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Abstract: The study on the impacts of climate variability on agricultural phenologydelves into the exploration of climate variability's 

influence on agricultural phenology through the synergistic utilization of geoinformatics, satellite agrometeorology, and AI techniques. 

Geoinformatics serves the purpose of identifying vulnerable locations, while satellite agrometeorology furnishes indispensable weather 

data crucial for crop production. By employing AI techniques to analyze extensive datasets, valuable patterns in crop phenology can be 

discerned, leading to significant insights into crop reactions to climate change. The integration of these methodologies enables 

researchers to develop a comprehensive comprehension of how climate variability impacts crop phenology, thereby facilitating the 

formulation of adaptation plans by policymakers and farmers. Ultimately, this research contributes to the promotion of sustainable 

farming practices and the enhancement of food security amidst the challenges posed by climate change. 
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1. Introduction 

Climate factors, including temperature, precipitation, and 

solar radiation, play a critical role in crop development and 

yield. With climate change, there has been an increase in 

temperature, altered precipitation patterns, and a rise in 

extreme weather events. Such changes are known to 

accelerate crop phenological development, shorten the 

growing period, and adversely impact crop productivity 

[1]. Drought caused by decreased precipitation poses a 

significant threat to crop development. Hence, 

understanding how crops respond to climate change is 

crucial for devising scientific methods to mitigate and 

adapt to climate change impacts. 

Agricultural production is heavily dependent on the 

climatic conditions in which crops are grown. Climate 

variability, such as changes in temperature, precipitation, 

and extreme weather events, can have a significant impact 

on crop phenology, or the timing of planting, flowering, 

and harvesting. These changes in crop phenology can have 

severe consequences on food security and livelihoods, 

particularly in vulnerable communities. In underdeveloped 

countries, where agriculture is a primary source of revenue 

and subsistence, the consequences of climate 

unpredictability can be particularly detrimental. For 

instance, in Sub-Saharan Africa, where the majority of the 

population depends on agriculture for food and income, 

any adverse effects of climatic variability on crops can 

have a significant impact on the region's economy and 

people's quality of life. Develop efficient adaptation 

strategies to lessen the impact of climate variability on crop 

phenology to maintain food security and sustainable 

agricultural practices [2]. In this regard, geoinformatics, 

satellite agrometeorology, and artificial intelligence (AI) 

approaches can offer insightful details on how climatic 

variability affects crop phenology, enabling farmers and 

decision-makers to create effective adaptation strategies. 
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Knowing how these changes will affect agricultural 

phenology and creating adaptation strategies are essential 

for reducing the dangers that climate variability poses. 

Artificial intelligence (AI), geoinformatics, and satellite 

agrometeorology are effective methods for illuminating 

how climatic variability influences agricultural phenology. 

Geoinformatics can offer a spatial understanding of the 

problem by identifying regions where crops are most 

susceptible to climatic change. Crop adaptation to changing 

climatic conditions can be studied using weather data from 

satellite agrometeorology. Researchers can more accurately 

forecast how crops will respond to climate change by 

utilising AI techniques to discover patterns and trends in 

agricultural phenology in large datasets. By combining 

these approaches, researchers will be able to create 

effective adaptation plans by thoroughly comprehending 

how climatic variability impacts crop phenology. To help 

farmers and decision-makers in developing countries make 

decisions about crop management practices and 

investments in agricultural infrastructure to boost their 

ability to withstand the effects of climate change, these 

technologies can provide them with relevant information 

[3]. 

Geographic information systems (GIS) are used in 

geoinformatics to analyse spatial data, such as crop 

distribution and land use patterns [4]. Researchers can 

identify sensitive locations where climate variability is 

anticipated to have the greatest impact on crop phenology 

by using GIS technologies to build maps that depict the 

distribution of crops and land use patterns. Researchers can 

focus their study on these areas and offer better solutions to 

the problems caused by climate variability by doing so. For 

instance, they might pinpoint regions where farmers might 

require enhanced soil fertility management techniques, 

greater access to irrigation systems, or better crop types 

that can survive shifting climatic conditions. To help 

policymakers comprehend the financial effects of these 

losses and create effective policies for dealing with them, 

geoinformatics can also give useful data on the scope and 

distribution of crop losses caused by climatic variability. 

Geoinformatics can be a potent tool for understanding the 

intricate relationships between climate variability and crop 

phenology and for creating effective adaptation strategies 

to ensure food security and sustainable agricultural 

practices. Geoinformatics can be used in conjunction with 

satellite agrometeorology and AI techniques. 

In satellite agrometeorology, crop growth and development 

are tracked using satellite data. Information on temperature, 

precipitation, and other environmental factors are included 

in this data, which is essential for comprehending crop 

growth and development. Researchers can learn more 

about how crop phenology is impacted by climate 

variability by keeping an eye on these variables. For 

instance, temperature variations can impact when crops 

flower and mature, while variations in precipitation can 

impact soil moisture and crop yields. Researchers can spot 

patterns and trends in crop growth and development using 

satellite data, which can offer a complete perspective of 

various weather factors over wide areas. Satellite 

agrometeorology can be a potent tool for evaluating the 

impact of climate variability on crop phenology when 

combined with geoinformatics and AI approaches, 

allowing researchers to make more precise predictions 

about how crops will react to changing climatic 

circumstances. The adoption of enhanced irrigation 

techniques, the introduction of drought-tolerant crops, or 

the creation of new management techniques can all be done 

with the use of this knowledge to assist farmers adapt to 

the consequences of climate change. 

To find patterns and trends in large datasets of crop 

phenology data, artificial intelligence approaches like 

machine learning algorithms can be used. These methods 

can help in the creation of adaptation strategies by 

forecasting how crops will respond to climatic changes. To 

train machine learning algorithms to detect connections 

between meteorological variables like temperature and 

precipitation, for example, agricultural phenology data, 

such as the date of planting and harvesting, can be 

employed. By studying these associations, researchers can 

develop more successful adaptation strategies by making 

more accurate predictions of how crops would respond to 

changing climatic conditions. 

Machine learning algorithms can also be used to assess 

data from multiple sources, like satellite data and ground-

based observations, to give a more complete picture of crop 

growth and development. Using this methodology, 

researchers can identify the underlying factors that 

influence crop phenology, such as soil moisture, nutrient 

availability, and insect pressure, and develop more 

effective management strategies to deal with them. 

Researchers can get a thorough understanding of how 

climate variability is affecting crop phenology by 

combining geoinformatics, satellite agrometeorology, and 

AI approaches. This understanding can help guide farmers' 

and policymakers' adaptation efforts. In the face of climate 

change, this knowledge can support sustainable farming 

practices and assist ensure food security. 

In light of this, the goal of this article is to investigate the 

possibilities of integrating geoinformatics, satellite 

agrometeorology, and artificial intelligence (AI) tools for 

determining how climate variability affects crop 

phenology. The paper will go through the benefits and 

drawbacks of these methods as well as how they could 

advance our knowledge of how climatic variability 

influences crop phenology. The ultimate objective of this 

research is to offer policymakers and farmers insights on 

how to create effective adaptation strategies, increasing 
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food security and environmentally friendly agricultural 

methods in the face of climate change. 

 

2. Related Work 

Numerous studies have demonstrated that crop phenology 

is significantly impacted by climate change at various 

scales. Crop development and yield are significantly 

influenced by climate variables such as temperature, 

precipitation, and sun radiation [5]. Crop productivity is at 

risk due to rising global temperatures and changed 

precipitation patterns. Numerous studies have shown how 

climate change affects both annual and perennial crops [6]. 

For instance, rising air temperatures have been linked to 

earlier apple tree blossoming and budding in Japan as well 

as earlier phenological phases of natural vegetation in 

Germany. It has been discovered that perennial plants 

respond more strongly to rising temperatures than annual 

plants [1]. While most winter cereal phenophases in the 

Iberian Peninsula were advanced due to rising 

temperatures, wheat heading and flowering dates were 

earlier in the US Great Plains. Due to a shorter growing 

season, dates for winter wheat's green-up, anthesis, and 

maturity were sooner in China. A common indication for 

determining how climate and environmental factors affect 

crop development and yield is crop phenology. To offer a 

scientific basis for adaptation to and mitigation of the 

effects of climate change, it is crucial to have a better 

understanding of how crops respond to climate change [7]. 

According to Zhang et al. [8], investigating the connection 

between local climate and land use and land cover (LULC) 

is necessary to increase agricultural production. Changes in 

LULC are a significant contributor to local climate change, 

and vice versa, changes in LULC and vegetation cover can 

be caused by climate change [9]. For instance, farmers may 

change the crops they grow in response to shifting 

economic conditions and local meteorological conditions. 

Increased land surface temperatures (LST) can have an 

impact on the amount of plants and water required for 

irrigation [10]. Even though our comprehension of the 

interaction between LULC and the local climate is 

growing, further scientific investigation is required to fully 

comprehend this intricate interplay. 

Changing temperatures and precipitation amounts are the 

main contributors to climate change, which has resulted in 

considerable changes in Land Use and Land Cover (LULC) 

throughout the world [11]. Understanding the effects of 

different growth pathways and developing scientific 

solutions to protect natural resources and maintain 

ecosystem services depend on these shifts [12][13]. 

Globally, the importance of sustainable ecosystem services 

is rising, and there is serious worry over the direct link 

between LULC and the fundamental characteristics and 

processes of the Earth, including the water cycle, the 

ecological environment, and land degradation and 

productivity. LULC changes constitute a quick and 

symbolic process driven by anthropogenic activities, and 

they are a crucial tool for evaluating changes in the world 

at different temporal and spatial dimensions. Humans are 

frequently impacted by these changes, and anthropogenic 

activity has drastically altered the status of the Earth's 

surface [14]. 

The author of [15] used a GIS-based segmentation 

technique to address climate change-related challenges in 

coastal zones and identify vulnerable locations at the 

regional level. The study compared two sets of coastal 

vulnerability indicators, one for global studies and the 

other for regional studies. Both sets of indicators took into 

account the same characteristics of coastal systems, 

including topography and slope, geomorphological traits, 

the presence and distribution of wetlands and vegetation 

cover, the number of coastal residents, and the density of 

the coastal population. The study demonstrated how GIS 

may be used to understand, analyse, and manage 

complicated environments. 

In a study by Faour et al. (2013) [16], the coastal 

vulnerability index (CVI) and the inundated area under 

various sea level rise (SLR) scenarios were assessed using 

a combination of satellite images and topographic maps 

with the ArcGIS tool. The inundated area was determined 

based on slope, SLR, and geomorphology. The study 

discovered that variations in SLR, geomorphology, land 

use/cover, and population affect how vulnerable the coastal 

area is to accelerate SLR in different segments. Another 

study by [17] evaluated multi-coastal vulnerability along 

the Indian coast between Cuddalore and Villapuram using 

GIS and RS technologies, taking into account factors 

including the highest likelihood of storm surges, coastal 

erosion, and projected sea level rise. The study suggested 

employing multi-risk vulnerability maps as a planning tool 

for insurance and the development of new facilities. 

The Coastal Andhra Pradesh (CAP) region of India was the 

subject of a comprehensive analysis of cost risk assessment 

studies in 2019 by Kantamaneni et al. [18], which 

concentrated on data sources, risk rates, and mitigation 

tactics. According to their research, the employment of 

airborne and LiDAR sensors as well as unmanned aerial 

vehicles (UAVs) can visit regions that are physically 

inaccessible and offer more precise data at a lower cost, 

hence reducing the effects of coastal disasters on the local 

economy, environment, and population. 

The interaction of resources has been impacted by changes 

in Land Use and Land Cover (LULC), which have raised 

issues with the government and resulted in socioeconomic 

disasters that have reduced ecological infrastructure and 

raised the risk of global warming [19]. The Normalised 

Difference Vegetation Index (NDVI), which explains 
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agricultural chronology and its relationship to weather and 

climate, can aid in understanding crop phenology. The 

NDVI is a metric for assessing the health of vegetation that 

is calculated using spectral bands in satellite pictures. 

Healthy vegetation or crops are indicated by the link 

between NDVI and green biomass. High-resolution 

satellites like the Landsat series, Sentinel series, and 

various onboard sensors may estimate NDVI at regional 

and global scales [20]. NDVI is frequently utilised in 

environmental and vegetation studies. The link between 

Land Surface Temperature (LST) and NDVI has been 

extensively studied. The climate harms the dynamics of the 

vegetation. By fusing location data with both quantitative 

and qualitative information about the area, remote sensing 

and GIS offer a mechanism to visualise, analyse, and report 

information through maps and charts. Using this 

technology, we can conduct what-if analyses and visualise 

the results. 

The management of infrastructure assets, natural resources, 

and other items has been proven to be successful when 

remote sensing and GIS are used [21]. Using different 

datasets and methods, remote sensing has been used to map 

and categorise LULC variations. Thematic Mapper (TM), 

Enhanced TM Plus (ETM+), and Operational Land Imager 

(OLI) sensors have been employed with Landsat imagery 

to examine the LULC changes and NDVI at a greater scale. 

Since it effectively uses satellite data to reveal changes in 

vegetation cover and LST, remote sensing has become 

crucial for observing vegetation changes. Similar tools, 

such as alterations and conversions of natural vegetation, 

are provided by Landsat sensors for calculating vegetation 

deterioration. Additionally, GIS enables the management 

and analysis of facility and asset data, improving the 

effectiveness and profitability of design, construction, and 

maintenance [22]. 

For millions of people in Pakistan, climate change poses a 

serious threat to agriculture, rural livelihoods, and food 

security [23]. Unfortunately, the deterioration of Punjab's 

ecosystems brought on by climate change is a serious 

problem that has a detrimental effect on the country's 

economy [24]. The Sahiwal District's local economy 

depends heavily on the agricultural industry. However, 

Punjab's urbanisation, including in Sahiwal District, has led 

to a decline in major crops in recent years. Increased 

migration to the Sahiwal District is a result of intensive 

agricultural activities luring industries. Now as 

urbanisation is growing to meet demands for human 

livelihoods, the expanding population is having a 

significant impact on agriculture [25]. 

3. Methodology 

To develop a Climate Model, the following methods are 

employed, as illustrated in Figure 1. 

 

Fig. 1. Steps for Developing a climate model 

2.1. Parameters and data sources are identified 

The extracted satellite images are examined to determine 

the classification of the land cover and to create vector 

layers for the shoreline and water layers. There are three 

processes in the analysis of each image. 

2.1.1. Parameters and Data Acquired via Remote Sensing 

Techniques: Different types of satellite imagery and ENVI 

5.1 tool processing is used in the creation of earth images. 

The 30-year study period, which is divided into equal 

segments of five years each, runs from 1988 to 2018. This 

method enables the tracking and forecasting of long-term 

climate changes. Consequently, this paper makes use of a 

variety of satellite The Advanced Spaceborne Thermal and 

Reflection Radiometer (ASTER) data, which has a spatial 

resolution of 30 m, is used to generate the Digital Elevation 

Model (DEM). 

2.1.2 Meteorological data and parameters: Seven satellite 

pictures from EarthExplorer - USGS, spanning the years 

1988 to 2018, were extracted for the research region to 

create coastline maps. Using the ENVI 5.1 software, many 

steps are taken during the preprocessing of the satellite 

remote sensing (RS) data, including atmospheric 

correction, radiometric calibration, and dark removal. To 

use surface reflectance for certain applications, such as 

classifying land cover, atmospheric effects must be 

eliminated. Incoming radiance variations from sensors and 

optics, as well as additive noise, are both targets of 

radiometric correction. The dark subtraction technique 

subtracts a backdrop signature pixel value from each band 

to remove atmospheric scattering effects from the image.  

2.1.3. Data and parameters related to engineering 

geology:  Using ArcGIS 10.4.1, the geologic map is used 

to derive the compositions of earth components. 
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2.2. Problem with sub-model conversion 

The study parameters and their local criteria are broken 

down into sub-models to improve organisation, clarity, and 

the main objective's effectiveness. Ten multi-criteria 

evaluation sub-models based on four parameter sets—

meteorological parameters, topographical structure 

parameters (Earth Shape), engineering geology parameters, 

and shoreline characteristics—make up the proposed 

Climate-Coastal Model. Table 1 lists the sub-models and 

parameter sets in detail. 

TABLE I.  CLIMATE CHANGE INDICATORS. 

Parameters Sub-models Source of 

data 

Units 

Meteorological 

Data 

Surface 

Temperature 

Precipitation 

Sea Level 

Pressure 

(SLP) 

Dew Point 

Wind Speed 

Wind 

Direction 

National 

Climatic Data 

Center 

(NCDC) at 

National 

Center of 

Environmental 

Information 

(NOAA) 

eNOAA’s 

NCDC 

NASA’s open 

data portal 

Celsius 

(C) 

Mm 

mm of 

mercury 

(mmHg) 

Celsius 

(C) 

m/sec 

from 0_ to 

360_ 

Topographical 

Structure 

(Earth Shape) 

Coastal 

Slope 

Coastal 

Regional 

Elevation 

Digital 

Elevation 

Model (DEM) 

Degrees 

for the 

inclination 

of a slope 

m 

Engineering 

Geology 

Composition 

of Earth 

Materials 

Geologic Map Type 

Shoreline Erosion 

Accretion 

Land Cover 

Classification 

(Satellite 

Imagery) 

Km2 

Km2 

2.3. Reclassify datasets 

To create a comprehensive model, the values obtained from 

each sub-model must be standardized by grouping them 

into a common number of intervals. The variety and 

variability of the parameters employed make this 

necessary. Each dataset is then divided into five intervals 

and given a value between 1 and 5. The most important 

qualities are given higher values, and the least dangerous 

ones are given lower values. 

2.4. Overlaying weights 

Each sub-models impact on the overall evaluation is 

quantified by a percentage based on its relative importance. 

The weights assigned to each sub-model must add up to 

100%. However, some sub-models might be more crucial 

than others, or all sub-models might carry the same amount 

of weight. Each dataset is classed into five intervals on a 

scale of 1 to 5, where higher values denote more severe 

impacts and lower values denote less important impacts, to 

standardise the weights. 

2.5. Model results 

The climate-coastal model is then put into action after 

being built using the four phases mentioned above. To 

determine the vulnerable zone areas in square kilometres, 

the output raster of the model is then transformed into a 

vector layer. 

4. Results 

Data for all indicators were entered after creating the 

climate-coastal model, and the model was run using 

datasets spanning 30 years. Five separate favorability 

classes, ranging from very low to very high, were created 

to categorise the influence of each indicator on the four 

evaluation parameters for the research area. The most 

impacted regions by climate change are represented by 

these classes. The next subsections provide a detailed 

analysis of the findings and a map of them. 

 

Fig. 2. Analysis of satellite images 

TABLE II.  VULNERABILITY DEGREE OF AL-ALAMEIN 

NEW CITY SECTORS. 

Sector Area 

(Km2) 

Vulnerability 

Degree 

Vulnerable 

Area (Km2) 
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Al-Alamein 

City 

148.406 Low 

Medium 

High 

0.00154 

0.63772 

0.19324 

Tel Al-Eis 64.3888 ……… 

Medium 

High 

……… 

0.03160 

0.016578 

Sidi Abd 

El-Rahman 

14.858 ……… 

Medium 

High 

… …. . 

0.32478 

0.511102 

 

5. Discussion 

Increasing agricultural production can improve the 

economy and lead to social welfare, contributing to the 

overall progress of the country. Similarly, sustainable land 

management involves implementing productive and 

sustainable restoration practices on transformed lands and 

protecting vegetation cover. This study's assessment of 

Land Use Land Cover (LULC) changes and their impact on 

climate change can assist managers and policymakers in 

basin management and development by providing 

spatiotemporal analysis. This research can help enhance 

local governments' capacity to develop sound plans for 

agriculture at the local level. LULC management can create 

secondary fragmented forests, increasing their coverage, 

which is crucial for biodiversity recovery and ecosystem 

services. 

6. Conclusion 

The climate model that has been proposed has the potential 

to support decision-makers in evaluating the susceptibility 

of coastal regions to the impacts of climate change and 

prioritize necessary adaptation measures based on a range 

of parameters and criteria. The combination of remote 

sensing (RS) and geographic information system (GIS) 

techniques enables effective mapping, visualization, and 

management of long-term climate change observations. By 

implementing this approach, it will be possible to establish 

a common perspective among government decision-makers 

and analysts, which can facilitate informed prioritization 

and selection of sustainable adaptation strategies. 
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