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Abstract: The major purpose of sarcasm detection has been to comprehend the text's evaluation. Sarcasm detection is regarded 

as one of the most provocations in it, and it has been subject to significant provocation. Irony is a unique manner of expressing 

information that contradicts a notion and creates confusion. Data pre-processing is one of the main duties performed by most 

developers. Numerous studies on irony detection use a variety of feature extraction techniques. These studies used a variety 

of machine learning classification models that includes Naive Bayes, Logistic Regression, etc. Precision, recall, and F-score 

are among the research project results that can be utilized to forecast the most appropriate model. This study discusses 

numerous methods for detecting sarcasm and irony in text. Extra Tree Classifier and gradient boosting classifier gives the best 

result having F-Score 95.43 and 95.29 respectively with Wn = 4,Cn = 3 and  CWn =4 to detect sarcasm in Hinglish Language. 
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Introduction 

Since the invention of social media, most 

human interaction takes place online. As a 

result,  textual data produced in enormous 

amounts is utilized to make useful inferences. 

People from different cultures utilize social 

media platforms like Facebook, Twitter, 

Reddit, and others to communicate with one 

another and express their thoughts. The study of 

various language expressions including 

sarcasm, irony, hostility, humour, hate, etc. has 

become a keen area of research, thanks to the 

abundance of data available from social media. 

Automatic detection of these expressions is 

currently being extensively researched, 

particularly in the field of Natural Language 

Processing (Joshi et al., 2017). 

The current trend in sentimental analysis and 

transliteration is code-mixing. Difficult 

techniques are required to extract the correct 

sentiment from code-mixed data. Joshi et al., 

(2017) conducted research on code-mixed 

Hindi-English social text data. Code-mixed 

data requires more pre-processing steps than 

monolingual data. Using the Support Vector 

Machine (SVM) classifier, the author proposes 

numerous pre-processing techniques for mixed 

scripts and achieves 58.2% accuracy. 

Shalini et al. (2018) proposed a distributed 

representation for extracting sentiments from 

code-mixed text in multiple languages, 

including Kannada-English, Hindi-English, and 

Bengali-English. The author has employed 

numerous techniques to Sentimental Analysis 

on Indian Languages (SAIL), including SVM, 

Fast-Text, Bi-directional Long Short-Term 

Memory (Bi-LSTM), and Convolutional 

Neural Network (CNN). CNN is applied with 

various filter sizes and achieves an accuracy of 

71.5 percent for the Kannada-English dataset, 

whereas Bi-LSTM achieves an accuracy of 60.2 

percent for the Hindi-English dataset and 72.5 

percent for the Bengali-English dataset. 

Choudhary et al. (2018) proposed a novel 

approach that outperforms the highest existing 

result in Sentimental Analysis of Code-Mixed 
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Text (SACMT) by 7.6% in terms of accuracy 

and 10.1% in terms of F-Score. Mishra et al. 

(2018) proposed a variety of Machine Learning 

and Deep Learning techniques for processing 

sentimental analysis of Indian languages. The 

author achieved a 69% F1-Score for the 

Bengali-English dataset and a 58% F1-Score 

for the Hindi-English dataset.  

Research Gap: Being a challenging problem, 

automatic sarcasm detection has been a 

prominent research topic. Although a 

significant amount of research has been 

conducted on sarcasm detection in English, the 

detection of sarcasm in code-mixed languages 

such as Hinglish (Hindi-English) remains 

largely unexplored. Goal of this study is to 

categorize Hinglish(a blend of Hindi and 

English) into sarcastic categories.  

Material & Method 

1. Dataset Creation  

5250 tweets make up the current dataset 

presented in the research (Swami et al., 2018), 

of which 504 tweets have been classified as 

sarcastic while the rest 4746 have not been. 

Given that this dataset is both insufficient and 

extremely skewed, all deep learning models 

appeared to incorrectly anticipate that all tweets 

would not be sarcastic. Performance measures 

that are sensitive to imbalanced datasets were 

employed for this: Consider using 

measurements like precision, recall, or the F-

Score instead of accuracy, which can be 

deceptive in datasets with a class imbalance. 

  

  
Fig 1: Sarcasm Detection using Machine Learning 

Roughly 60% of the samples were down-

sampled from the majority classes at random 

since the degree of imbalance was moderate, 

bringing it into the mild category. After down-

sampling, the minority class contribution 

increased to about 20–21%. The frequency of 

terms in a document or group of documents is a 

prominent focus of natural language processing 

(NLP) research. It is extremely difficult to 

adhere to the occurrence rule of the words when 

speaking Hinglish, nevertheless. because the 

Hindi words in the dataset are translated into 

English. It becomes challenging to follow the 

grammatical norms of a language when it is 

written into another language. Because Hindi is 

being transcribed into English in this instance, 

it is impossible to follow the proper writing 

convention. 

A greater comprehension and formulation of 

the issues cannot be achieved by merely relying 

on word frequency. Therefore, this research 

suggests a better pre-processing strategy. 

 

2. Pre-Processing 

In natural language processing(NLP), the most 

crucial aspect of any machine learning model is 

data pre-processing(Swami et.al, 2018). Good 

results are contingent on the quality of the data 

pre-processing. In the proposed model, 

#sarcasm is removed from the tweet before data 
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is pre-processed. Specifically in the following 

steps:  

2.1 Tokenization  

In a nutshell, tokenization is the process of 

dividing text sequences into "tokens" or smaller 

units(Banerjee et. al, 2020). The tokenization of 

paragraphs into sentences and sentences into 

words. Python's Tokenizer() function is used to 

generate identifiers. Following tokenization, 

the procedure returns a list of tokens.  

2.2. Noise Removal 

Eliminate punctuation marks such as a comma, 

an exclamation point, a quotation mark, and a 

question mark. This meaningless term is never 

used in sentences. After noise removal, a 

catalogue of clean tokens is obtained that can be 

further processed. Additionally, all characters 

and words were converted to lowercase. The 

python translate() function was used to remove 

punctuation, while the lower() function was 

used to lower every character in the dataset.  

2.3 The elimination of stop words 

A stop word is a commonly used word (such as 

"the", "a", "an", "in", and "i"); these words are 

been disregarded as they have no bearing on the 

polarity of the tweet and are therefore of no use 

to us. For a Python script to remove stop words.   

2.4. Normalisation  

Normalisation concludes the pre-processing 

phase. This attempts to level the playing field 

for all text, for instance by converting all 

characters to lowercase. The process of 

normalisation improves text compatibility.  

• Why N-Gram? 

Chance of misspelling a word is very 

high(when written in Hinglish), therefore, 

capturing the characteristics of a sentence can 

only boost the accuracy(Mandal et. al, 2018). 

For this, a char n-grams followed by word n-

grams method is proposed to boost the 

accuracy. The proposed approach can capture 

the dynamics of the sentence.  

For instance, consider Hindi variants of the 

word profit "fayada", "fayda", "faayada", 

"faayda", "faayadaa", "faaydaa". 

At word level all are different words, so the 

algorithm will consider it differently. However, 

if the word is broken using char n-grams then 

the algorithm can find some similarity between 

the words. For instance, the char similarity 

matrix when char n-grams is taken as 2 is 

shown in Table I. While, when char n-grams is 

taken as 3 is Shown in Table II. Table III shows 

when word N grams employed on char n grams. 

Table 1: Char Similarity Matrix for char n Grams=2 

Words Tokens 

 Fa ay ya ad Da yd aa 

fayada 1 1 1 1 1 0 0 

fayda 1 1 0 0 1 1 0 

faayada 1 1 1 1 1 0 1 

faayda 1 1 0 0 0 0 1 

faayadaa 1 1 1 1 1 0 1 

faaydaa 1 1 0 0 1 1 1 

 

Table 2: Char Similarity Matrix for char n Grams=3 

Words Tokens 

 Fay Aya Yad ada ayd Yda Faa Aay daa 

fayada 1 1 1 1 0 0 0 0 0 

Fayda 1 0 0 0 1 1 0 0 0 

faayada 0 1 1 1 0 0 1 1 0 

faayda 0 0 0 0 0 0 1 1 0 

faayadaa 0 1 1 1 0 0 1 1 1 

faaydaa 0 0 0 0 1 1 1 1 1 
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Table 3: Word N Grams Employed on Char N Grams 

Words Tokens 

 faay ayya yaad adda dayd ydaa ayyd ydda faaa aaay daaa 

fayada 1 1 1 1 0 0 0 0 0 0 0 

fayda 1 0 0 0 0 0 1 1 0 0 0 

faayada 0 1 1 1 0 0 0 0 1 1 0 

faayda 0 0 0 0 0 0 1 1 1 1 0 

faayadaa 0 1 1 1 0 0 0 0 1 1 1 

faaydaa 0 0 0 0 0 0 1 1 1 1 1 

 

As the value of N in N-Char grams increases, 

the chances of identifying similar words 

increase. Similarly, the probability becomes 

stronger, moving towards W-grams at char 

levels and Wgrams at the word level. 

Emoticons belonging to any one of the 

following are preserved:  

':-)', ':)', '(:', '(-:',':-D', ':D', 'X-D', 'XD', 'xD',' 

 

3. TF-IDF (Term Frequency-Inverse 

Document Frequency)  

Words are transformed into vectors by TF-

IDF(Term Frequency -Inverse Document 

Frequency). The words that appear in the fewest 

sentences in the supplied document are found 

by IDF and TF, respectively. TF determines 

how frequently a word is present in the given 

document. The TF-IDF scoring system 

determines the frequency of each word used in 

a certain document(Patwa et. al, 2020). The 

limitation of TF-IDF is that semantic 

information cannot be provided. 

 

4. Sarcasm Detection Classifiers 

Classification models like Naïve Bayes, 

Decision Tree, Random forest, AdaBoost, 

Gradient Boost will be implemented for 

detecting sarcasm. Their performance will be 

evaluated on the basis of  Precision, Recall and 

F1-Score. 

Result 

Precision, Recall and F1-Score are calculated to 

evaluate performance of each classification 

model(Bhargava et. al, 2016).  

    Precision (P) =
TP

TP+FP
                                (1) 

Recall (R) =
TP

TP+FN
                                                                                                           

(2) 

Accuracy =
TP+TN

TP+TN+FP+FN
                                                                                                 

(3) 

FScore =
2∗(Precision ∗ Recall)

(Precision + Recall)
                                                                                            

(4) 

All the models are performed for the following 

cases:  

1. Word N Grams (Wn): 2,3,4  

2. Char N Grams (Cn):2,3,4  

3. Char Word N Grams (CWn): 2,3,4  

In this research, autoencoders have been 

utilised for dimensionality reduction.  

Autoencoders are a type of neural network 

architecture that is used for dimensionality 

reduction and feature learning(Pradhan & 

Sharma, 2022). It consists of an encoder and a 

decoder, which are trained to reconstruct the 

original input data from a lower-dimensional 

representation. Autoencoders can be trained in 

an unsupervised manner, using only the input 

data without any labels. This makes them useful 

for learning useful features from the data 

without the need for labelled examples.  

The proposed autoencoders consist of 11 layers 

where the first 5 are the compression layers, the 

6th is the central layer and the last 5 are the 

expansion layers. The reduced features are 

extracted from the central layer and then re-

train all the existing machine learning models. 

At each layer, features are reduced by a factor 

of 1.45 and rounded to the nearest integer if the 

outcome is in decimal. The reduction factor of 

1.45 is considered in such a way that it will 

reduce the features by around 10 times. . The 
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autoencoders model is trained by minimizing 

the root mean squared error between the final 

output after expansion and the initial input. The 

model is run for 6,000 epochs for the selected 

combination as shown in the figure below. 

 
Fig 2: Training Improvement of Autoencoder 

The following cases for dimensionality reduction because accuracy are almost the same for lower 

values: 

Table 4: Initial features for the selected combinations 

Combination Original Features Reduced Features 

Wn= 3; Cn=3 ; CWn=3 30673 3300 

Wn= 3; Cn=3 ; CWn=4 43425 4672 

Wn=3 ; Cn=4 ; CWn=3 42761 4600 

Wn=3 ; Cn=4 ; CWn=4 56613 6091 

Wn=4 ; Cn=3 ; CWn=3 30932 3328 

Wn=4 ; Cn=3 ; CWn=4 43684 4700 

Wn=4; Cn=4 ; CWn=3 43020 4628 

Wn=4 ; Cn=4 ; CWn=4 56872 6119 

 

After Feature Reduction for example: 

Table 5: Reduced Features Result (Wn=4,Cn=3,CWn=4) 

 Precision  Recall F Score 

Logistic Regression 97.33 87.5 92.15 

Naïve Bayes 23.74 59.74 33.97 

Random Forest 99.92 91.09 95.30 

Decision Tree 88.04 79.90 83.77 

Extra Tree Classifier 99.44 91.74 95.43 

Gradient Boosting Classifier 99.07 91.79 95.29 

Ada Classifier 88.57 90.85 89.69 
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Results on the reduced features are as follows: 

 
Fig 3: Performance Measure after Dimensionality Reduction 

 

Conclusion  

Twitter is a microblogging tool that many 

people use to share their ideas and opinions. 

sarcasm is to speak in ways which are the 

opposite of actual meaning in intent to be 

uncomfortable or to make a mockery of another 

person. Sarcasm can be found everywhere, 

especially on social media. Identifying sarcasm 

is one of the most important and difficult skills. 

Classifier models: Naive Bayes, Logistic 

Regression, Decision Tree, Random Forest, 

Extra Tree Classifier, Gradient Boosting 

Classifier, and Adaboost Classifier are used in 

this paper to identify sarcasm in Twitter. 

Various types of datasets are discussed in 

Hinglish Language. The sarcasm identification 

task is a categorization issue in which sarcastic 

utterances are distinguished from their non-

sarcastic counterparts. After feature reduction, 

it can be well observed from figure3 and Table 

5, that Extra Tree Classifier and gradient 

boosting classifier gives the best result having 

F-Score 95.43 and 95.29 respectively with Wn 

= 4,Cn = 3 and  CWn =4 to detect sarcasm in 

Hinglish Language. 

 

References 

[1] Aditya Joshi, Pushpak Bhattacharyya, and 

Mark J. Carman. 2017. Automatic sarcasm 

detection: A survey. ACM Comput. Surv., 

50(5). 

[2] Sahil Swami, Ankush Khandelwal, Vinay 

Singh, Syed Sarfaraz Akhtar, and Manish 

Shrivastava. A corpus of english-hindi 

code-mixed tweets for sarcasm detection, 

(2018). 

[3] Shalini, K., Hb, B.G., Kumar, M., Soman, 

K.P.: Sentiment analysis for code-mixed 

Indian social media text with distributed 

representation. In: 2018 International 

Conference on Advances in Computing, 

Communications and Informatics 

(ICACCI), pp. 1126–1131 

(2018). https://doi.org/10.1109/ICACCI.20

18.8554835. 

[4] Mishra, P., Danda, P., Dhakras, P.: Code-

mixed sentiment analysis using machine 

learning and neural network approaches 

(2018) 

[5] Choudhary, N., Singh, R., Bindlish, I., 

Shrivastava, M.: Sentiment analysis of 

code-mixed languages leveraging resource 

rich languages. In: 19th International 

Conference on Computational Linguistics 

and Intelligent Text Processing, 2018, 

Hanoi, Vietnam (2018). 

[6] Pradhan, R., Sharma, D.K. An ensemble 

deep learning classifier for sentiment 

0 20 40 60 80 100 120

Logistic Regression

Naïve Bayes

Random Forest

Decision Tree

Extra Tree Classifier

Gradient Boosting Classifier

AdaBoost Classifier

Fscore Recall Precision

https://doi.org/10.1109/ICACCI.2018.8554835
https://doi.org/10.1109/ICACCI.2018.8554835


International Journal of Intelligent Systems and Applications in Engineering                     IJISAE, 2023, 11(6s), 713–719 |  719 

 
 

analysis on code-mix Hindi–English 

data. Soft Computing(2022). 

[7] R. Bhargava, Y. Sharma and S. Sharma,: 

Sentiment analysis for mixed script Indic 

sentences. In:  2016 International 

Conference on Advances in Computing, 

Communications and Informatics 

(ICACCI), Jaipur, India, pp. 524-

529(2016). 

[8] Patwa, P., Aguilar, G., Kar, S., Pandey, 

S.J., Pykl, S., Gambäck, B., Chakraborty, 

T., Solorio, T., & Das, A. SemEval-2020 

Task 9: Overview of Sentiment Analysis of 

Code-Mixed Tweets, (2020). 

[9] Mandal, S., Mahata, S.K., & Das, D. 

Preparing Bengali-English Code-Mixed 

Corpus for Sentiment Analysis of Indian 

Languages.(2018)  

[10] Banerjee, S., Jayapal, A.K., & 

Thavareesan, S. NUIG-

Shubhanker@Dravidian-CodeMix- 

FIRE2020: Sentiment Analysis of Code-

Mixed Dravidian text using 

XLNet. Fire(2020). 

 


