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Abstract: In recent years, the rapid growth of cyberspace has led to an increase in challenges related to information security. One of the 

most dangerous cyberattacks is website phishing, which is complex in nature and difficult to detect in real-time. Cloud Machine Learning 

has emerged as an effective approach for detecting website phishing by leveraging Cloud Computing Services to obtain accurate results 

quickly. Therefore, this study presents a Cloud Machine Learning method for evaluating and assessing the time required to detect website 

phishing using three SageMaker built-in algorithms: Extreme Gradient Boosting, Linear Learner, and k-Nearest Neighbor. Amazon Web 

Services is utilized for storage, training, evaluation, and online deployment over a large dataset of 11,430 samples and 89 features. The 

results indicate that Extreme Gradient Boosting outperformed the other two algorithms with an accuracy of 96.4% and an online prediction 

time of 0.0005 minutes, followed by Linear Learner with an accuracy of 94.4% and a prediction time of 0.0006 minutes. While k-Nearest 

Neighbor obtained the lowest accuracy score of 83.7% and the longest prediction time of 0.0008 minutes. 

Keywords: AWS, Cloud Machine Learning, Prediction Time, Website Phishing, XGBoost  

1. Introduction 

Cybersecurity refers to the tools, actions, and technologies 

employed to safeguard cyberspace and its assets, 

emphasizing confidentiality, availability, and integrity [1]. 

The increasing usage of the Internet and information 

systems in nearly every aspect of daily life in cyberspace has 

led to a corresponding surge in cyberattacks against users 

and organizations. To combat these attacks, new methods 

need to be created, as cybercriminals continue to develop 

novel techniques to spread malicious entities [2]. One of the 

most commonly used social engineering attacks is website 

phishing, which involves creating an identical copy or 

alternating a legitimate webpage to gather confidential 

information from users who are unable to differentiate 

between fake and legitimate sites. These attacks are 

typically aimed at financial, online shopping, and payment 

services, with the primary goal of obtaining financial gain 

from the victims [3]. 

Detecting website phishing is a complex task that requires 

processing large amounts of data in real-time. Significant 

progress has been made in recent years regarding the 

detection of phishing attacks through the use of various 

Machine Learning systems. However, much work still needs 

to be done to enhance the scalability, speed, and accuracy of 

existing systems. Different studies have proposed various 

Machine Learning systems that leverage algorithms like 

Extreme Gradient Boosting (XGBoost) and k-Nearest 

Neighbor (k-NN) to identify phishing attacks.[4]–[14], 

which could achieve accurate results. However, they have 

encountered difficulties concerning storage capacity and 

computing resources. The ability to identify phishing 

attacks in real-time is vital to prevent possible harm to users. 

However, many existing systems face challenges in 

achieving this objective due to the inadequacy of machines 

in providing the necessary resources to analyze data 

promptly without depending on third-party resources.       

Cloud Machine Learning is an emerging field that leverages 

Cloud Computing Services to construct, train, and deploy 

effective models capable of obtaining rapid and precise 

results, while also managing big data through the use of 

collaborative computing interfaces and powerful virtual 

resources like storage, databases, graphics, networks, and 

processing. Compared to traditional on-premise Machine 

Learning, Cloud Machine Learning offers numerous 

benefits such as scalability, cost-effectiveness, and ease of 

use [15]. Amazon Web Services (AWS) is a Cloud 

Computing platform owned by Amazon and is offered on a 

pay-as-you-go basis to cater to various users and 

organizations. It provides developers with the ability to 

control their virtual machines without the need to worry 

about the underlying structure of these services. AWS offers 

a comprehensive suite of hardware and software resources, 

including virtual CPUs, GPUs, storage, servers, and 
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operating systems, as well as pre-installed applications. 

Among the key services provided by AWS are SageMaker, 

Simple Storage Service (S3), CloudWatch, and Elastic 

Compute Cloud (EC2) [16], [17].  

This study introduces a Cloud Machine Learning approach 

that employs Amazon Web Services (AWS) to evaluate the 

time required for training and predicting website phishing 

attack detection. The proposed method involves the use of 

three algorithms, Extreme Gradient Boosting (XGBoost), 

Linear Learner, and k-Nearest Neighbor (k-NN), and 

measures the processing time for training, batch transform, 

and online prediction on a large dataset of 11,430 samples 

that have been pre-processed and stored on Amazon Simple 

Storage Service (S3). The model is built, trained, evaluated, 

and deployed using Amazon SageMaker, while 

performance monitoring is conducted through Amazon 

CloudWatch. The virtual resources required for model-

building are obtained from Amazon Elastic Compute Cloud 

(EC2) instances. 

2. Methodology 

The proposed method for phishing attack detection involved 

four main stages as shown in Fig. 1. These stages were data 

collection, data preprocessing, training and evaluating the 

proposed method using SageMaker built-in algorithms, and 

online deployment. In the first stage, the dataset was 

downloaded from Mendeley Data, visualized to understand 

the behavior of its features, and uploaded to Amazon Simple 

Storage Service (S3) bucket. The second stage involved 

performing five preprocessing steps to obtain the most 

important features, including feature selection, label 

encoding, standardization, feature scaling, and dataset 

splitting.  

The third stage utilized SageMaker built-in algorithms, 

Extreme Gradient Boosting (XGBoost), Linear Learner, and 

k-Nearest Neighbor (k-NN), to train and evaluate the 

proposed method, with SageMaker Batch Transform used 

for performance evaluation. Five metrics were used for 

displaying the evaluation results: accuracy, precision, F-1, 

recall, and mislabeling. In the final stage, the proposed 

method was deployed using a multi-model endpoint in 

SageMaker Inference Endpoints, enabling real-time 

prediction.  

Amazon CloudWatch is used to monitor performance and 

processing time. Computational resources were sourced 

from Amazon Elastic Compute Cloud (EC2), specifically 

the (ml.m4.xlarge) instance that provided 4 virtual Central 

Processing Units (CPUs), 16 GB of Random Access 

Memory (RAM), and high network performance for both 32 

and 64-bit virtual operating systems. 

 

 

 

Fig. 1. The implementation stages of the research 

methodology 

2.1. Dataset Collection and Description  

This paper employed the “Web Page Phishing Detection” 

dataset from Mendeley Data to develop and test the 

proposed method. This dataset was preferred because of its 

ample size and detailed features, enabling a better 

understanding of website properties. As shown in Table 1, 

the dataset was a binary classification dataset that included 

11,430 Uniform Resource Locators (URLs) and 89 features, 

consisting of 87 numeric, one nominal feature representing 

the name of the URL, and one categorical feature 

representing the labeling of each website. The dataset was 

balanced, with exactly 50% (5715) of its samples labeled as 

“legitimate” and 50% (5715) as “phishing” as shown in Fig. 

2, and it was devoid of missing values as shown in Fig. 3. 

After downloading it from the source, the dataset was 

uploaded and stored in Amazon Simple Storage Service 

(AWS S3) bucket. 

Table 1. Description of the dataset 

Characteristic Value 

Name 
Web Page Phishing 

Detection 

Source Mendeley Data 

Type Binary/Supervised 

Number of Samples 11,430 

Number of Extracted 

Features 
87 

  

 

Fig. 2. The ratio of balancing of the labels of the binary 

dataset 
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Fig. 3. The ratio of missing values in the dataset 

 

2.2. Dataset Analysis  

In this study, a comprehensive analysis was conducted to 

understand the behavior of the dataset to achieve better 

accuracy results. The analysis categorized the 87 extracted 

features into three groups: (1) 56 features derived from the 

syntax of the Uniform Resource Locators (URL), (2) 24 

features derived from the content of the websites, and (3) 7 

features derived from the services associated with the 

websites. Upon examining some of the dataset's features, it 

was observed that most websites had a URL length between 

1 and 200 characters, as depicted in Fig. 4. Furthermore, the 

length of hostnames varied across the URLs in the dataset, 

with 10,000 of the URLs having a hostname length between 

1 and 25, as shown in Fig. 5. The dataset analysis revealed 

several key findings about the features. One of the 

significant findings is that out of the 11,430 URLs in the 

dataset, 53.4% of them (6103 URLs) had a Google Index 

ranking, while the remaining 46.6% (5327 URLs) did not as 

illustrated in Fig. 6. This is a crucial factor in assessing the 

credibility of the website. Another observation is that 84.9% 

of the URLs (9709 URLs) had IP addresses associated with 

their websites, while 15.1% of them (1721 URLs) did not. 

However, the absence of an IP address could not necessarily 

determine the legitimacy of a website, these findings are 

depicted in Fig. 7. 

 

 

Fig. 4. The length of the URLs in the dataset 

 

Fig. 5. The length of hostnames of the URLs in the dataset 

 

Fig. 6. The ratio of URLs with Google Index in the dataset 

 

Fig. 7. The ratio of URLs with IP addresses in the dataset 

2.3. Dataset Preprocessing 

Amazon SageMaker has the ability to handle large datasets 

efficiently, but a preprocessing stage is essential to obtain a 

fast and interpretable model. The preprocessing stage 

consists of five steps: feature selection, label encoding, 

standardization, feature scaling, and dataset splitting. These 

steps are crucial in simplifying the data, accelerating the 

training and evaluation processes, and avoiding overfitting. 

The procedures of the preprocessing step are presented in 

Fig. 8. It was downloaded into the SageMaker Studio 

Notebook to preprocess the dataset and read into a Python 

script file. The feature selection step used Pearson 

Correlation to remove highly correlated features. The label 

encoding function was applied to convert categorical values 

of the target feature to numeric values. The standardization 

step employed the StandardScaler() to prevent the 

dominance of large values over small values. Finally, the 

MinMaxScaler() was used in the scaling step to ensure that 

all features were on a similar scale between 0 and 1. Once 

the preprocessing stage was completed, the dataset was 

ready for splitting. 

 

Fig. 8. Steps of the preprocessing stage 
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2.3.1. Feature Selection 

     The feature selection process is crucial in machine 

learning, as it involves identifying the most relevant features 

from the dataset to improve the model's accuracy. By 

removing irrelevant and redundant features, feature 

selection can reduce the dimensionality of the dataset, 

enhance model performance, and avoid overfitting. This 

study used Pearson Correlation to perform feature selection 

and extract important features. The Pearson correlation 

coefficient is a standard test used to assess the statistical 

relationship between two variables. The correlation matrix, 

a square matrix that displays the correlation coefficient 

between each pair of variables in the dataset, was used to 

visualize the interdependence and direction of the 

relationship between variables. The correlation matrix for 

this study revealed that 9 of the features correlated higher 

than 70%, indicating a high correlation among these 

features. This matrix could be visualized using a heatmap, 

where darker colors indicate a stronger correlation between 

variables. 

2.3.2. Label Encoding 

Label encoding is a process that transforms categorical data 

into numerical data, allowing algorithms to better process 

and analyze the data. The label encoding process assigns a 

unique numerical value to each unique category within a 

feature. For example, in a binary classification problem, the 

label encoding process would assign a numerical value to 

each label. In this study, the scikit-learn library 

LabelEncoder() was used to convert the categorical values 

of the target feature. This function assigned the numerical 

label of 0 to the categorical label “legitimate” and the 

numerical label of 1 to the categorical label “phishing.” 

2.3.3. Standardization 

Standardization is a common preprocessing step in machine 

learning that rescales the features of a dataset to have a mean 

of zero and a standard deviation of one. This is done to 

prevent any feature from dominating the others. 

Standardization is particularly useful for algorithms that are 

sensitive to feature scales, such as support vector machines 

and k-nearest neighbors. In this study, the StandardScaler() 

function was used to standardize 12 features of the dataset 

that had very large values to ensure that all the features were 

on a similar scale. 

2.3.4. Feature Scaling 

Feature scaling is a data preprocessing technique used to 

normalize the range of independent variables or features in 

a dataset. It is often used in machine learning algorithms to 

ensure that the features are on a similar scale and have the 

same range. Normalization scales the data to fit within a 

specific range, usually between zero and one. In this study, 

the MinMaxScaler() function was used to scale the data 

between the range of zero and one, where the minimum 

value of the feature was mapped to zero, and its maximum 

value was mapped to one.   

2.3.5. Dataset Splitting 

Dataset splitting involves dividing a dataset into two parts: 

a training set and a test set. The training set is used to train 

the model, while the test set is used to evaluate its 

performance. The goal of dataset splitting is to ensure that 

the model can generalize well to new, unseen data. If the 

model is only trained on a single dataset, it may overfit to 

that particular dataset and not perform well on new data. By 

testing the model on a separate test set, we can get a more 

accurate estimate of its performance on new data. This study 

used the train_test_split() function from the scikit-learn 

library to split the dataset into training and test sets. The 

function split the dataset into two sets of 70:30 ratio, where 

70% of the dataset (8001 samples) was used for training and 

the remaining 30% (3425 samples) was used for testing the 

model. 

2.4. Building the Model 

Amazon SageMaker is a fully-managed service that 

provides tools and libraries for building, training, and 

deploying Cloud Machine-Learning algorithms. SageMaker 

contains pre-built Docker containers that can be used to run 

many built-in algorithms and train the model at a high scale. 

In this study, three SageMaker built-in algorithms were used 

to train the model: Extreme Gradient Boosting (XGBoost), 

Linear Learner, and k-Nearest Neighbor (k-NN). 

2.4.1. Extreme Gradient Boosting (XGBoost) 

Extreme Gradient Boosting (XGBoost) is a Machine 

Learning algorithm designed for classification and 

regression, which is highly scalable and offers fast, accurate 

models for solving complex problems. XGBoost employs a 

Tree Structure model and Parallel Threading Computing to 

achieve high-speed performance, scalability, and 

portability, particularly for big data. The algorithm uses a 

sequential training approach, where each new decision tree 

is trained to correct the errors of the previous tree, enabling 

XGBoost to learn from its mistakes and improve over time. 

XGBoost includes a regularization term in the objective 

function to prevent overfitting and improve generalization 

performance, and by that, penalizes complex models and 

encourages simpler models that are less likely to overfit the 

training data. During training, XGBoost calculates the 

gradient of the objective function concerning the model 

parameters using backpropagation and uses it to update the 

model parameters and enhance its performance. In binary 

classification, given a training set with N observations, 

{(𝑥1, 𝑦1), (𝑥2, 𝑦2), … , (𝑥𝑁 , 𝑦𝑁)} , where 𝑥𝑖 is the input vector 

and 𝑦𝑖  is the binary output, we want to learn a model F(x) 

that predicts the probability of the positive class given a new 

input vector x as shown in eq. (1). 
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𝐹(𝑥) = 𝑃(𝑦 = 1|𝑥)                                                                   (1) 

To learn the model F(x), we need to minimize the following 

objective function in eq. (2): 

𝑜𝑏𝑗 =  𝐹𝑜𝑏𝑗 +  Ω(F) (2) 

Where 𝐹𝑜𝑏𝑗 is the training objective function that measures 

the difference between the predicted probabilities and the 

true labels, and Ω(F) is the regularization term that penalizes 

the complex models as in eq. (3). 

𝐹𝑜𝑏𝑗 =  ∑ 𝐿(𝑦𝑖 , 𝐹(𝑥𝑖)) + ∑ 1Ω(𝑓𝑗)

𝐾

𝑗=1

𝑁

𝑖=1

 
       

(3) 

Where L is the loss function that measures the difference 

between the predicted probabilities and the true labels, and 

𝑓𝑗 is the j-th weak prediction model. The objective function 

𝐹𝑜𝑏𝑗 can be optimized using gradient boosting. The gradient 

boosting algorithm iteratively adds new weak prediction 

models to the ensemble, where each new model is trained to 

predict the residual errors of the previous models. The final 

prediction is the sum of the predictions of all the weak 

models as in eq. (4): 

𝐹(𝑥) =  ∑ 𝑓𝑗(𝑥)

𝐾

𝑗=1

     (4) 

Where 𝑓𝑗 is the j-th weak prediction model. Each weak 

model is trained by minimizing the following objective 

function as eq. (5): 

𝑜𝑏𝑗𝑗 =  ∑ 𝐿 (𝑦𝑖 , 𝑓𝑗−1(𝑥𝑖)) +  Ω(𝑓𝑗) 

𝑁

𝑖=1

        (5) 

Where 𝑓𝑗−1 is the ensemble of the previous (j-1) models, and 

𝑓𝑗 is the j-th weak model to be added to the ensemble. The 

objective function 𝑜𝑏𝑗𝑗 can be optimized using gradient 

boosting by fitting the negative gradient of 𝑜𝑏𝑗𝑗 as the new 

target as in eq. (6): 

       − (𝜕𝑜𝑏𝑗𝑗𝜕𝑓𝑗(𝑥𝑖)) =  𝑦𝑖 −  𝑓𝑗 − 1(𝑥𝑖)  (6) 

The negative gradient represents the residual errors that are 

not captured by the previous models. The new weak model 

𝑓𝑗 is then fitted to predict the negative gradient. This process 

is repeated until the training objective function 𝐹𝑜𝑏𝑗 

converges. [18]–[22]. 

2.4.2. Linear Learner   

Linear Learner, a machine learning algorithm built into 

SageMaker, is suitable for both classification and regression 

tasks. This algorithm is particularly useful for large datasets 

and implements Stochastic Gradient Descent to update the 

model weights iteratively. Linear Learner also supports 

automatic feature scaling to ensure that features with 

different scales can be used without one feature dominating 

the others. An essential feature of Linear Learner is its 

inclusion of a regularization term in the objective function, 

which prevents overfitting and improves generalization 

performance by favoring simpler models. Due to these 

features, Linear Learner is commonly employed in fraud 

detection, banking, and health management models. 

Moreover, Linear Learner can tune hyperparameters 

automatically using AutoML, which further improves its 

efficiency.    The Linear Learner algorithm uses logistic 

regression to model the probability of a binary outcome. The 

logistic regression model can be written as in eq. (7): 

𝑃(𝑦 = 1|𝑥, 𝑤, 𝑏) =  σ(w𝑇𝑥 + b) 
         

(7) 

Where y is the binary outcome (1 or 0), x is the input vector, 

w is the weight vector, b is the bias term, and σ is the 

sigmoid function, which maps the input to the range [0,1]. 

The objective of the Linear Learner algorithm is to minimize 

the binary cross-entropy loss function, which is defined as 

in eq. (8): 

𝐿(𝑤, 𝑏) = −[𝑦 log𝑝(𝑦 = 1|𝑥, 𝑤, 𝑏)] + (1 −

𝑦) log1−𝑝(𝑦 = 1|𝑥, 𝑤, 𝑏)                                                            (8)                                  

The loss function measures the difference between the 

predicted probability and the true label for each training 

example. The algorithm minimizes this loss function using 

stochastic gradient descent (SGD) with mini-batch updates. 

To minimize the cost function, linear learner uses an 

optimization algorithm called stochastic gradient descent 

(SGD), which updates the weights and bias in the direction 

of the negative gradient of the cost function. The update rule 

for SGD can be written mathematically as in eq. (9) and eq. 

(10): 

𝑤𝑖 =  𝑤𝑖 − 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔𝑟𝑎𝑡𝑒 ∗  𝑑𝑗(𝑤, 𝑏)/𝑑𝑤𝑖
        

(9) 

𝑏 = 𝑏 − 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔𝑟𝑎𝑡𝑒 ∗  𝑑𝑗(𝑤, 𝑏)/𝑑𝑏 
     

(10) 

Where 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔𝑟𝑎𝑡𝑒 is a hyperparameter that controls the 

step size of the updates, and 𝑑𝑗(𝑤, 𝑏)/𝑑𝑤𝑖
 and 𝑑𝑗(𝑤, 𝑏)/𝑑𝑏 

are the partial derivatives of the cost function with respect 

to the weights and bias, respectively. The above equations 

are iteratively updated until the predefined maximum 

number of iterations is reached. To prevent overfitting, the 

algorithm employs L1 and L2 regularization techniques. L1 

regularization adds a penalty term to the loss function 

proportional to the absolute values of the weight vector, 

while L2 regularization adds a penalty term proportional to 

the square of the weight vector. The regularization 

parameter is controlled by a hyperparameter lambda, which 

determines the strength of regularization. [23].  
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2.4.3. k-Nearest Neighbor (k-NN) 

k-Nearest Neighbor (k-NN) is a widely used Machine-

Learning algorithm for classification problems and it 

follows the Lazy Learning method. It determines the class 

of data point by examining the majority of its neighbors, 

who share the same feature characteristics. Although the 

algorithm is known for its simplicity, it can be 

computationally expensive and suffer from the curse of 

dimensionality, particularly when working with large 

datasets. k-NN works by selecting the k-nearest data points 

to a query point based on a distance metric and then 

predicting the label of the query point based on the most 

common label among its k-nearest neighbors. The 

Euclidean distance is commonly used as a distance metric, 

but other metrics such as Manhattan distance and cosine 

similarity can be utilized. In this paper, the proposed 

technique is evaluated by utilizing the k-NN classifier to 

investigate classification performance. The appropriate k 

value selection is critical as it impacts classification 

performance, and it can be achieved by calculating the 

Euclidean distance function between the testing set q and all 

training sets p as in eq. (11):  

𝒅(𝒑, 𝒒) =  √∑(𝒑𝒊 − 𝒒𝒊)
𝟐

𝒏

𝒊=𝟏

      (11) 

Where n represents the number of features. The distance is 

then organized in ascending order to categorize the features 

based on k data and classify the new data.  

Classification is carried out by considering the k-nearest 

neighbors with the smallest distances, where k denotes the 

number of nearest neighbors involved in the majority voting 

process. The test sample's class label is determined based on 

the majority votes of its k-nearest neighbors, corresponding 

to the class with the highest number of members in k. This 

process is performed according to eq. (12): 

𝐶(𝑥𝑖) =  arg 𝑚𝑎𝑥𝑘 ∑ 𝐶(𝑥𝑗 , 𝑦𝑘)

𝑥𝑗∈𝐾𝑁𝑁

    (12) 

Where 𝑥𝑖 is a test object, 𝑥𝑗 is one of its k-nearest neighbors 

in the training set, 𝐶(𝑥𝑗 , 𝑦𝑘) indicates whether 𝑥𝑗 belongs to 

class 𝑦𝑘 . [24]–[27]. 

3. Results and Discussion 

This method used batch transform after training to obtain 

the evaluation results for each algorithm, then created a 

multi-model Endpoint for online deployment. The times 

required for training, batch transform, and endpoint 

prediction were calculated to indicate the fastest method to 

obtain accurate prediction results. 

 

3.1. Evaluation results 

The evaluation of the model was conducted in two steps: 

Batch Transform and Endpoint prediction. Batch transform 

prediction is a technique for making predictions on large 

datasets by processing data in batches and storing the 

prediction artifacts in Amazon Simple Storage Service (S3) 

bucket. Endpoint prediction, on the other hand, is a 

technique for making predictions by deploying a model as a 

web service endpoint that can receive Hypertext Transfer 

Protocol (HTTP) requests and respond with predictions in 

real-time. The test dataset was applied to obtain the 

evaluation metrics and measure the prediction time for both 

techniques. 

3.1.1. Batch Transform Results 

Batch Transform is a SageMaker feature designed to 

streamline and scale the process of making predictions from 

a trained model on large datasets, without latency or online 

deployment concerns. This is achieved by dividing the 

workload into records or mini-batches of a specific size, 

upon which the predictions are performed. Fig. 9 illustrates 

the steps involved in the Batch Transform process. Once the 

training results are obtained from Amazon Simple Storage 

Service (S3), the test dataset is used to initiate Batch 

Transform on the three algorithms of the model. Batch 

Transform provides valuable insights into the progress and 

performance of the transform job and is ideal for obtaining 

prediction results for one-time processing and storing them 

in Amazon Simple Storage Service (S3). However, the setup 

process for batch transform prediction can be time-

consuming since it requires creating and configuring several 

resources and batch transform jobs. As a result, it is not 

suitable for real-time predictions. Table 2 displays the 

evaluation metrics of three machine learning algorithms 

after Batch Transform. Extreme Gradient Boosting 

(XGBoost) achieved the highest accuracy of 96.4% and the 

highest precision score of 97%. The algorithm also 

demonstrated high scores for F-1, and recall, in comparison 

to the other two algorithms while achieving the lowest 

mislabeling score of 0.03%. This excellent performance can 

be attributed to the combination of decision trees, boosting, 

and regularization, which enables XGBoost to effectively 

capture complex relationships between features and avoid 

overfitting, leading to accurate prediction and low 

mislabeling. Linear Learner achieved an accuracy of 94.4% 

with similarly high precision, F-1,  and recall, This suggests 

the algorithm's high performance and ability to handle large 

datasets effectively and make accurate predictions with a 

minimal mislabeling score of 0.05%. In contrast, k-Nearest 

Neighbor (k-NN) recorded the lowest accuracy among the 

three algorithms at 83.7% with a lower score for F-1 recall 

compared to the other two algorithms. However, the 

precision score of k-NN was high, indicating that the 

algorithm correctly predicted the positive samples. 
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Nevertheless, k-NN had the highest mislabeling score of 

0.16% due to its difficulties in handling high-dimensional 

data.  

 

Fig. 9. Steps of training and evaluating the proposed 

method using Batch Transform 

 

Table 2. evaluation metrics of the three algorithms after 

batch transform and endpoint prediction 

Metrics Accuracy Precision F-1 Recall Mislabeling 

XGBoost 0.96413 0.97086 0.96440 0.95802 0.03587 

Linear 

Learner 
0.94430 0.95263 0.94462 0.93675 0.05570 

k-NN 0.83727 0.91150 0.82420 0.75216 0.16272 

 

3.1.2. Endpoint Prediction Results 

Endpoint is a part of the SageMaker Inference deployment 

procedure. Endpoint provides real-time predictions from a 

deployed model by allowing the developer to integrate the 

trained model into a workflow to make predictions on new 

data in real-time. The endpoint can be set up relatively 

quickly. It can host the resources of Cloud Machine 

Learning methods in Amazon SageMaker online for an 

infinite time until it is manually taken down. Endpoint can 

also offer scalable solutions to deploy more than one model 

and generate predictions from each model efficiently in real-

time. This is done by enabling the time-sharing of memory 

and resources among the models and storing the artifacts in 

both Amazon Simple Storage Service (S3) bucket and the 

endpoint configuration, as shown in Fig. 10 which illustrates 

the steps of the batch transform process. In this study, the 

three algorithms were deployed using a multi-model 

Endpoint consisting of three created models, one for each 

algorithm. After Endpoint deployment, a prediction 

function was implemented to invoke the Endpoint by 

sending the test dataset to it and producing the prediction 

results. The evaluation results obtained from this prediction 

were the same as those obtained from the Batch Transform. 

However, the prediction time significantly decreased after 

the deployment as the prediction function was able to 

process the entire test dataset without the need to divide it 

into multiple records like Batch Transform and the Endpoint 

made it possible to have the results in real-time.  

 

Fig. 10. Steps of creating and invoking the endpoint  

3.2. Time Assessment Results 

     The training and Batch Transform times for the three 

algorithms used in the proposed method were calculated 

from Amazon CloudWatch logs. Based on the Amazon 

Elastic Compute Cloud (EC2) instance used for this method, 

Extreme Gradient Boosting (XGBoost) had the shortest 

training and Batch Transform times of 4.47 minutes and 

5.38 minutes, respectively, due to its capability of handling 

big data and Multithreading Parallel Computing. Linear 

Learner had a decent training of 5.01 minutes and a Batch 

Transform time of 6.08 minutes, this is because it is 

optimized for use in distributed computing environments, 

allowing it to process large datasets quickly. K-Nearest 

Neighbor (k-NN) had the longest training time of 5.16 

minutes and a Batch Transform time of 7.44 minutes, this is 

because k-NN works better with low dimensionality rather 

than a large number of features like in the dataset used in 

this study. Fig. 11 displays the prediction times of each 

algorithm, calculated from CloudWatch logs, and compares 

them to the training and Batch Transform times discussed 

previously. XGBoost had the shortest prediction time of 

only 0.0005 minutes, followed by Linear Learner, which 

had a prediction time of 0.0006 minutes, while k-NN had 

the longest prediction time of 0.0008 minutes. The reason 

behind the high speed of Endpoint prediction is that the 

deployed model was already loaded into memory, and the 

resources were available to perform predictions in real-time. 

When the endpoint received the prediction request, it used 

the loaded model to make the prediction, and the results 

were returned within milliseconds. 

4. Conclusion 

The study proposed a Cloud Machine Learning approach for 

identifying phishing websites using Amazon Web Service 

(AWS). The study utilized three AWS SageMaker-built-in 
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algorithms, namely, Extreme Gradient Boosting 

(XGBoost), Linear Learner, and k-Nearest Neighbor (k-

NN), to detect phishing attacks using a dataset of 11,430 

samples. The dataset was preprocessed, split into (70%) 

train and (30%) test datasets, and saved to an Amazon 

Simple Storage Service (S3) bucket. The preprocessing, 

training, and deployment resources were obtained from the 

Amazon Elastic Compute Cloud (EC2) instance 

(ml.m4.xlarge). Following training, the method was 

evaluated using SageMaker Batch Transform. The training 

and prediction times were calculated using Amazon 

CloudWatch. The XGBoost algorithm achieved the highest 

accuracy of 96.4%, with a training time of 4.47 minutes and 

a Batch Transform time of 5.38 minutes, followed by Linear 

Learner with an accuracy of 94.4%, a training time of 5.01 

minutes and a Batch Transform time of 6.08 minutes. While 

k-NN achieved an accuracy of 83.7%, with a training time 

of 5.16 seconds and a Batch Transform time of 7.44 

minutes. The method was deployed using a single 

SageMaker Inference multi-model Endpoint. After invoking 

the Endpoint with the prediction function, Amazon 

CloudWatch logs indicated that XGBoost outperformed the 

other algorithms, with the fastest prediction time at only 

0.0005 minutes, followed by Linear Learner with 0.0006 

minutes, and k-Nearest Neighbor with 0.0008 minutes. This 

approach can enable real-time prediction capabilities for 

applications that require near-instant response times, such 

as phishing detection systems. AWS provides efficient 

resources to handle large amounts of data in real-time, it is 

important to note the cost limitation of using such resources. 

Therefore, it is recommended to manually shut down all the 

resources after completing the project to avoid incurring 

additional costs. In the future, the accuracy and speed of the 

method can be improved by using a larger dataset and a 

different Amazon Elastic Compute Cloud (EC2) instance 

with more virtual resources.  

 

Fig. 11. Training, batch transform, and prediction times of 

the method 
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