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Abstract: Timely and accurate crop yield prediction serves as a pillar for the country’s food security and frames the strategic 

policies for the government. In this study, we endeavoured to assess the effectiveness of three various machine learning-

based methods to predict paddy yield for the Indian state of Andhra Pradesh. The models were developed using historical 

yield data for the years 2001 to 2020 along with the long-term derived satellite variables evapotranspiration (ET), leaf area 

index (LAI), land surface temperature (LST), normalised difference vegetation index (NDVI), and rainfall (RF). Multiple 

linear regression (MLR), support vector regression (SVR), and random forest regression (RFR) models were three different 

machine learning models that were assessed for performance. A correlation was established between these variables and crop 

yield. The highly correlated features model was built and the features with the least correlation were discarded. The 

performance of all three models was found to be satisfactory. The RFR model was found to have higher accuracy with an R2 

value of 0.61 and an RMSE of 0.55 t ha-1. Whereas MLR and SVR were found to have R2 0.51 and 0.59, RMSE 0.59 t ha-1, 

and 0.54 t ha-1. The results from the current study have shown the capability of machine learning algorithms with limited 

datasets. 
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1. Introduction 

The world's most important crop for staple foods is 

paddy (Oryza sativa L.). Paddy is produced and 

exported by India in second- and third-place 

finishes globally. For the years 2020–2021, India 

will produce 12.27 million metric tonnes of paddy. 

The Indian economy is heavily dependent on the 

paddy crop. India's paddy output climbed from 3.6 

t ha-1 in 2011–2012 to 4.2 t ha-1 in 2020–21. India 

has been a major contributor to the global 

production of Paddy with a share of 21.81% (2015-

16) (Manjunatha et al., 2015).  

Crop yield is a key factor (Bender & Heijden, 

2015) in Paddy production its management is very 

crucial for making agricultural policies, trading, 

forecasting, and adopting a strategic plan to tackle 

climate change (Jeong et al., 2016). The changing 

environmental factors and extreme weather events 

have led to variability in the Paddy yield (Ray et 

al., 2015; Debnath et al., 2021). This event has 

become a major concerning factor for farmers and 

governments to reinforce thinking of the need for 

accurate and precise crop yield forecasting models 

(Rashid et al., 2021). Global food security has been 

seriously threatened by an abrupt rise in global 

warming and population expansion (Lobell & 

Bruke, 2008; Tilman et al., 2011). According to 

Frieler et al. (2017), the impact of agronomic and 

climatic conditions on crop development and 

production is unpredictable. Agro-meteorological 

factors have been heavily incorporated into yield 

prediction models up to this point (Fang et al., 

2011; Li et al., 2015).   

The two most popular modelling techniques to 

forecast crop output in response to agro-

meteorological factors are process-based models 

and statistical models (Prasad et al., 2022). 

Although process-based crop models can 

accurately predict crop yield at the field level by 

simulating the physiological processes of crop 

growth and development, it is challenging to use 

them for timely predictions on a regional or global 

scale due to their high data and calibration needs 

(Lobell & Bruke, 2008). Without taking into 

account the uncertainty brought on by physiologic 

and ecological factors, statistical models attempt to 

map a direct link between crop yield and predictor 
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variables. Inputs for these extensively are 

dependent on the crop-cutting experiments and 

observed agro-meteorological parameters which 

fail to present these variables at a spatial scale. 

Crop production projections may now be made 

with accuracy because to advancements in remote 

sensing and Geographic Information Systems (GIS) 

(Setiyono et al., 2014; Huang et al., 2019). Since 

their direct correlation with biomass production, 

biophysical variables such as NDVI (Normalised 

Difference Vegetation Index), Leaf Area Index 

(LAI), Evapotranspiration (ET), Land Surface 

Temperature (LST), Fraction of Photosynthetically 

Active Radiation (FPAR), etc. have been widely 

used in crop yield prediction models (Doriaswamy 

et al., 2003; Supit et al., 2012; Sakamoto et al., 

2013). Remote sensing-derived variables have 

shown to be reliable datasets in representing the 

physiological conditions of crops on a spatial scale 

basis. Integration of ground data with remote 

sensing data has quite promising results in crop 

yield prediction. Traditional statistical models have 

shortcomings in capturing the uncertainty when 

predicting agricultural output with the integration 

of both remote sensing data and observed data 

(Chaurusiya et al., 2017; Dubey et al., 2018). The 

classic modelling approaches have several 

drawbacks, which are partially addressed by 

machine learning techniques for crop yield 

prediction (Schumacher et al., 2019).Machine 

learning techniques have gained wider popularity 

as crop prediction models for accurate yield 

predictions in India. We can see many examples 

where machine learning models are used for yield 

predictions for the Indian case. A few examples are 

Jaikala et al., 2008 developed a Paddy yield 

prediction model using a support vector regression 

(SVR) algorithm and compared the results with the 

DSSAT model yield. Integrating Sentinel-1 & 2 

data paddy mapping and yield prediction was done 

using a random forest algorithm in the Sahibganj 

region (Ranjan & Parida, 2019). Guruprasad et al., 

2019 used ML techniques to quantify the paddy 

yield at district and sub-district levels using 

weather and soil data as predictors. They have 

achieved an average error of 3.14% in predicting 

the paddy yield. Nihar et al., 2022 evaluated 

different machine learning models to predict 

sugarcane yield for the state of Uttar Pradesh using 

long-term satellite-derived variables and crop yield 

data. They have achieved a 66% of yield prediction 

accuracy using Gradient Boost Regression (GBR) 

with an RMSE of 7.15 t ha-1. Arumugam et al., 

2021 have successfully downscaled the paddy crop 

yield at the district level using coarse resolution 

LAI and crop mask. They have used the GBR 

algorithm to downscale and re-aggregate the paddy 

yield for district-level yield predictions. The GBR-

modeled yield was found to be in agreement with 

the observed yield. To develop accurate and precise 

crop prediction models understanding the efficacy 

of quality of input parameters plays a very 

important role. 

Finding the optimum crop production prediction 

model for paddy was the goal of this study. We 

evaluated the performance of three different 

machine learning models for predicting paddy yield 

at a regional scale using long-term derived satellite 

variables and historical crop yield data. The best 

model for predicting paddy yield with the lowest 

percentage of error was determined by comparing 

these models. 

 

2. Materials and Methods 

2.1 Study Area 

The main food crop in the Indian state of Andhra 

Pradesh is paddy. The state is located between 

latitudes 12°41' and 19.07°N and longitudes 77° 

and 84°40'E. Telangana borders the state to the 

northwest, Chhattisgarh to the north, Orissa to the 

northeast, Tamil Nadu to the south, and Karnataka 

to the southwest. It is the seventh-largest state in 

the union and occupies 162,975 km2, or 4.96%, of 

the nation's total land area (Figure 1). Godavari and 

Krishna are the two major rivers that run across the 

state. Andhra Pradesh generally experiences a hot 

and humid type of climatic condition with a mean 

annual temperature ranging between 21° and 40°C. 

Andhra Pradesh's coastal lowlands get hotter 

summers than the rest of the state. In Andhra 

Pradesh, the rainy season lasts from July through 

September. During this time, when the southwest 

monsoon is in full effect, the state experiences the 

most rainfall. Additionally, it gets a third of the 

northeast monsoon's rainfall during that time. The 

state typically receives 1045 to 1170 mm of rainfall 

per year (Guhathakurta et al., 2020). The primary 

and staple crop in Andhra Pradesh is paddy. In the 

state, it is grown on more than 22 lakh hectares 

throughout both the Kharif and Rabi seasons. 7 

million metric tonnes of rice were produced in the 

state altogether for the year 2020-21. Cotton, 

Groundnut, Pigeon pea, Sunflower, Black gram, 
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and Sorghum are the other major crops grown in 

the state along with the Paddy.  

 

 
Fig. 1 – Location of Andhra Pradesh State along with its district labels. 

 

2.2 Materials 

The datasets utilised in this investigation were 

obtained from the Terra satellite's MODIS 

(Moderate Resolution Imaging Spectro 

Radiometer) instrument. Within two days of its 

revisit time, the MODIS sensor has a very wide 

swath of 2,336 km and can cover the whole planet. 

It offers imagery in 36 multispectral bands with 

250 m, 500 m, and 1000 m spatial resolution. 

According to Patel et al. (2006), it provides ready-

to-use, high-value geophysical products that 

directly address the demand for regional and global 

level monitoring. Evapotranspiration (ET), Leaf 

Area Index (LAI), Land Surface Temperature 

(LST), and Normalised Difference Vegetation 

Index (NDVI) are the MODIS land products used 

in this study (Table 1) (Didan, 2021).  

 

Table 1 – Description of satellite datasets used in the study 

 

Satellite/Sensor Product Resolution Frequency 

MODIS (Terra) ET (MOD16A2) 500 meters 2001-2021 (8 days) 

 LAI (MOD15A2H) 
500 meters 

2001-2021 (8 days) 

 LST (MOD11A1) 
1000 meters 

2001-2021 (daily) 

 NDVI (MOD13Q1) 
250 meters 

2001-2021 (16 days) 

CHIRPS Rainfall 0.05° 2001-2021 (daily) 

 

The CHIRPS (Climate Hazards Group InfraRed 

Precipitation with Station based platform) data for 

this investigation were obtained from Google Earth 

Engine (Gorelick et al., 2017), which is openly 

accessible in the public catalogue.Datasets were 

converted to monthly averages and the mean value 

was extracted using the district administrative 

boundaries of Andhra Pradesh state.  

Historical Paddy yield data for Andhra Pradesh 

state was taken from the Directorate of Economics 

and Statistics (DES, 2021). The database consists 

of district-wise area (in hectares), production 

(tonnes), and productivity information (tonnes per 

hectare) for all the states of India. By filtering the 

parameters, the Kharif season Paddy yield data 

were retrieved for all the districts of Andhra 

Pradesh. The Paddy yield data obtained was in the 

unit of “ton per hectare”. 
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2.3 Methodology 

This study is based on a simplistic approach to 

predicting regional-level Paddy crop yield using 

machine learning-based algorithms with the aid of 

historical crop yield data (Paddy) and long-term 

available satellite variables derived for the study 

area. From the years 2001 to 2021, the entire state 

of Andhra Pradesh had its satellite data 

downloaded (Table 1).. The satellite variables with 

different temporal and spatial resolutions were 

zonal averaged to a monthly scale using district 

administrative boundaries. Since the Kharif season 

Paddy is grown from June to October month in 

Andhra Pradesh the average values for five satellite 

variables were taken only for these months as our 

annual crop yield data was also for the Kharif 

season only. The variables were subdivided with 

the corresponding months (June as 06, July as 07, 

August as 08, September as 09, and October as 10) 

ET_06, ET_07, LAI_06 so forming a total of 25 

(5 × 5)  variables. The data table structure was 

organized in such a way that the table had columns 

of Districts, Year, Yield, and variables arranged to 

correspond with the months with the codes as seen 

in example Table 2. Each year has monthly scale 

satellite variables (independent variables) 

corresponding with annual Paddy yield data 

(dependent variable) district-wise from 2001-2020 

making a total of 230 observations.  

Table 2 Example of datasets organized in table for 

training ML models 

Districts Year Yield ET_06 ET_07…… NDVI_06 NDVI_07…… 

ANANTAPUR 
2001      

CHITTOOR 
2001      

EAST GODAVARI 
2001      

GUNTUR       

ANANTAPUR 2002      

CHITTOOR 2002      

 

Regression analysis works as a predictive 

modelling technique that establishes the 

relationship between dependent (target) and 

independent (predictors) variables. Data has to be 

cleaned for the outliers for better performance of 

the model. The entire analysis for the yield 

modelling was carried out in the cloud platform 

Google Collab python (Bisong, 2019) environment. 

The data were rescaled using the StandardScaler() 

function available within the Sci-kit learn package 

to bring all the datasets in the specific range. Now 

the data consisted of 25 variables from 5 variables 

from 2000 to 2020. 

The collinearity test between the crop yield and 

predictor variables was computed. The poorly 

correlated variables were removed since they didn’t 

have any significance in the construction of 

models. The data had 228 rows and 28 columns, 

each row corresponded to each district and the year 

for which crop yield and satellite variables were 

extracted. The dataset was split into a 70:30 ratio as 

training and testing datasets. 70% of datasets were 

used in the model construction and the remaining 

30% of datasets served as validation data. The 

detailed workflow for the overall methodology can 

be seen in Figure 2. 

 
Fig. 2 – Methodology Flow Chart 
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Three machine learning techniques were employed 

in this study to forecast the Paddy yield. The 

advantages and cons of each algorithm are 

different. Multiple linear regression, support vector 

regression, and random forest regression were the 

three machine learning techniques used in this 

study. MLR makes an effort to model the 

dependent variable as a linear function of two or 

more independent variables. SVR, on the other 

hand, is a form of Support Vector Machine (SVM) 

used to predict continuous variables. SVR is used 

to fit a hyperplane that minimises the error between 

the predicted and actual values rather than 

searching for a border between distinct classes. 

Then, fresh data points can be predicted using this 

line. RFR is a particular kind of ensemble learning 

approach for regression issues. It consists of many 

decision trees, each of which was trained using a 

random subset of the data and the characteristics. 

The average of all the forest's trees' projections is 

used to determine the outcome. Powerful and 

resistant to overfitting, RFR is an algorithm that 

can handle high-dimensional data.  

Pre-processed datasets were trained using the 

models. Based on the correlation analysis only the 

significant features were selected using the 

SelectFromModel() function available within the 

sci-kit learn library. By minimising the loss 

function, hyperparameter tuning is used to identify 

the best set of hyperparameters that produces the 

highest model performance when applied to a set of 

independent data.. To estimate the performance, 

fivefold cross-validation is used. The final model is 

selected when it reaches a reasonable level of 

accuracy while also having a reasonable number of 

parameters.  

Based on statistically significant metrics like R2, 

Mean Absolute Error (MAE), Mean Square Error 

(MSE), and Root Mean Square Error (RMSE), the 

performance of the models was assessed and 

contrasted. The best yield prediction model is 

chosen based on the evaluation of these metrics. 

 

3. Results  

In order to choose the most influential variables 

affecting Paddy's yield a simple Pearson’s 

correlation test was performed. The correlation test 

between the Paddy yield and the predictor variables 

is shown in figure 3. Based on the correlation test 

results and feature importance score the variables 

with the highest score were chosen to construct the 

model. The Paddy yield has showed a negative 

association with the predictor factors NDVI, ET, 

LAI, and RF. LST, however, has demonstrated a 

strong relationship with the Paddy yield. The 

strongest positive link has been found between LST 

and the months of June and July. ET during June 

and July has shown the highest negative 

correlation. 

 

Fig. 3 – Plot showing the relationship between Paddy yield and the monthly mean predictor variables. 
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The feature priority score was another technique 

used to choose the variables to be included in the 

model. The top forecasters were chosen, and the 

remaining ones were removed, based on the feature 

importance score. The feature importance score 

graph for the RFR model is displayed in Figure 4. 

 
Fig. 4 – Predictor variable importance graph for the RFR model 

 

The top 8 predictor variables were selected out of 

25 variables based on feature importance score to 

construct the model. Fine-tuned hyperparameters 

were used to construct the models. The 

performance of the models was evaluated based on 

the statistical metrics. Out of all three models, the 

performance of the MLR model was found to be 

poor when compared with the other two models. 

RFR performed better than SVR even though both 

models have almost significant accuracies. The 

comparison between the models and their statistical 

signification can be found in Table 3. The results 

with the highest accuracies have been highlighted 

in bold. 

 

Table 3 – Evaluation of ML algorithms based on the statistical metrics 

Models R2 MAE (t ha-1) MSE (t ha-1) RMSE (t ha-1) 

MLR 0.51 0.45 0.35 0.59 

SVR 0.59 0.43 0.30 0.54 

Random Forest 0.61 0.42 0.31 0.55 

 

With an MAE of 0.45 t ha-1, MSE of 0.35 t ha-1, 

RMSE of 0.59 t ha-1, and an R2 value of 0.51 the 

MLR model was able to forecast the Paddy yield. 

With an MAE of 0.43 t ha-1, MSE of 0.30 t ha-1, 

RMSE of 0.54 t ha-1, and R2 value of 0.59, SVR 

was able to forecast the Paddy yield. While the 

MAE, MSE, RMSE, and R2 values for the RFR 

model's prediction of the Paddy yield were each 

0.42 t ha-1, 0.31 t ha-1, 0.55 t ha-1, and 0.61 

respectively. The Paddy yield that the ML models 

anticipated differed by area. The maximum 

recorded yield was found to be 4.33 t ha-1 while 

the minimum recorded yield was 0.99 t ha-1. The 

observed average Paddy yield was found to be in 

the range of 2.9 t ha-1 with a standard deviation of 

0.7 t ha-1. 
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4. Discussion 

Paddy yield at the regional level for the state of 

Andhra Pradesh was predicted using long-term 

historical crop yield data and satellite variables. 

Among all the predictor variables ET, LAI and 

LST were found to be the top predictor variables. 

All three ML models have tended to show 

moderate accuracy in predicting the Paddy yield. 

The correlation between the Paddy yield and the 

variables such NDVI, ET, LAI, and RF has shown 

decorrelation or negative correlation (Figure 3). 

Whereas it has shown a positive correlation with 

the LST. Generally, we can see a positive 

correlation between the crop yield and NDVI, ET, 

LAI, and RF with other crops (Nihar et al., 2022; 

Prasad et al., 2021b). LST has shown a negative 

correlation with other crops (Prasad et al., 2021a). 

Whereas in Paddy crop this was the opposite the 

variables NDVI, ET, LAI, and RF did not find any 

positive trend, instead only variable that was 

positively correlated was LST. A similar result of 

the decorrelation between Paddy yield and rainfall 

has been reported by (Sarma et al., 2008; Sandhu et 

al., 2021). Detrending of Paddy yield with NDVI 

was also reported by (Huang et al., 2013). 

LAI and ET were the top most influential variables 

influencing the Paddy yield. RF during the starting 

months had its most effective and LST has its most 

effective during the second month (during July 

month) of the crop growth period. Both LAI and 

ET are the biophysical parameters that affect the 

photo synthetical activity of the crops. The higher 

the leaf surface area greater the absorption of 

radiation, thus LAI is directly proportional to the 

increase in biomass production. ET is related to the 

amount of water loss during photosynthesis. Since 

Paddy is a semi-aquatic crop it requires stagnant 

water for its growth, thus ET is influencing the 

yield production of Paddy. LST has also an 

influence on yield due to the reason that Paddy 

requires hot humid conditions for its growth. RF 

from July to October made it to the list of top 8 

predictor variables. The southwest monsoon, when 

Andhra Pradesh receives the majority of its rainfall, 

is active during these months. NDVI was found to 

have the least contribution to the yield predicting 

our top 8 predictor variables. 

  
(a)                                                                     (b) 

 
(c) 

Fig. 5 – Observed v/s Predicted Paddy Yield for holdout datasets (a) MLR model (b) SVR model (c) RFR 

model 
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All three machine learning algorithms predicted the 

crop yield with satisfactory accuracy. MLR was 

able to explain the Paddy yield with a 51% (Figure 

5(a)) accuracy when tested against 30% 

independent holdout data that was not used in the 

training of the model. The SVR model also 

performed well and was able to explain yield 

variance with a variability of 59% (Figure 5(b)) 

accuracy when tested against the holdout datasets. 

Whereas the RFR algorithm outperformed both 

MLR and SVM prediction with a 61% (Figure 

5(c)) accuracy against the holdout datasets. With 

the comparative results (Table 3) among all the 

three machine learning algorithms RFR was found 

to be most suitable for predicting Paddy yield. SVR 

performance was also found to be on par with that 

of RFR results as it had lower values in terms of 

MAE and RMSE. The results from this study have 

showcased the potential of RFR algorithms to 

predict crop yield with higher accuracy. A similar 

result with higher accuracy for global and regional 

yield prediction over MLR using RFR has been 

reported by (Jeong et al., 2016). (Prasad et al., 

2021a) has successfully predicted cotton yield in 

advance for three time periods. Many studies have 

reported that higher accuracy can be achieved in 

predicting crop yield using RFR algorithms 

(Everingham et al., 2016; Geetha et al., 2020; 

Kumar et al., 2020; Elavarasan et al., 2021; Cheng 

et al., 2022). The performance of the models tends 

to be satisfactory but the accuracy of these models 

has a scope for improvement. The accuracy of 

these models is mainly confined to the quality of 

the datasets. Datasets derived in this study were 

from the MODIS sensor which is a having a coarse 

resolution (Prasad et al., 2021b). Individual farm 

size holdings in the Indian context are less than 1 

ha which requires higher-resolution satellite 

datasets to capture the variations in reflectance and 

avoid mixing of pixels for other field crops’ effects. 

Another drawback for lower accuracy in the results 

is due to the volume of observed yield data to train 

the model. The yield data used in this work was at 

the district-level size, where there were not many 

examples to train the model. By employing yield 

data at the block-level scale, the data volume and 

model accuracy are increased. Only satellite-

derived factors were taken into account in this 

study to establish a correlation with the Paddy 

yield. But other factors need to be considered other 

than satellite variables such as fertilizer application, 

soil type, and other meteorological parameters. The 

combination of these variables with the satellite-

derived variables increases the yield prediction 

accuracy of these models. Feature study has to be 

carried out using more advanced algorithms like 

deep learning algorithms to train the dataset with 

few observations or instances which has much 

more promising results than using ML algorithms 

alone (Dang et al., 2021). 

5. Conclusion 

Advancement in geospatial technology has made it 

very much possible to monitor the crops over larger 

domains and also predict the crop yield before 

actual harvest. In this study, we have tried to 

evaluate three different ML algorithms to predict 

the Paddy yield for the state of Andhra Pradesh. 

The models were built using historical crop 

production data together with satellite-derived 

variables like ET, LAI, LST, NDVI, and RF. The 

influence of these variables on crop yield was 

correlated with the crop growing season. The 

maximum correlation of these variables with crop 

yield was found to be 35 to 55% with the crop 

yield. Regression analysis was carried out using 

MLR, SVR, and RFR models. The RFR model, 

which had an accuracy of 61% and an RMSE of 

0.59 t ha-1, was discovered to be the best predictor 

model for Paddy yield prediction. When combined 

with auxiliary yield datasets, this research has 

demonstrated the usefulness of remote sensing 

datasets for crop yield prediction. The accuracy of 

these models has the further scope of improvisation 

by taking the crop yield data at the block levels and 

using high-resolution satellite images.  
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