 1: Include or update the IVT to Deliverable file in the build procedure that has been recommended.

We investigated the association between the prevalence

of defects during the build process and their subsequent

correction using the suggested method, increased Bug

Localization via Version Tag Embedding (EBL-VTE)

[16], [17] employing the increased traceability feature.

Figure 2 displays the number of reported issues both

before and after the release. The suggested method offers

a number of benefits, including a lower defect failure

rate, improved release management and build processes,

the ability to build more complex products, protection

from software invasion, improved quality [18], [19], [20]

improved performance, lower costs, higher reliability,

and global scalability. To ensure effective build releases

and software product development, it makes use of an

incremental approach connected to the spiral technique.

In order to produce a product that fully satisfies the

market's expectations, incremental delivery is the best

course of action. As the system gains knowledge from

customer input, its fault tolerance rises.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(6s), 417–427 | 423

Fig. 2: Resolved bugs versus version numbers

The quantity of reported flaws that were fixed before and after a certain version's release is also shown in Figure 3.

Fig. 3: Bugs discovered and fixed status in relation to fresh releases released

Additionally, Figure 4 highlights the relationship between the number of builds and the state of issues that have been found

and addressed across various versions.

Fig. 4: Status of identified and repaired bugs in relation to the number of builds

4. Experimentation and Assessment of Results

In this section, an experimental study is given to assess

the effectiveness and longevity of the Enhanced Bug

Localization by Version Tag Embedding (EBL-VTE)

approach. The study's statistics, which are displayed in

Table 1, were compiled from a number of sources,

including [21], [22], [23]. A performance evaluation of

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(6s), 417–427 | 424

the suggested EBL-VTE technique was conducted

utilising Natural as well as Programming Language

Processing using Convolutional Neural Networks (NP-

CNN) [15], a cutting-edge bug localization methodology.

For this investigation, performance measures were hit

rate (HT), information retrieval accuracy (IRA) using

Mean Reciprocal Index (MRI), and mean best fit (MBF).

4.1 Input Data

The input data consisted of a set of source files tagged

with version tags specified by EBL-VTE. To decide

which source files should be marked with which version

numbers, bug reports were used. A compilation of the

defects from the PDE, Platform, and JDT bug tracking

systems resulted in a total of 6267, 3900, and 3954

complaints. There were, respectively, 7153, 2319, and

3696 files of source code for the PDE, Platform, and JDT

projects (Table 1). According to the issue reports, the

vocabulary sizes for the JDT, PDE, and Platform projects

were 4304, 2964, and 3677, respectively. The source

files connected to each bug report were grouped together

and sorted according to how closely they related to the

report.

Table 1: Statistics for the sets of data

Data Set bug reports Correlated sources

JDT 6267 7153

PDE 3900 2319

Platform 3954 3696

4.2 Performance Measures

Indicators of performance such as hit rate, mean

reciprocal index (MRI), and mean best fit (MBF) were

employed to assess the effectiveness of EBL-VTE. The

hit rate is the proportion of actual correct sources to the

projected number of accurate sources for a certain target

strategy (Eq. 1). The average location of the first

proposed source inside the ordered collection of genuine

sources is evaluated by mean best fit (Eq. 3), whereas the

average reciprocal rank of the suggested sources is

measured by mean reciprocal index (Eq. 2).

Eq. 1: For rs_i s_i, hr = (1/|D|) * _(i=1)(|D|) (|rs_i|/|s_i|) //

In this equation, the hit rate is denoted by hr, the total

number of bug reports is denoted by |D|, the set of

sources proposed by the bug localization technique for

the i-th bug report is denoted by rs_i, and the set of

sources actually linked with the i-th bug report is

denoted by s_i. The formula determines the average

difference between the size of the real sources set and the

size of the consequent sources set for each bug report,

divides that value by the total number of problem

reports, and returns the result.

Eq. 2 states that MRI = (1/|D|) * _(i=1) _(j=1) _(|rs_i|)

1/(index_of(r_j, s_i)) //In this equation, MRI stands for

the mean reciprocal index, |D| for the total number of

bug reports, index_of(r_j, s_i) for the index of source j in

the ordered set s_i of actual sources, and rs_i for the set

of sources that the bug localization method recommends

for report i. For each bug report included in set D, the

equation determines the average reciprocal value of the

monitored sources' index positions among the resulting

sources.

Eq. 3: Where index_of(r_1, s_i) exists for r_1 in rs_i,

MBF = (1/|D|) * _(i=1)(|D|) index_of(r_1, s_i);In this

equation, MBF stands for the mean best fit, |D| for the

total number of bug reports, index_of(r_1, s_i) for the

index of the first source in the ordered set of actual

sources s_i, and rs_i for the set of sources that the bug

localization method recommends as a result for the i-th

bug report. For each bug report included in set D, the

equation determines the average index position of the

first monitored source among the resulting sources.

4.3 Statistical Analysis

Table 2 displays the experimental findings that were

attained by the bagging procedure and 10-fold cross-

validation. The statistics show the EBL-VTE model's

promising performance in bug localization when

compared to the modern NP-CNN approach.

Table 2: EBL-VTE as well as NP-CNN Performance Statistics Comparison

DATASET JDT PDE PLATFORM

METHOD NP-CNN EBL-VTE NP-CNN EBL-VTE NP-CNN EBL-VTE

HIT RATE 0.796  0.003 0.882  0.01 0.727  0.006 0.863  0.012 0.75  0.008 0.839  0.009

MRI 0.074  0.003 0.096  0.009 0.067  0.004` 0.081  0.01 0.015  0.005 0.014  0.005

MBF 7.043  0.129 4.471  0.199 6.481  0.188 4.396  0.151 16.94  2.921 9.747  0.401

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(6s), 417–427 | 425

On the JDT, PDE, and PLATFORM datasets, the EBL-

VTE (bug localization by embedding version tag)

strategy outperformed the NP-CNN (natural and

programming language processing and convolutional

neural networks) model in terms of hit rate. For the JDT,

PDE, and PLATFORM datasets, respectively, the EBL-

VTE produced hit rates that were 8.5%, 6.9%, and 8.4%

higher than NP-CNN (see Figure 5). This suggests that,

in bug reports, the EBL-VTE approach had a better

likelihood of correctly choosing the right sources for the

target method.

Fig. 5: Hit rate for the JDT, PDE, and LATFORM

datasets was observed

Similarly, the EBL-VTE approach showed superior

performance over NP-CNN when measuring the Mean

Reciprocal Index (MRI). According to Figure 6, the MRI

obtained by the EBL-VTE was 2% greater than that of

the NP-CNN. The bug localization technique's correct

sources' average reciprocal rank, measured by the MRI

metric, shows that the EBL-VTE approach offered more

accurate and pertinent suggestions.

Fig. 6: MRI findings for the datasets JDT, PDE, and

PLATFORM

The data collected for the mean best fit (MBF) measure

likewise demonstrated the EBL-VTE method's

significant performance advantage. Lower values in the

mean best fit measure indicate a better fit between the

suggested sources and the actual sources. The average

mean best fit for the EBL-VTE technique was 4.5, which

was around 3 indices lower than the average mean best

fit for the NP-CNN approach of 7.5 (see Figure 7). This

shows that in terms of precisely matching the proposed

sources with the actual sources, the EBL-VTE technique

fared better than NP-CNN.

Fig. 7: MBF detected for the datasets from JDT,

PDE, and PLATFORM

Overall, the experimental findings show that,

when compared to the NP-CNN model, the EBL-VTE

technique performed better in terms of hit rate, mean

reciprocal index, and mean best fit. The usefulness and

benefits of the EBL-VTE technique in precisely

localising issues and offering more pertinent source code

recommendations are supported by these findings.

5. Conclusions and Future Work

In conclusion, the suggested EBL-VTE (bug localization

by embedding version tag) technique has significantly

outperformed the current NP-CNN (natural and

programming language processing and convolutional

neural networks) model in terms of performance. The

experimental investigation on the JDT, PDE, and

PLATFORM datasets has revealed important details

about the efficacy and stability of EBL-VTE.

The first finding from the hit rate measure was that EBL-

VTE had greater odds of correctly choosing the proper

sources for the target technique in bug reports. With an

increase in hit rate of 8.5%, 6.9%, and 8.4% for the JDT,

PDE, and PLATFORM datasets, respectively, the

technique surpassed NP-CNN. This demonstrates how

effective EBL-VTE is in recommending pertinent

sources.

Second, compared to NP-CNN, EBL-VTE offered more

accurate and pertinent suggestions, according to the

Mean Reciprocal Index (MRI) measure. The MRI

obtained by EBL-VTE was around 2% higher than that

of NP-CNN, suggesting that the accurate sources

indicated by the bug localization approach had a higher

average reciprocal rank.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(6s), 417–427 | 426

The mean best fit (MBF) statistic also demonstrated

EBL-VTE's greater performance in precisely matching

suggested sources with real sources. In comparison to the

average mean best fit of 7.5 for NP-CNN, the method's

average mean best fit was 4.5, which is a difference of

almost 3 indices. This highlights how much better the

EBL-VTE's source code suggestions fit and are relevant.

Overall, the experimental findings show that, in terms of

bug localization relevance and accuracy, EBL-VTE

outperforms NP-CNN. The suggested strategy

significantly improved the software development and

problem fixing processes by precisely identifying and

proposing the appropriate sources for issue solutions.The

results of this study have significant ramifications for

researchers and software developers working in the bug

localization sector. The EBL-VTE approach may be used

to increase the speed and efficacy of bug correction,

resulting in software products of greater quality.

Developers may more accurately locate and fix issues by

using the suggested localization technique and

incorporating version tags in software deliverable files.

As a consequence, defect failure rates are decreased and

software dependability is increased.

In conclusion, the experimental investigation and

performance assessment have shown that EBL-VTE

outperforms NP-CNN in the localisation of bugs. The

suggested approach offers a useful approach for

precisely locating and repairing issues, enhancing the

calibre of software, and eventually enhancing software

development procedures. The EBL-VTE approach may

be further investigated and improved in future studies,

taking into account its potential uses in a variety of

software development settings.

References

[1] Rao, N. R., & Sekharaiah, K. C. (2015). Embedding

version tag in software file deliverables before

build release. 2015 4th International Conference on

Reliability, Infocom Technologies and

Optimization (ICRITO) (Trends and Future

Directions), 1–6.

https://doi.org/10.1109/ICRITO.2015.7359255

[2] Hamdy, A., & Arabi, A. E. (2022). Locating faulty

source code files to fix bug reports: International

Journal of Open Source Software and Processes,

13(1), 1–15.

https://doi.org/10.4018/IJOSSP.308791

[3] Liu, G., Lu, Y., Shi, K., Chang, J., & Wei, X. (2019).

Mapping bug reports to relevant source code files

based on the vector space model and word

embedding. IEEE Access, 7, 78870–78881.

https://doi.org/10.1109/ACCESS.2019.2922686

[4] Bendix, L., Kojo, T., & Magnusson, J. (2011,

August). Software configuration management

issues with industrial opensourcing. In 2011 IEEE

Sixth International Conference on Global Software

Engineering Workshop (pp. 85-89). IEEE.

https://doi.org/10.1109/ICGSE-W.2011.21

[5] Neville-Neil, G. V. (2009). Kode viciousSystem

changes and side effects. Communications of the

ACM, 52(4), 25–26.

https://doi.org/10.1145/1498765.1498777

[6] Lekha Tummala,Hruthik Gavva,.Maanvitha Gona,

Lakshmi Tulasi.P (2021).Virtual Controller:

managing a remote computer using network

communication. International Journal of Computer

Engineering In Research Trends. 8(12), 216-219,

[7] Walrad, C., & Strom, D. (2002). The importance of

branching models in SCM. Computer, 35(9), 31–

38. https://doi.org/10.1109/MC.2002.1033025.

[8] P. Siva (2022). Prediction of Knee Osteoarthritis

Using Deep Learning. International Journal of

Computer Engineering in Research Trends. 8(12),

228-235.

[9] Lai, R., Garg, M., Kapur, P. K., & Liu, S. (2011). A

study of when to release a software product from

the perspective of software reliability models.

Journal of Software, 6(4), 651–661.

https://doi.org/10.4304/jsw.6.4.651-661

[10] Rao, N. R., & Sekharaiah, K. C. (2013). An

incremental risk management framework for

realizing project efficiency using version control. In

CCSN and IJCA India 2013 (pp. 1-6),

https://research.ijcaonline.org/ccsn2013/number3/c

csn1301.pdf.

[11] Neely, S., & Stolt, S. (2013, August). Continuous

delivery? easy! just change everything (well, maybe

it is not that easy). In 2013 Agile Conference (pp.

121-128). IEEE, DOI: 10.1109/AGILE.2013.17.

[12] Elbaz, M. (2011, August). To deliver faster, build it

in reverse. In 2011 Agile Conference (pp. 230-233).

IEEE, DOI: 10.1109/AGILE.2011.32.

[13] Ostrand, T. J., Weyuker, E. J., & Bell, R. M. (2005).

Predicting the location and number of faults in

large software systems. IEEE Transactions on

Software Engineering, 31(4), 340–355.

https://doi.org/10.1109/TSE.2005.49

[14] McIntosh, S., Adams, B., & Hassan, A. E. (2010,

May). The evolution of ANT build systems. In

2010 7th IEEE Working Conference on Mining

Software Repositories (MSR 2010) (pp. 42-51).

IEEE, DOI: 10.1109/MSR.2010.5463341.

[15] Huo, X., Li, M., & Zhou, Z. H. (2016, July).

Learning unified features from natural and

programming languages for locating buggy source

code. In IJCAI (Vol. 16, pp. 1606-1612),

http://129.211.169.156/publication/ijcai16npCNN.p

df.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(6s), 417–427 | 427

[16] Kim, D. Y., & Youn, C. (2010, June). Traceability

Enhancement Technique through the integration of

software configuration management and individual

working environment. In 2010 Fourth International

Conference on Secure Software Integration and

Reliability Improvement (pp. 163-172). IEEE, DOI:

10.1109/SSIRI.2010.27.

[17] Rudra Kumar, M., Pathak, R., Gunjan, V.K. (2022).

Diagnosis and Medicine Prediction for COVID-19

Using Machine Learning Approach. In: Kumar, A.,

Zurada, J.M., Gunjan, V.K., Balasubramanian, R.

(eds) Computational Intelligence in Machine

Learning. Lecture Notes in Electrical Engineering,

vol 834. Springer, Singapore.

https://doi.org/10.1007/978-981-16-8484-5_10

[18] Rudra Kumar, M., Pathak, R., Gunjan, V.K. (2022).

Machine Learning-Based Project Resource

Allocation Fitment Analysis System (ML-PRAFS).

In: Kumar, A., Zurada, J.M., Gunjan, V.K.,

Balasubramanian, R. (eds) Computational

Intelligence in Machine Learning. Lecture Notes in

Electrical Engineering, vol 834. Springer,

Singapore. https://doi.org/10.1007/978-981-16-

8484-5_1

[19] Pingili, Madhavi & Sreenivasulu, K. & Maloth,

Bhav Singh & Saheb, Shaik & Saleh, Alaa. (2022).

Bug2 algorithm-based data fusion using mobile

element for IoT-enabled wireless sensor networks.

Measurement: Sensors. 24. 100548.

10.1016/j.measen.2022.100548.

[20] M. M. Venkata Chalapathi, M. Rudra Kumar,

Neeraj Sharma, S. Shitharth, "Ensemble Learning

by High-Dimensional Acoustic Features for

Emotion Recognition from Speech Audio Signal",

Security and Communication Networks, vol. 2022,

Article ID 8777026, 10 pages, 2022.

https://doi.org/10.1155/2022/8777026

[21] Ramana, Kadiyala, et al. "Leaf disease classification

in smart agriculture using deep neural network

architecture and IoT." Journal of Circuits, Systems

and Computers 31.15 (2022): 2240004.

https://doi.org/10.1142/S0218126622400047

[22] Bugzilla main page. (n.d.). Retrieved 13 May 2023,

from https://bugs.eclipse.org/bugs/

[23] http://git.eclipse.org/, https://github.com/eclipse/.

https://doi.org/10.1007/978-981-16-8484-5_10
https://doi.org/10.1007/978-981-16-8484-5_1
https://doi.org/10.1007/978-981-16-8484-5_1
https://doi.org/10.1142/S0218126622400047

