

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-67992147-6799 www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(6s), 713–719 | 713

Extracting Contextual Feature Form Hinglish Short Text by

Handling Spelling Variation at Character and Word Level

1Rajshree Singh, 2Dr. Reena Srivastava

Submitted: 10/02/2023 Revised: 13/04/2023 Accepted: 06/05/2023

Abstract: The major purpose of sarcasm detection has been to comprehend the text's evaluation. Sarcasm detection is regarded

as one of the most provocations in it, and it has been subject to significant provocation. Irony is a unique manner of expressing

information that contradicts a notion and creates confusion. Data pre-processing is one of the main duties performed by most

developers. Numerous studies on irony detection use a variety of feature extraction techniques. These studies used a variety

of machine learning classification models that includes Naive Bayes, Logistic Regression, etc. Precision, recall, and F-score

are among the research project results that can be utilized to forecast the most appropriate model. This study discusses

numerous methods for detecting sarcasm and irony in text. Extra Tree Classifier and gradient boosting classifier gives the best

result having F-Score 95.43 and 95.29 respectively with Wn = 4,Cn = 3 and CWn =4 to detect sarcasm in Hinglish Language.

Keywords: Pre-Processing; short text; Auto-Encoder; Hinglish

Introduction

Since the invention of social media, most

human interaction takes place online. As a

result, textual data produced in enormous

amounts is utilized to make useful inferences.

People from different cultures utilize social

media platforms like Facebook, Twitter,

Reddit, and others to communicate with one

another and express their thoughts. The study of

various language expressions including

sarcasm, irony, hostility, humour, hate, etc. has

become a keen area of research, thanks to the

abundance of data available from social media.

Automatic detection of these expressions is

currently being extensively researched,

particularly in the field of Natural Language

Processing (Joshi et al., 2017).

The current trend in sentimental analysis and

transliteration is code-mixing. Difficult

techniques are required to extract the correct

sentiment from code-mixed data. Joshi et al.,

(2017) conducted research on code-mixed

Hindi-English social text data. Code-mixed

data requires more pre-processing steps than

monolingual data. Using the Support Vector

Machine (SVM) classifier, the author proposes

numerous pre-processing techniques for mixed

scripts and achieves 58.2% accuracy.

Shalini et al. (2018) proposed a distributed

representation for extracting sentiments from

code-mixed text in multiple languages,

including Kannada-English, Hindi-English, and

Bengali-English. The author has employed

numerous techniques to Sentimental Analysis

on Indian Languages (SAIL), including SVM,

Fast-Text, Bi-directional Long Short-Term

Memory (Bi-LSTM), and Convolutional

Neural Network (CNN). CNN is applied with

various filter sizes and achieves an accuracy of

71.5 percent for the Kannada-English dataset,

whereas Bi-LSTM achieves an accuracy of 60.2

percent for the Hindi-English dataset and 72.5

percent for the Bengali-English dataset.

Choudhary et al. (2018) proposed a novel

approach that outperforms the highest existing

result in Sentimental Analysis of Code-Mixed

Research Scholar, School of Computer Application,

Babu Banarasi Das University, Lucknow

Email - rajshree.singh07@bbdu.ac.in

Dean, School of Computer Application, Babu Banarasi

Das University, Lucknow

Email - dean.soca@bbdu.ac.in

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(6s), 713–719 | 714

Text (SACMT) by 7.6% in terms of accuracy

and 10.1% in terms of F-Score. Mishra et al.

(2018) proposed a variety of Machine Learning

and Deep Learning techniques for processing

sentimental analysis of Indian languages. The

author achieved a 69% F1-Score for the

Bengali-English dataset and a 58% F1-Score

for the Hindi-English dataset.

Research Gap: Being a challenging problem,

automatic sarcasm detection has been a

prominent research topic. Although a

significant amount of research has been

conducted on sarcasm detection in English, the

detection of sarcasm in code-mixed languages

such as Hinglish (Hindi-English) remains

largely unexplored. Goal of this study is to

categorize Hinglish(a blend of Hindi and

English) into sarcastic categories.

Material & Method

1. Dataset Creation

5250 tweets make up the current dataset

presented in the research (Swami et al., 2018),

of which 504 tweets have been classified as

sarcastic while the rest 4746 have not been.

Given that this dataset is both insufficient and

extremely skewed, all deep learning models

appeared to incorrectly anticipate that all tweets

would not be sarcastic. Performance measures

that are sensitive to imbalanced datasets were

employed for this: Consider using

measurements like precision, recall, or the F-

Score instead of accuracy, which can be

deceptive in datasets with a class imbalance.

Fig 1: Sarcasm Detection using Machine Learning

Roughly 60% of the samples were down-

sampled from the majority classes at random

since the degree of imbalance was moderate,

bringing it into the mild category. After down-

sampling, the minority class contribution

increased to about 20–21%. The frequency of

terms in a document or group of documents is a

prominent focus of natural language processing

(NLP) research. It is extremely difficult to

adhere to the occurrence rule of the words when

speaking Hinglish, nevertheless. because the

Hindi words in the dataset are translated into

English. It becomes challenging to follow the

grammatical norms of a language when it is

written into another language. Because Hindi is

being transcribed into English in this instance,

it is impossible to follow the proper writing

convention.

A greater comprehension and formulation of

the issues cannot be achieved by merely relying

on word frequency. Therefore, this research

suggests a better pre-processing strategy.

2. Pre-Processing

In natural language processing(NLP), the most

crucial aspect of any machine learning model is

data pre-processing(Swami et.al, 2018). Good

results are contingent on the quality of the data

pre-processing. In the proposed model,

#sarcasm is removed from the tweet before data

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(6s), 713–719 | 715

is pre-processed. Specifically in the following

steps:

2.1 Tokenization

In a nutshell, tokenization is the process of

dividing text sequences into "tokens" or smaller

units(Banerjee et. al, 2020). The tokenization of

paragraphs into sentences and sentences into

words. Python's Tokenizer() function is used to

generate identifiers. Following tokenization,

the procedure returns a list of tokens.

2.2. Noise Removal

Eliminate punctuation marks such as a comma,

an exclamation point, a quotation mark, and a

question mark. This meaningless term is never

used in sentences. After noise removal, a

catalogue of clean tokens is obtained that can be

further processed. Additionally, all characters

and words were converted to lowercase. The

python translate() function was used to remove

punctuation, while the lower() function was

used to lower every character in the dataset.

2.3 The elimination of stop words

A stop word is a commonly used word (such as

"the", "a", "an", "in", and "i"); these words are

been disregarded as they have no bearing on the

polarity of the tweet and are therefore of no use

to us. For a Python script to remove stop words.

2.4. Normalisation

Normalisation concludes the pre-processing

phase. This attempts to level the playing field

for all text, for instance by converting all

characters to lowercase. The process of

normalisation improves text compatibility.

• Why N-Gram?

Chance of misspelling a word is very

high(when written in Hinglish), therefore,

capturing the characteristics of a sentence can

only boost the accuracy(Mandal et. al, 2018).

For this, a char n-grams followed by word n-

grams method is proposed to boost the

accuracy. The proposed approach can capture

the dynamics of the sentence.

For instance, consider Hindi variants of the

word profit "fayada", "fayda", "faayada",

"faayda", "faayadaa", "faaydaa".

At word level all are different words, so the

algorithm will consider it differently. However,

if the word is broken using char n-grams then

the algorithm can find some similarity between

the words. For instance, the char similarity

matrix when char n-grams is taken as 2 is

shown in Table I. While, when char n-grams is

taken as 3 is Shown in Table II. Table III shows

when word N grams employed on char n grams.

Table 1: Char Similarity Matrix for char n Grams=2

Words Tokens

 Fa ay ya ad Da yd aa

fayada 1 1 1 1 1 0 0

fayda 1 1 0 0 1 1 0

faayada 1 1 1 1 1 0 1

faayda 1 1 0 0 0 0 1

faayadaa 1 1 1 1 1 0 1

faaydaa 1 1 0 0 1 1 1

Table 2: Char Similarity Matrix for char n Grams=3

Words Tokens

 Fay Aya Yad ada ayd Yda Faa Aay daa

fayada 1 1 1 1 0 0 0 0 0

Fayda 1 0 0 0 1 1 0 0 0

faayada 0 1 1 1 0 0 1 1 0

faayda 0 0 0 0 0 0 1 1 0

faayadaa 0 1 1 1 0 0 1 1 1

faaydaa 0 0 0 0 1 1 1 1 1

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(6s), 713–719 | 716

Table 3: Word N Grams Employed on Char N Grams

Words Tokens

 faay ayya yaad adda dayd ydaa ayyd ydda faaa aaay daaa

fayada 1 1 1 1 0 0 0 0 0 0 0

fayda 1 0 0 0 0 0 1 1 0 0 0

faayada 0 1 1 1 0 0 0 0 1 1 0

faayda 0 0 0 0 0 0 1 1 1 1 0

faayadaa 0 1 1 1 0 0 0 0 1 1 1

faaydaa 0 0 0 0 0 0 1 1 1 1 1

As the value of N in N-Char grams increases,

the chances of identifying similar words

increase. Similarly, the probability becomes

stronger, moving towards W-grams at char

levels and Wgrams at the word level.

Emoticons belonging to any one of the

following are preserved:

':-)', ':)', '(:', '(-:',':-D', ':D', 'X-D', 'XD', 'xD','

3. TF-IDF (Term Frequency-Inverse

Document Frequency)

Words are transformed into vectors by TF-

IDF(Term Frequency -Inverse Document

Frequency). The words that appear in the fewest

sentences in the supplied document are found

by IDF and TF, respectively. TF determines

how frequently a word is present in the given

document. The TF-IDF scoring system

determines the frequency of each word used in

a certain document(Patwa et. al, 2020). The

limitation of TF-IDF is that semantic

information cannot be provided.

4. Sarcasm Detection Classifiers

Classification models like Naïve Bayes,

Decision Tree, Random forest, AdaBoost,

Gradient Boost will be implemented for

detecting sarcasm. Their performance will be

evaluated on the basis of Precision, Recall and

F1-Score.

Result

Precision, Recall and F1-Score are calculated to

evaluate performance of each classification

model(Bhargava et. al, 2016).

 Precision (P) =
TP

TP+FP
 (1)

Recall (R) =
TP

TP+FN

(2)

Accuracy =
TP+TN

TP+TN+FP+FN

(3)

FScore =
2∗(Precision ∗ Recall)

(Precision + Recall)

(4)

All the models are performed for the following

cases:

1. Word N Grams (Wn): 2,3,4

2. Char N Grams (Cn):2,3,4

3. Char Word N Grams (CWn): 2,3,4

In this research, autoencoders have been

utilised for dimensionality reduction.

Autoencoders are a type of neural network

architecture that is used for dimensionality

reduction and feature learning(Pradhan &

Sharma, 2022). It consists of an encoder and a

decoder, which are trained to reconstruct the

original input data from a lower-dimensional

representation. Autoencoders can be trained in

an unsupervised manner, using only the input

data without any labels. This makes them useful

for learning useful features from the data

without the need for labelled examples.

The proposed autoencoders consist of 11 layers

where the first 5 are the compression layers, the

6th is the central layer and the last 5 are the

expansion layers. The reduced features are

extracted from the central layer and then re-

train all the existing machine learning models.

At each layer, features are reduced by a factor

of 1.45 and rounded to the nearest integer if the

outcome is in decimal. The reduction factor of

1.45 is considered in such a way that it will

reduce the features by around 10 times. . The

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(6s), 713–719 | 717

autoencoders model is trained by minimizing

the root mean squared error between the final

output after expansion and the initial input. The

model is run for 6,000 epochs for the selected

combination as shown in the figure below.

Fig 2: Training Improvement of Autoencoder

The following cases for dimensionality reduction because accuracy are almost the same for lower

values:

Table 4: Initial features for the selected combinations

Combination Original Features Reduced Features

Wn= 3; Cn=3 ; CWn=3 30673 3300

Wn= 3; Cn=3 ; CWn=4 43425 4672

Wn=3 ; Cn=4 ; CWn=3 42761 4600

Wn=3 ; Cn=4 ; CWn=4 56613 6091

Wn=4 ; Cn=3 ; CWn=3 30932 3328

Wn=4 ; Cn=3 ; CWn=4 43684 4700

Wn=4; Cn=4 ; CWn=3 43020 4628

Wn=4 ; Cn=4 ; CWn=4 56872 6119

After Feature Reduction for example:

Table 5: Reduced Features Result (Wn=4,Cn=3,CWn=4)

 Precision Recall F Score

Logistic Regression 97.33 87.5 92.15

Naïve Bayes 23.74 59.74 33.97

Random Forest 99.92 91.09 95.30

Decision Tree 88.04 79.90 83.77

Extra Tree Classifier 99.44 91.74 95.43

Gradient Boosting Classifier 99.07 91.79 95.29

Ada Classifier 88.57 90.85 89.69

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(6s), 713–719 | 718

Results on the reduced features are as follows:

Fig 3: Performance Measure after Dimensionality Reduction

Conclusion

Twitter is a microblogging tool that many

people use to share their ideas and opinions.

sarcasm is to speak in ways which are the

opposite of actual meaning in intent to be

uncomfortable or to make a mockery of another

person. Sarcasm can be found everywhere,

especially on social media. Identifying sarcasm

is one of the most important and difficult skills.

Classifier models: Naive Bayes, Logistic

Regression, Decision Tree, Random Forest,

Extra Tree Classifier, Gradient Boosting

Classifier, and Adaboost Classifier are used in

this paper to identify sarcasm in Twitter.

Various types of datasets are discussed in

Hinglish Language. The sarcasm identification

task is a categorization issue in which sarcastic

utterances are distinguished from their non-

sarcastic counterparts. After feature reduction,

it can be well observed from figure3 and Table

5, that Extra Tree Classifier and gradient

boosting classifier gives the best result having

F-Score 95.43 and 95.29 respectively with Wn

= 4,Cn = 3 and CWn =4 to detect sarcasm in

Hinglish Language.

References

[1] Aditya Joshi, Pushpak Bhattacharyya, and

Mark J. Carman. 2017. Automatic sarcasm

detection: A survey. ACM Comput. Surv.,

50(5).

[2] Sahil Swami, Ankush Khandelwal, Vinay

Singh, Syed Sarfaraz Akhtar, and Manish

Shrivastava. A corpus of english-hindi

code-mixed tweets for sarcasm detection,

(2018).

[3] Shalini, K., Hb, B.G., Kumar, M., Soman,

K.P.: Sentiment analysis for code-mixed

Indian social media text with distributed

representation. In: 2018 International

Conference on Advances in Computing,

Communications and Informatics

(ICACCI), pp. 1126–1131

(2018). https://doi.org/10.1109/ICACCI.20

18.8554835.

[4] Mishra, P., Danda, P., Dhakras, P.: Code-

mixed sentiment analysis using machine

learning and neural network approaches

(2018)

[5] Choudhary, N., Singh, R., Bindlish, I.,

Shrivastava, M.: Sentiment analysis of

code-mixed languages leveraging resource

rich languages. In: 19th International

Conference on Computational Linguistics

and Intelligent Text Processing, 2018,

Hanoi, Vietnam (2018).

[6] Pradhan, R., Sharma, D.K. An ensemble

deep learning classifier for sentiment

0 20 40 60 80 100 120

Logistic Regression

Naïve Bayes

Random Forest

Decision Tree

Extra Tree Classifier

Gradient Boosting Classifier

AdaBoost Classifier

Fscore Recall Precision

https://doi.org/10.1109/ICACCI.2018.8554835
https://doi.org/10.1109/ICACCI.2018.8554835

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(6s), 713–719 | 719

analysis on code-mix Hindi–English

data. Soft Computing(2022).

[7] R. Bhargava, Y. Sharma and S. Sharma,:

Sentiment analysis for mixed script Indic

sentences. In: 2016 International

Conference on Advances in Computing,

Communications and Informatics

(ICACCI), Jaipur, India, pp. 524-

529(2016).

[8] Patwa, P., Aguilar, G., Kar, S., Pandey,

S.J., Pykl, S., Gambäck, B., Chakraborty,

T., Solorio, T., & Das, A. SemEval-2020

Task 9: Overview of Sentiment Analysis of

Code-Mixed Tweets, (2020).

[9] Mandal, S., Mahata, S.K., & Das, D.

Preparing Bengali-English Code-Mixed

Corpus for Sentiment Analysis of Indian

Languages.(2018)

[10] Banerjee, S., Jayapal, A.K., &

Thavareesan, S. NUIG-

Shubhanker@Dravidian-CodeMix-

FIRE2020: Sentiment Analysis of Code-

Mixed Dravidian text using

XLNet. Fire(2020).

