

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-67992147-6799 www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(6s), 451–460 | 451

Cloud-Based Machine Learning Approach for Accurate Detection of

Website Phishing

Saba Hussein Rashid*1, Wisam Dawood Abdullah2

Submitted: 10/02/2023 Revised: 13/04/2023 Accepted: 12/05/2023

Abstract: In recent years, the rapid growth of cyberspace has led to an increase in challenges related to information security. One of the

most dangerous cyberattacks is website phishing, which is complex in nature and difficult to detect in real-time. Cloud Machine Learning

has emerged as an effective approach for detecting website phishing by leveraging Cloud Computing Services to obtain accurate results

quickly. Therefore, this study presents a Cloud Machine Learning method for evaluating and assessing the time required to detect website

phishing using three SageMaker built-in algorithms: Extreme Gradient Boosting, Linear Learner, and k-Nearest Neighbor. Amazon Web

Services is utilized for storage, training, evaluation, and online deployment over a large dataset of 11,430 samples and 89 features. The

results indicate that Extreme Gradient Boosting outperformed the other two algorithms with an accuracy of 96.4% and an online prediction

time of 0.0005 minutes, followed by Linear Learner with an accuracy of 94.4% and a prediction time of 0.0006 minutes. While k-Nearest

Neighbor obtained the lowest accuracy score of 83.7% and the longest prediction time of 0.0008 minutes.

Keywords: AWS, Cloud Machine Learning, Prediction Time, Website Phishing, XGBoost

1. Introduction

Cybersecurity refers to the tools, actions, and technologies

employed to safeguard cyberspace and its assets,

emphasizing confidentiality, availability, and integrity [1].

The increasing usage of the Internet and information

systems in nearly every aspect of daily life in cyberspace has

led to a corresponding surge in cyberattacks against users

and organizations. To combat these attacks, new methods

need to be created, as cybercriminals continue to develop

novel techniques to spread malicious entities [2]. One of the

most commonly used social engineering attacks is website

phishing, which involves creating an identical copy or

alternating a legitimate webpage to gather confidential

information from users who are unable to differentiate

between fake and legitimate sites. These attacks are

typically aimed at financial, online shopping, and payment

services, with the primary goal of obtaining financial gain

from the victims [3].

Detecting website phishing is a complex task that requires

processing large amounts of data in real-time. Significant

progress has been made in recent years regarding the

detection of phishing attacks through the use of various

Machine Learning systems. However, much work still needs

to be done to enhance the scalability, speed, and accuracy of

existing systems. Different studies have proposed various

Machine Learning systems that leverage algorithms like

Extreme Gradient Boosting (XGBoost) and k-Nearest

Neighbor (k-NN) to identify phishing attacks.[4]–[14],

which could achieve accurate results. However, they have

encountered difficulties concerning storage capacity and

computing resources. The ability to identify phishing

attacks in real-time is vital to prevent possible harm to users.

However, many existing systems face challenges in

achieving this objective due to the inadequacy of machines

in providing the necessary resources to analyze data

promptly without depending on third-party resources.

Cloud Machine Learning is an emerging field that leverages

Cloud Computing Services to construct, train, and deploy

effective models capable of obtaining rapid and precise

results, while also managing big data through the use of

collaborative computing interfaces and powerful virtual

resources like storage, databases, graphics, networks, and

processing. Compared to traditional on-premise Machine

Learning, Cloud Machine Learning offers numerous

benefits such as scalability, cost-effectiveness, and ease of

use [15]. Amazon Web Services (AWS) is a Cloud

Computing platform owned by Amazon and is offered on a

pay-as-you-go basis to cater to various users and

organizations. It provides developers with the ability to

control their virtual machines without the need to worry

about the underlying structure of these services. AWS offers

a comprehensive suite of hardware and software resources,

including virtual CPUs, GPUs, storage, servers, and

1College of Computer Science and Mathematics, Tikrit University,

Salaheddin, IRAQ

ORCID ID : 0009-0005-8239-7279
2 Asst. Prof., College of Computer Science and Mathematics, Tikrit

University, Salaheddin, IRAQ

ORCID ID : 0000-0001-9517-5994

* Corresponding Author Email: sabahussein88@tu.edu.iq

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(6s), 451–460 | 452

operating systems, as well as pre-installed applications.

Among the key services provided by AWS are SageMaker,

Simple Storage Service (S3), CloudWatch, and Elastic

Compute Cloud (EC2) [16], [17].

This study introduces a Cloud Machine Learning approach

that employs Amazon Web Services (AWS) to evaluate the

time required for training and predicting website phishing

attack detection. The proposed method involves the use of

three algorithms, Extreme Gradient Boosting (XGBoost),

Linear Learner, and k-Nearest Neighbor (k-NN), and

measures the processing time for training, batch transform,

and online prediction on a large dataset of 11,430 samples

that have been pre-processed and stored on Amazon Simple

Storage Service (S3). The model is built, trained, evaluated,

and deployed using Amazon SageMaker, while

performance monitoring is conducted through Amazon

CloudWatch. The virtual resources required for model-

building are obtained from Amazon Elastic Compute Cloud

(EC2) instances.

2. Methodology

The proposed method for phishing attack detection involved

four main stages as shown in Fig. 1. These stages were data

collection, data preprocessing, training and evaluating the

proposed method using SageMaker built-in algorithms, and

online deployment. In the first stage, the dataset was

downloaded from Mendeley Data, visualized to understand

the behavior of its features, and uploaded to Amazon Simple

Storage Service (S3) bucket. The second stage involved

performing five preprocessing steps to obtain the most

important features, including feature selection, label

encoding, standardization, feature scaling, and dataset

splitting.

The third stage utilized SageMaker built-in algorithms,

Extreme Gradient Boosting (XGBoost), Linear Learner, and

k-Nearest Neighbor (k-NN), to train and evaluate the

proposed method, with SageMaker Batch Transform used

for performance evaluation. Five metrics were used for

displaying the evaluation results: accuracy, precision, F-1,

recall, and mislabeling. In the final stage, the proposed

method was deployed using a multi-model endpoint in

SageMaker Inference Endpoints, enabling real-time

prediction.

Amazon CloudWatch is used to monitor performance and

processing time. Computational resources were sourced

from Amazon Elastic Compute Cloud (EC2), specifically

the (ml.m4.xlarge) instance that provided 4 virtual Central

Processing Units (CPUs), 16 GB of Random Access

Memory (RAM), and high network performance for both 32

and 64-bit virtual operating systems.

Fig. 1. The implementation stages of the research

methodology

2.1. Dataset Collection and Description

This paper employed the “Web Page Phishing Detection”

dataset from Mendeley Data to develop and test the

proposed method. This dataset was preferred because of its

ample size and detailed features, enabling a better

understanding of website properties. As shown in Table 1,

the dataset was a binary classification dataset that included

11,430 Uniform Resource Locators (URLs) and 89 features,

consisting of 87 numeric, one nominal feature representing

the name of the URL, and one categorical feature

representing the labeling of each website. The dataset was

balanced, with exactly 50% (5715) of its samples labeled as

“legitimate” and 50% (5715) as “phishing” as shown in Fig.

2, and it was devoid of missing values as shown in Fig. 3.

After downloading it from the source, the dataset was

uploaded and stored in Amazon Simple Storage Service

(AWS S3) bucket.

Table 1. Description of the dataset

Characteristic Value

Name
Web Page Phishing

Detection

Source Mendeley Data

Type Binary/Supervised

Number of Samples 11,430

Number of Extracted

Features
87

Fig. 2. The ratio of balancing of the labels of the binary

dataset

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(6s), 451–460 | 453

Fig. 3. The ratio of missing values in the dataset

2.2. Dataset Analysis

In this study, a comprehensive analysis was conducted to

understand the behavior of the dataset to achieve better

accuracy results. The analysis categorized the 87 extracted

features into three groups: (1) 56 features derived from the

syntax of the Uniform Resource Locators (URL), (2) 24

features derived from the content of the websites, and (3) 7

features derived from the services associated with the

websites. Upon examining some of the dataset's features, it

was observed that most websites had a URL length between

1 and 200 characters, as depicted in Fig. 4. Furthermore, the

length of hostnames varied across the URLs in the dataset,

with 10,000 of the URLs having a hostname length between

1 and 25, as shown in Fig. 5. The dataset analysis revealed

several key findings about the features. One of the

significant findings is that out of the 11,430 URLs in the

dataset, 53.4% of them (6103 URLs) had a Google Index

ranking, while the remaining 46.6% (5327 URLs) did not as

illustrated in Fig. 6. This is a crucial factor in assessing the

credibility of the website. Another observation is that 84.9%

of the URLs (9709 URLs) had IP addresses associated with

their websites, while 15.1% of them (1721 URLs) did not.

However, the absence of an IP address could not necessarily

determine the legitimacy of a website, these findings are

depicted in Fig. 7.

Fig. 4. The length of the URLs in the dataset

Fig. 5. The length of hostnames of the URLs in the dataset

Fig. 6. The ratio of URLs with Google Index in the dataset

Fig. 7. The ratio of URLs with IP addresses in the dataset

2.3. Dataset Preprocessing

Amazon SageMaker has the ability to handle large datasets

efficiently, but a preprocessing stage is essential to obtain a

fast and interpretable model. The preprocessing stage

consists of five steps: feature selection, label encoding,

standardization, feature scaling, and dataset splitting. These

steps are crucial in simplifying the data, accelerating the

training and evaluation processes, and avoiding overfitting.

The procedures of the preprocessing step are presented in

Fig. 8. It was downloaded into the SageMaker Studio

Notebook to preprocess the dataset and read into a Python

script file. The feature selection step used Pearson

Correlation to remove highly correlated features. The label

encoding function was applied to convert categorical values

of the target feature to numeric values. The standardization

step employed the StandardScaler() to prevent the

dominance of large values over small values. Finally, the

MinMaxScaler() was used in the scaling step to ensure that

all features were on a similar scale between 0 and 1. Once

the preprocessing stage was completed, the dataset was

ready for splitting.

Fig. 8. Steps of the preprocessing stage

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(6s), 451–460 | 454

2.3.1. Feature Selection

 The feature selection process is crucial in machine

learning, as it involves identifying the most relevant features

from the dataset to improve the model's accuracy. By

removing irrelevant and redundant features, feature

selection can reduce the dimensionality of the dataset,

enhance model performance, and avoid overfitting. This

study used Pearson Correlation to perform feature selection

and extract important features. The Pearson correlation

coefficient is a standard test used to assess the statistical

relationship between two variables. The correlation matrix,

a square matrix that displays the correlation coefficient

between each pair of variables in the dataset, was used to

visualize the interdependence and direction of the

relationship between variables. The correlation matrix for

this study revealed that 9 of the features correlated higher

than 70%, indicating a high correlation among these

features. This matrix could be visualized using a heatmap,

where darker colors indicate a stronger correlation between

variables.

2.3.2. Label Encoding

Label encoding is a process that transforms categorical data

into numerical data, allowing algorithms to better process

and analyze the data. The label encoding process assigns a

unique numerical value to each unique category within a

feature. For example, in a binary classification problem, the

label encoding process would assign a numerical value to

each label. In this study, the scikit-learn library

LabelEncoder() was used to convert the categorical values

of the target feature. This function assigned the numerical

label of 0 to the categorical label “legitimate” and the

numerical label of 1 to the categorical label “phishing.”

2.3.3. Standardization

Standardization is a common preprocessing step in machine

learning that rescales the features of a dataset to have a mean

of zero and a standard deviation of one. This is done to

prevent any feature from dominating the others.

Standardization is particularly useful for algorithms that are

sensitive to feature scales, such as support vector machines

and k-nearest neighbors. In this study, the StandardScaler()

function was used to standardize 12 features of the dataset

that had very large values to ensure that all the features were

on a similar scale.

2.3.4. Feature Scaling

Feature scaling is a data preprocessing technique used to

normalize the range of independent variables or features in

a dataset. It is often used in machine learning algorithms to

ensure that the features are on a similar scale and have the

same range. Normalization scales the data to fit within a

specific range, usually between zero and one. In this study,

the MinMaxScaler() function was used to scale the data

between the range of zero and one, where the minimum

value of the feature was mapped to zero, and its maximum

value was mapped to one.

2.3.5. Dataset Splitting

Dataset splitting involves dividing a dataset into two parts:

a training set and a test set. The training set is used to train

the model, while the test set is used to evaluate its

performance. The goal of dataset splitting is to ensure that

the model can generalize well to new, unseen data. If the

model is only trained on a single dataset, it may overfit to

that particular dataset and not perform well on new data. By

testing the model on a separate test set, we can get a more

accurate estimate of its performance on new data. This study

used the train_test_split() function from the scikit-learn

library to split the dataset into training and test sets. The

function split the dataset into two sets of 70:30 ratio, where

70% of the dataset (8001 samples) was used for training and

the remaining 30% (3425 samples) was used for testing the

model.

2.4. Building the Model

Amazon SageMaker is a fully-managed service that

provides tools and libraries for building, training, and

deploying Cloud Machine-Learning algorithms. SageMaker

contains pre-built Docker containers that can be used to run

many built-in algorithms and train the model at a high scale.

In this study, three SageMaker built-in algorithms were used

to train the model: Extreme Gradient Boosting (XGBoost),

Linear Learner, and k-Nearest Neighbor (k-NN).

2.4.1. Extreme Gradient Boosting (XGBoost)

Extreme Gradient Boosting (XGBoost) is a Machine

Learning algorithm designed for classification and

regression, which is highly scalable and offers fast, accurate

models for solving complex problems. XGBoost employs a

Tree Structure model and Parallel Threading Computing to

achieve high-speed performance, scalability, and

portability, particularly for big data. The algorithm uses a

sequential training approach, where each new decision tree

is trained to correct the errors of the previous tree, enabling

XGBoost to learn from its mistakes and improve over time.

XGBoost includes a regularization term in the objective

function to prevent overfitting and improve generalization

performance, and by that, penalizes complex models and

encourages simpler models that are less likely to overfit the

training data. During training, XGBoost calculates the

gradient of the objective function concerning the model

parameters using backpropagation and uses it to update the

model parameters and enhance its performance. In binary

classification, given a training set with N observations,

{(𝑥1, 𝑦1), (𝑥2, 𝑦2), … , (𝑥𝑁 , 𝑦𝑁)} , where 𝑥𝑖 is the input vector

and 𝑦𝑖 is the binary output, we want to learn a model F(x)

that predicts the probability of the positive class given a new

input vector x as shown in eq. (1).

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(6s), 451–460 | 455

𝐹(𝑥) = 𝑃(𝑦 = 1|𝑥) (1)

To learn the model F(x), we need to minimize the following

objective function in eq. (2):

𝑜𝑏𝑗 = 𝐹𝑜𝑏𝑗 + Ω(F) (2)

Where 𝐹𝑜𝑏𝑗 is the training objective function that measures

the difference between the predicted probabilities and the

true labels, and Ω(F) is the regularization term that penalizes

the complex models as in eq. (3).

𝐹𝑜𝑏𝑗 = ∑ 𝐿(𝑦𝑖 , 𝐹(𝑥𝑖)) + ∑ 1Ω(𝑓𝑗)

𝐾

𝑗=1

𝑁

𝑖=1

(3)

Where L is the loss function that measures the difference

between the predicted probabilities and the true labels, and

𝑓𝑗 is the j-th weak prediction model. The objective function

𝐹𝑜𝑏𝑗 can be optimized using gradient boosting. The gradient

boosting algorithm iteratively adds new weak prediction

models to the ensemble, where each new model is trained to

predict the residual errors of the previous models. The final

prediction is the sum of the predictions of all the weak

models as in eq. (4):

𝐹(𝑥) = ∑ 𝑓𝑗(𝑥)

𝐾

𝑗=1

 (4)

Where 𝑓𝑗 is the j-th weak prediction model. Each weak

model is trained by minimizing the following objective

function as eq. (5):

𝑜𝑏𝑗𝑗 = ∑ 𝐿 (𝑦𝑖 , 𝑓𝑗−1(𝑥𝑖)) + Ω(𝑓𝑗)

𝑁

𝑖=1

 (5)

Where 𝑓𝑗−1 is the ensemble of the previous (j-1) models, and

𝑓𝑗 is the j-th weak model to be added to the ensemble. The

objective function 𝑜𝑏𝑗𝑗 can be optimized using gradient

boosting by fitting the negative gradient of 𝑜𝑏𝑗𝑗 as the new

target as in eq. (6):

 − (𝜕𝑜𝑏𝑗𝑗𝜕𝑓𝑗(𝑥𝑖)) = 𝑦𝑖 − 𝑓𝑗 − 1(𝑥𝑖) (6)

The negative gradient represents the residual errors that are

not captured by the previous models. The new weak model

𝑓𝑗 is then fitted to predict the negative gradient. This process

is repeated until the training objective function 𝐹𝑜𝑏𝑗

converges. [18]–[22].

2.4.2. Linear Learner

Linear Learner, a machine learning algorithm built into

SageMaker, is suitable for both classification and regression

tasks. This algorithm is particularly useful for large datasets

and implements Stochastic Gradient Descent to update the

model weights iteratively. Linear Learner also supports

automatic feature scaling to ensure that features with

different scales can be used without one feature dominating

the others. An essential feature of Linear Learner is its

inclusion of a regularization term in the objective function,

which prevents overfitting and improves generalization

performance by favoring simpler models. Due to these

features, Linear Learner is commonly employed in fraud

detection, banking, and health management models.

Moreover, Linear Learner can tune hyperparameters

automatically using AutoML, which further improves its

efficiency. The Linear Learner algorithm uses logistic

regression to model the probability of a binary outcome. The

logistic regression model can be written as in eq. (7):

𝑃(𝑦 = 1|𝑥, 𝑤, 𝑏) = σ(w𝑇𝑥 + b)

(7)

Where y is the binary outcome (1 or 0), x is the input vector,

w is the weight vector, b is the bias term, and σ is the

sigmoid function, which maps the input to the range [0,1].

The objective of the Linear Learner algorithm is to minimize

the binary cross-entropy loss function, which is defined as

in eq. (8):

𝐿(𝑤, 𝑏) = −[𝑦 log𝑝(𝑦 = 1|𝑥, 𝑤, 𝑏)] + (1 −

𝑦) log1−𝑝(𝑦 = 1|𝑥, 𝑤, 𝑏) (8)

The loss function measures the difference between the

predicted probability and the true label for each training

example. The algorithm minimizes this loss function using

stochastic gradient descent (SGD) with mini-batch updates.

To minimize the cost function, linear learner uses an

optimization algorithm called stochastic gradient descent

(SGD), which updates the weights and bias in the direction

of the negative gradient of the cost function. The update rule

for SGD can be written mathematically as in eq. (9) and eq.

(10):

𝑤𝑖 = 𝑤𝑖 − 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔𝑟𝑎𝑡𝑒 ∗ 𝑑𝑗(𝑤, 𝑏)/𝑑𝑤𝑖

(9)

𝑏 = 𝑏 − 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔𝑟𝑎𝑡𝑒 ∗ 𝑑𝑗(𝑤, 𝑏)/𝑑𝑏

(10)

Where 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔𝑟𝑎𝑡𝑒 is a hyperparameter that controls the

step size of the updates, and 𝑑𝑗(𝑤, 𝑏)/𝑑𝑤𝑖
 and 𝑑𝑗(𝑤, 𝑏)/𝑑𝑏

are the partial derivatives of the cost function with respect

to the weights and bias, respectively. The above equations

are iteratively updated until the predefined maximum

number of iterations is reached. To prevent overfitting, the

algorithm employs L1 and L2 regularization techniques. L1

regularization adds a penalty term to the loss function

proportional to the absolute values of the weight vector,

while L2 regularization adds a penalty term proportional to

the square of the weight vector. The regularization

parameter is controlled by a hyperparameter lambda, which

determines the strength of regularization. [23].

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(6s), 451–460 | 456

2.4.3. k-Nearest Neighbor (k-NN)

k-Nearest Neighbor (k-NN) is a widely used Machine-

Learning algorithm for classification problems and it

follows the Lazy Learning method. It determines the class

of data point by examining the majority of its neighbors,

who share the same feature characteristics. Although the

algorithm is known for its simplicity, it can be

computationally expensive and suffer from the curse of

dimensionality, particularly when working with large

datasets. k-NN works by selecting the k-nearest data points

to a query point based on a distance metric and then

predicting the label of the query point based on the most

common label among its k-nearest neighbors. The

Euclidean distance is commonly used as a distance metric,

but other metrics such as Manhattan distance and cosine

similarity can be utilized. In this paper, the proposed

technique is evaluated by utilizing the k-NN classifier to

investigate classification performance. The appropriate k

value selection is critical as it impacts classification

performance, and it can be achieved by calculating the

Euclidean distance function between the testing set q and all

training sets p as in eq. (11):

𝒅(𝒑, 𝒒) = √∑(𝒑𝒊 − 𝒒𝒊)
𝟐

𝒏

𝒊=𝟏

 (11)

Where n represents the number of features. The distance is

then organized in ascending order to categorize the features

based on k data and classify the new data.

Classification is carried out by considering the k-nearest

neighbors with the smallest distances, where k denotes the

number of nearest neighbors involved in the majority voting

process. The test sample's class label is determined based on

the majority votes of its k-nearest neighbors, corresponding

to the class with the highest number of members in k. This

process is performed according to eq. (12):

𝐶(𝑥𝑖) = arg 𝑚𝑎𝑥𝑘 ∑ 𝐶(𝑥𝑗 , 𝑦𝑘)

𝑥𝑗∈𝐾𝑁𝑁

 (12)

Where 𝑥𝑖 is a test object, 𝑥𝑗 is one of its k-nearest neighbors

in the training set, 𝐶(𝑥𝑗 , 𝑦𝑘) indicates whether 𝑥𝑗 belongs to

class 𝑦𝑘 . [24]–[27].

3. Results and Discussion

This method used batch transform after training to obtain

the evaluation results for each algorithm, then created a

multi-model Endpoint for online deployment. The times

required for training, batch transform, and endpoint

prediction were calculated to indicate the fastest method to

obtain accurate prediction results.

3.1. Evaluation results

The evaluation of the model was conducted in two steps:

Batch Transform and Endpoint prediction. Batch transform

prediction is a technique for making predictions on large

datasets by processing data in batches and storing the

prediction artifacts in Amazon Simple Storage Service (S3)

bucket. Endpoint prediction, on the other hand, is a

technique for making predictions by deploying a model as a

web service endpoint that can receive Hypertext Transfer

Protocol (HTTP) requests and respond with predictions in

real-time. The test dataset was applied to obtain the

evaluation metrics and measure the prediction time for both

techniques.

3.1.1. Batch Transform Results

Batch Transform is a SageMaker feature designed to

streamline and scale the process of making predictions from

a trained model on large datasets, without latency or online

deployment concerns. This is achieved by dividing the

workload into records or mini-batches of a specific size,

upon which the predictions are performed. Fig. 9 illustrates

the steps involved in the Batch Transform process. Once the

training results are obtained from Amazon Simple Storage

Service (S3), the test dataset is used to initiate Batch

Transform on the three algorithms of the model. Batch

Transform provides valuable insights into the progress and

performance of the transform job and is ideal for obtaining

prediction results for one-time processing and storing them

in Amazon Simple Storage Service (S3). However, the setup

process for batch transform prediction can be time-

consuming since it requires creating and configuring several

resources and batch transform jobs. As a result, it is not

suitable for real-time predictions. Table 2 displays the

evaluation metrics of three machine learning algorithms

after Batch Transform. Extreme Gradient Boosting

(XGBoost) achieved the highest accuracy of 96.4% and the

highest precision score of 97%. The algorithm also

demonstrated high scores for F-1, and recall, in comparison

to the other two algorithms while achieving the lowest

mislabeling score of 0.03%. This excellent performance can

be attributed to the combination of decision trees, boosting,

and regularization, which enables XGBoost to effectively

capture complex relationships between features and avoid

overfitting, leading to accurate prediction and low

mislabeling. Linear Learner achieved an accuracy of 94.4%

with similarly high precision, F-1, and recall, This suggests

the algorithm's high performance and ability to handle large

datasets effectively and make accurate predictions with a

minimal mislabeling score of 0.05%. In contrast, k-Nearest

Neighbor (k-NN) recorded the lowest accuracy among the

three algorithms at 83.7% with a lower score for F-1 recall

compared to the other two algorithms. However, the

precision score of k-NN was high, indicating that the

algorithm correctly predicted the positive samples.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(6s), 451–460 | 457

Nevertheless, k-NN had the highest mislabeling score of

0.16% due to its difficulties in handling high-dimensional

data.

Fig. 9. Steps of training and evaluating the proposed

method using Batch Transform

Table 2. evaluation metrics of the three algorithms after

batch transform and endpoint prediction

Metrics Accuracy Precision F-1 Recall Mislabeling

XGBoost 0.96413 0.97086 0.96440 0.95802 0.03587

Linear

Learner
0.94430 0.95263 0.94462 0.93675 0.05570

k-NN 0.83727 0.91150 0.82420 0.75216 0.16272

3.1.2. Endpoint Prediction Results

Endpoint is a part of the SageMaker Inference deployment

procedure. Endpoint provides real-time predictions from a

deployed model by allowing the developer to integrate the

trained model into a workflow to make predictions on new

data in real-time. The endpoint can be set up relatively

quickly. It can host the resources of Cloud Machine

Learning methods in Amazon SageMaker online for an

infinite time until it is manually taken down. Endpoint can

also offer scalable solutions to deploy more than one model

and generate predictions from each model efficiently in real-

time. This is done by enabling the time-sharing of memory

and resources among the models and storing the artifacts in

both Amazon Simple Storage Service (S3) bucket and the

endpoint configuration, as shown in Fig. 10 which illustrates

the steps of the batch transform process. In this study, the

three algorithms were deployed using a multi-model

Endpoint consisting of three created models, one for each

algorithm. After Endpoint deployment, a prediction

function was implemented to invoke the Endpoint by

sending the test dataset to it and producing the prediction

results. The evaluation results obtained from this prediction

were the same as those obtained from the Batch Transform.

However, the prediction time significantly decreased after

the deployment as the prediction function was able to

process the entire test dataset without the need to divide it

into multiple records like Batch Transform and the Endpoint

made it possible to have the results in real-time.

Fig. 10. Steps of creating and invoking the endpoint

3.2. Time Assessment Results

 The training and Batch Transform times for the three

algorithms used in the proposed method were calculated

from Amazon CloudWatch logs. Based on the Amazon

Elastic Compute Cloud (EC2) instance used for this method,

Extreme Gradient Boosting (XGBoost) had the shortest

training and Batch Transform times of 4.47 minutes and

5.38 minutes, respectively, due to its capability of handling

big data and Multithreading Parallel Computing. Linear

Learner had a decent training of 5.01 minutes and a Batch

Transform time of 6.08 minutes, this is because it is

optimized for use in distributed computing environments,

allowing it to process large datasets quickly. K-Nearest

Neighbor (k-NN) had the longest training time of 5.16

minutes and a Batch Transform time of 7.44 minutes, this is

because k-NN works better with low dimensionality rather

than a large number of features like in the dataset used in

this study. Fig. 11 displays the prediction times of each

algorithm, calculated from CloudWatch logs, and compares

them to the training and Batch Transform times discussed

previously. XGBoost had the shortest prediction time of

only 0.0005 minutes, followed by Linear Learner, which

had a prediction time of 0.0006 minutes, while k-NN had

the longest prediction time of 0.0008 minutes. The reason

behind the high speed of Endpoint prediction is that the

deployed model was already loaded into memory, and the

resources were available to perform predictions in real-time.

When the endpoint received the prediction request, it used

the loaded model to make the prediction, and the results

were returned within milliseconds.

4. Conclusion

The study proposed a Cloud Machine Learning approach for

identifying phishing websites using Amazon Web Service

(AWS). The study utilized three AWS SageMaker-built-in

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(6s), 451–460 | 458

algorithms, namely, Extreme Gradient Boosting

(XGBoost), Linear Learner, and k-Nearest Neighbor (k-

NN), to detect phishing attacks using a dataset of 11,430

samples. The dataset was preprocessed, split into (70%)

train and (30%) test datasets, and saved to an Amazon

Simple Storage Service (S3) bucket. The preprocessing,

training, and deployment resources were obtained from the

Amazon Elastic Compute Cloud (EC2) instance

(ml.m4.xlarge). Following training, the method was

evaluated using SageMaker Batch Transform. The training

and prediction times were calculated using Amazon

CloudWatch. The XGBoost algorithm achieved the highest

accuracy of 96.4%, with a training time of 4.47 minutes and

a Batch Transform time of 5.38 minutes, followed by Linear

Learner with an accuracy of 94.4%, a training time of 5.01

minutes and a Batch Transform time of 6.08 minutes. While

k-NN achieved an accuracy of 83.7%, with a training time

of 5.16 seconds and a Batch Transform time of 7.44

minutes. The method was deployed using a single

SageMaker Inference multi-model Endpoint. After invoking

the Endpoint with the prediction function, Amazon

CloudWatch logs indicated that XGBoost outperformed the

other algorithms, with the fastest prediction time at only

0.0005 minutes, followed by Linear Learner with 0.0006

minutes, and k-Nearest Neighbor with 0.0008 minutes. This

approach can enable real-time prediction capabilities for

applications that require near-instant response times, such

as phishing detection systems. AWS provides efficient

resources to handle large amounts of data in real-time, it is

important to note the cost limitation of using such resources.

Therefore, it is recommended to manually shut down all the

resources after completing the project to avoid incurring

additional costs. In the future, the accuracy and speed of the

method can be improved by using a larger dataset and a

different Amazon Elastic Compute Cloud (EC2) instance

with more virtual resources.

Fig. 11. Training, batch transform, and prediction times of

the method

Conflicts of interest

The authors declare no conflicts of interest.

References

[1] M. G. Cains, L. Flora, D. Taber, Z. King, and D. S.

Henshel, “Defining Cyber Security and Cyber Security

Risk within a Multidisciplinary Context using Expert

Elicitation,” Risk Analysis, 2021, doi:

10.1111/risa.13687.

[2] A. Mishra, Y. I. Alzoubi, M. J. Anwar, and A. Q. Gill,

“Attributes impacting cybersecurity policy

development: An evidence from seven nations,”

Comput Secur, vol. 120, p. 102820, Sep. 2022, doi:

10.1016/j.cose.2022.102820.

[3] A. A.A. and P. K., “Towards the Detection of Phishing

Attacks,” in 2020 4th International Conference on

Trends in Electronics and Informatics

(ICOEI)(48184), IEEE, Jun. 2020, pp. 337–343. doi:

10.1109/ICOEI48184.2020.9142967.

[4] O. K. Sahingoz, E. Buber, O. Demir, and B. Diri,

“Machine learning based phishing detection from

URLs,” Expert Syst Appl, vol. 117, pp. 345–357, Mar.

2019, doi: 10.1016/j.eswa.2018.09.029.

[5] Md. S. I. Islam Prottasha, Md. Z. Rahman, A. K.

Hossain, S. F. Mou, Md. B. Ahmed, and M. S. Kaiser,

“Vote algorithm based probabilistic model for

phishing website detection,” Indonesian Journal of

Electrical Engineering and Computer Science, vol. 28,

no. 3, p. 1582, Dec. 2022, doi:

10.11591/ijeecs.v28.i3.pp1582-1591.

[6] M. Korkmaz, O. K. Sahingoz, and B. Diri, “Detection

of Phishing Websites by Using Machine Learning-

Based URL Analysis,” in 2020 11th International

Conference on Computing, Communication and

Networking Technologies (ICCCNT), IEEE, Jul.

2020, pp. 1–7. doi:

10.1109/ICCCNT49239.2020.9225561.

[7] J. Kumar, A. Santhanavijayan, B. Janet, B. Rajendran,

and B. S. Bindhumadhava, “Phishing Website

Classification and Detection Using Machine

Learning,” in 2020 International Conference on

Computer Communication and Informatics (ICCCI),

IEEE, Jan. 2020, pp. 1–6. doi:

10.1109/ICCCI48352.2020.9104161.

[8] C. Gu, “A Lightweight Phishing Website Detection

Algorithm by Machine Learning,” in 2021

International Conference on Signal Processing and

Machine Learning (CONF-SPML), IEEE, Nov. 2021,

pp. 245–249. doi: 10.1109/CONF-

SPML54095.2021.00054.

[9] N. S. Zaini et al., “Phishing detection system using

nachine learning classifiers,” Indonesian Journal of

Electrical Engineering and Computer Science, vol. 17,

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(6s), 451–460 | 459

no. 3, p. 1165, Mar. 2020, doi:

10.11591/ijeecs.v17.i3.pp1165-1171.

[10] Y. Wei and Y. Sekiya, “Sufficiency of Ensemble

Machine Learning Methods for Phishing Websites

Detection,” IEEE Access, vol. 10, pp. 124103–

124113, 2022, doi: 10.1109/ACCESS.2022.3224781.

[11] S. Das Guptta, K. T. Shahriar, H. Alqahtani, D.

Alsalman, and I. H. Sarker, “Modeling Hybrid

Feature-Based Phishing Websites Detection Using

Machine Learning Techniques,” Annals of Data

Science, Mar. 2022, doi: 10.1007/s40745-022-00379-

8.

[12] A. Nandi Tultul, R. Afroz, and M. A. Hossain,

“Comparison of the efficiency of machine learning

algorithms for phishing detection from uniform

resource locator,” Indonesian Journal of Electrical

Engineering and Computer Science, vol. 28, no. 3, p.

1640, Dec. 2022, doi: 10.11591/ijeecs.v28.i3.pp1640-

1648.

[13] A. A. Orunsolu, A. S. Sodiya, and A. T. Akinwale, “A

predictive model for phishing detection,” Journal of

King Saud University - Computer and Information

Sciences, vol. 34, no. 2, pp. 232–247, Feb. 2022, doi:

10.1016/j.jksuci.2019.12.005.

[14] I. Saha, D. Sarma, R. J. Chakma, M. N. Alam, A.

Sultana, and S. Hossain, “Phishing attacks detection

using deep learning approach,” in Proceedings of the

3rd International Conference on Smart Systems and

Inventive Technology, ICSSIT 2020, Institute of

Electrical and Electronics Engineers Inc., Aug. 2020,

pp. 1180–1185. doi:

10.1109/ICSSIT48917.2020.9214132.

[15] P. Mccaffrey, “Cloud technologies,” in An

Introduction to Healthcare Informatics, Elsevier, 2020,

pp. 307–316. doi: 10.1016/B978-0-12-814915-

7.00021-1.

[16] K. Swedha and T. Dubey, “Analysis of Web

Authentication Methods Using Amazon Web

Services,” in 2018 9th International Conference on

Computing, Communication and Networking

Technologies (ICCCNT), IEEE, Jul. 2018, pp. 1–6.

doi: 10.1109/ICCCNT.2018.8494054.

[17] H. Singh, Practical Machine Learning with AWS.

Berkeley, CA: Apress, 2021. doi: 10.1007/978-1-

4842-6222-1.

[18] E. S. Gualberto, R. T. de Sousa, T. P. B. de Vieira, J.

P. C. L. da Costa, and C. G. Duque, “From Feature

Engineering and Topics Models to Enhanced

Prediction Rates in Phishing Detection,” IEEE Access,

vol. 8, pp. 76368–76385, 2020, doi:

10.1109/ACCESS.2020.2989126.

[19] X. Y. Liew, N. Hameed, and J. Clos, “An investigation

of XGBoost-based algorithm for breast cancer

classification,” Machine Learning with Applications,

vol. 6, p. 100154, Dec. 2021, doi:

10.1016/j.mlwa.2021.100154.

[20] M. Chen, Q. Liu, S. Chen, Y. Liu, C. H. Zhang, and R.

Liu, “XGBoost-Based Algorithm Interpretation and

Application on Post-Fault Transient Stability Status

Prediction of Power System,” IEEE Access, vol. 7, pp.

13149–13158, 2019, doi:

10.1109/ACCESS.2019.2893448.

[21] J. Cao, J. Gao, H. Nikafshan Rad, A. S. Mohammed,

M. Hasanipanah, and J. Zhou, “A novel systematic and

evolved approach based on XGBoost-firefly algorithm

to predict Young’s modulus and unconfined

compressive strength of rock,” Eng Comput, vol. 38,

no. S5, pp. 3829–3845, Dec. 2022, doi:

10.1007/s00366-020-01241-2.

[22] X. Y. Liew, N. Hameed, and J. Clos, “An investigation

of XGBoost-based algorithm for breast cancer

classification,” Machine Learning with Applications,

vol. 6, p. 100154, Dec. 2021, doi:

10.1016/j.mlwa.2021.100154.

[23] Aishwarya V, “Binary Classification Model for

Fraudulent Credit Card Transactions,” IOSR J Comput

Eng, vol. 22, no. 3, pp. 38–45, 2020, doi:

10.9790/0661-2203023845.

[24] N. F. Abedin, R. Bawm, T. Sarwar, M. Saifuddin, M.

A. Rahman, and S. Hossain, “Phishing Attack

Detection using Machine Learning Classification

Techniques,” in 2020 3rd International Conference on

Intelligent Sustainable Systems (ICISS), IEEE, Dec.

2020, pp. 1125–1130. doi:

10.1109/ICISS49785.2020.9315895.

[25] M. Rastogi, A. Chhetri, D. K. Singh, and G. Rajan V,

“Survey on Detection and Prevention of Phishing

Websites using Machine Learning,” in 2021

International Conference on Advance Computing and

Innovative Technologies in Engineering (ICACITE),

IEEE, Mar. 2021, pp. 78–82. doi:

10.1109/ICACITE51222.2021.9404714.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(6s), 451–460 | 460

[26] A. Niranjan, D. K. Haripriya, R. Pooja, S. Sarah, P.

Deepa Shenoy, and K. R. Venugopal, “EKRV:

Ensemble of kNN and Random Committee Using

Voting for Efficient Classification of Phishing,” in

Advances in Intelligent Systems and Computing,

Springer Verlag, 2019, pp. 403–414. doi:

10.1007/978-981-13-1708-8_37.

[27] R. D. Prayogo and S. A. Karimah, “Optimization of

Phishing Website Classification Based on Synthetic

Minority Oversampling Technique and Feature

Selection,” in 2020 International Workshop on Big

Data and Information Security (IWBIS), IEEE, Oct.

2020, pp. 121–126. doi:

10.1109/IWBIS50925.2020.9255562.

