

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-67992147-6799 www.ijisae.org

Original Research

Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(6s), 782–793 | 782

A Hybrid Model for Real-Time Docker Container Threat Detection and

Vulnerability Analysis

Vipin Jain1, Baldev Singh2, Nilam Choudhary3, Praveen Kumar Yadav4

Submitted:13/02/2023 Revised:16/04/2023 Accepted:10/05/2023

Abstract: Computer attacks are becoming more sophisticated and difficult to detect, the large volume of information in security records

generated by network devices, servers and applications does not allow an adequate analysis due to the complexity of the data produced,

and this leads to not taking measures timely in the event of gaps or security incidents. In spite of the fact that containers are widely

accepted as a standardized way of deploying micro services and play a vital role in emerging areas of cloud computing such as service

meshes. A survey has revealed that container security is the common concern and barrier to adoption for most organizations. This paper

aims to conduct a review of the existing literature on container security and solutions. The time that elapses between the occurrences of

an incident until its discovery should be as short as possible in order to determine the scope of the incident and compromised systems in a

timely and efficient manner. The main objective of this paper is to deploy a solution using open source tools in a Docker container based

environment to allow analysis of security anomalies. Therefore, relevant information must be collected, processed, and presented through

dashboard displays in order to identify or detect security incidents in real time in a timely manner.

Keywords: Docker; Container; Threat; Cloud; Vulnerability

1 Introduction

According to data provided by the 2019 M-Trends report

of the Fire Eye company on breaches and cyber-attacks

[1] , the global average time from having evidence of an

intrusion to detection is 78 days, which means that a

cybercriminal has more than two months to operate

freely on a vulnerable system without being detected.

Although this time is reduced each year, said report

indicates that 31% of incidents are detected within 30

days or less. This time is still high considering the

damage capacity that a computer attack can cause to an

organization and the economic losses that it can cause.

On the other hand, according to the report prepared by

the EU Agency for Network and Information Security

(ENISA)[2]. In which an analysis of cyber-attacks is

carried out, the biggest cyber threats for the years 2017

and 2018 continue to be Malware, attacks on web

services, phishing and spam. A new threat Cryptojacking

is identified in year 2021.

This attack is based on the malicious use of computers

for cryptocurrency mining. Within the field of

cybersecurity, it is also important to know the main

industries affected by a security incident. According to

IBM’s annual report on the threat index [4], the main

organizations attacked in 2021. Due to the various

threats that organizations face, it is essential to monitor

and analyze the records or events generated by the

devices, systems or applications, as well as the events

produced by the operating systems themselves related to

the records of Audit that allows you to recognize logins,

file modifications and erroneous configurations. These

mechanisms facilitate the identification of malicious

activities or violations in the security policy and allow

taking preventive and corrective measures [4], this in

order to avoid a security incident that affects IT assets.

On the other hand, many of the organizations have

several simultaneous methods that allow anomaly

detection: intrusion detection and prevention systems,

antivirus, authentication servers, firewalls, etc.

1.1 Current Situation

Many of the organizations carry out the compilation of

events or logs as essential elements to know the behavior

and state of the network. The existence of a great variety

and quantity of devices means that it is necessary to

deploy a centralized log management system, which

allows the administrator to determine in a timely manner

any type of incident of some kind in the element of

communications infrastructure [5].

1Research Scholar,Department of CSE, Vivekananda Global University,

Jaipur-303012 (INDIA)

Associate Professor,Department of IT, Swami Keshvanand Institute of

Technology, Management & Gramothan,Jaipur-302017 (INDIA)
2Professor, Department of CSE, Vivekananda Global University, Jaipur-

303012 (INDIA)
3Associate Professor, Department of CSE, Swami Keshvanand Institute of

Technology, Management & Gramothan, Jaipur-302017 (INDIA)
4Assistant Professor, Department of IT, Swami Keshvanand Institute of

Technology, Management & Gramothan, Jaipur-302017 (INDIA)

Author’s Email: ervipin.skit@gmail.com1, baldev.vit@gmail.com2,

neelamvit@gmail.com3,praveenyadavskit@gmail.com4

mailto:ervipin.skit@gmail.com
mailto:baldev.vit@gmail.com
mailto:neelamvit@gmail.com

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(6s), 782–793 | 783

1.2 Virtual machine V/s Container

When it comes to computer security, virtual machines

(VMs) [6] top the list hands down. But even though

virtual machines (VMs) provide better security isolation,

the number of virtual machines running on a server is

limited by the need for each VM to have its own copy of

the OS, libraries, dedicated resources, and applications

[6]. As a result, both system performance (such as slow

startup times) and available storage space are negatively

affected. There is a pressing need for a faster alternative

than virtual machines (VMs) since operating each

microservice on a separate VM is wasteful because of

the long startup time and increased resource usage that

happens. Traditional virtualization has been replaced by

container-based virtualization. Unlike virtual machines,

which each have their own operating system kernel,

several containers can share a single kernel. This greatly

reduces the startup time and the amount of resources

required for each image. While a virtual machine (VM)

may boot in as little as 30-40 milliseconds, a container

can do so in as little as 50 milliseconds. To ensure this

article was ready to be published, Kashif Saleem helped

as an assistant editor.

Fig 1: Comparison between Virtual machine and Docker

 [7] begins the process. LXC, OpenVZ, and Linux-

Vserver are all container technologies, but Docker is the

most popular. It shows the fundamental container

architecture, whereas the design of a simple virtual

machine. For micro services, containers provide a

number of advantages over virtual machines (VMs), such

as being lightweight, rapid, and simple to deploy; they

also allow for improved resource efficiency and version

control, making them a more feasible option. Internet of

Things (IoT), smart cars, fog computing, service meshes,

and other related initiatives are all benefiting from

containers. Because Linux containers are virtualized at

the system call level, programmed running within them

share the same underlying Linux kernel as those running

outside of containers. Container-based cloud services

provide a number of advantages over virtual machines as

a result, including the following [8]:

1. When running in a virtual machine, it is not

reasonable to expect a virtual machine application to

perform as well as a virtual machine program running

in a container when running in a virtual machine. In

part, this is due to the fact that containers don’t

emulate hardware but instead directly access system

resources.

2. Containers may be deployed at a higher density than

virtual machines since they have a shorter startup

time when compared to virtual machines.

3. Because containers only run a few apps at a time,

they consume resources such as memory more

effectively than virtual machines, allowing them to

be deployed at a higher density than virtual machines.

1.3 Container Related Technology

Linux containers use virtualization at the system call

layer to provide isolation. Virtualization is implemented

at the system call layer to achieve isolation. In addition

to Docker and LXC, there are some of the Linux

container technologies that are currently available. The

most significant difference between container

technologies is how they make use of the namespace [9]

support that is supplied by the container technology.

Namespaces are utilised in a number of ways by

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(6s), 782–793 | 784

different technologies in a range of contexts. On the

management stack level, separate command line tools

and APIs are offered, as well as a diverse ecosystem with

a variety of functionality that is supported by the

management stack. The performance of all containers, on

the other hand, is expected to be identical. Furthermore,

para virtualization and full virtualization are two of the

most widely used virtualization technologies today. It is

necessary to implement hypervisor calls in order to

transition between the operating system kernel and the

hypervisor’s virtualization layer, which is referred to as

paravirtualization in this context. As an example,

consider the hypervisor in the Xen operating system, as

well as the Linux Xen support for paravirtualized kernels

[10]. Paravirtualization, as compared to full

virtualization, provides a considerable performance

advantage over the latter technology. The ability to boot

paravirtualized computers without the usage of firmware

is available in a variety of configurations and

environments.

2 Literature Review

Container use initiatives have been built in numerous

fields since Docker’s inception in 2013. Docker has the

advantage [11], but does not have protection assurances

for any established security bugs in Docker image

structures, that it can easily exchange application

building environments with developers by container

technologies. As Docker images are shared without a

security diagnosis, polluted Docker images can be

distributed to make it easy to collapse the Docker based

application environment. In this article, we are

addressing a secure Docker system with a Docker Image

Vulnerability Diagnostic System (DIVDS). Once Docker

files are posted or downloaded from a Docker file store,

the DIVDS suggested diagnoses Docker images.

With the exponential growth of test results, the fusion

computing pattern is focused on the centralized database

or file system [12]. A cluster is essential for such storage

systems, but its set-up and delivery of resources are

difficult. It is a complex task to install, configure the

operating system and software and manage all

dependencies. Beyond this, different configuration

protocols are important, owing to the variation of server

equipment and the disparity between testing and the

production environment.

The J-TEXT cloud database (JCDB) is an experimental

nuclear fusion data storage and management system to

satisfy the needs of future MongoDB, Cassandra cluster

and web applications push-on long distance experiment

[13]. The configuration or size of JCDB from scratch on

these servers is not easy. Docker is a lightweight

containerization software platform for the system, to

construct cloud databases and internet apps, ensuring all

servers are consistent and automating deployment and

scale out tasks, reducing time required. JCDB sent out

two files and the files were removed to the Docker

server. You can also deploy it to cloud services like

Amazon Web Services and Microsoft Azure even

without any physical servers available.

The efficiency advantages of a lightweight container

architecture can be reaped with rapid I / O response

using quick back-end storage [14]. It can, however, have

a considerable impact on the performance of several

instances of the same or distinct applications running at

the same time. Due to the variety of I/O (read and write),

I/O (random and sequential), and I/O access patterns that

SSDs may support, performance can vary widely even

within the same application. As a first step, this study

aims to examine and analyse the performance

characteristics of containerized IO-intensive applications

with high performance NVMe SSDs, as well as new

guidelines for the design of both homogenous and

heterogeneous mixtures in order to achieve an optimal

and fair operation. We’re working on a new docker

controller to programme workload containers for diverse

applications using these development principles.

In order to minimize total execution time and maximize

resource use, our controller decides the optimum batches

of simultaneously working containers [15]. In addition,

our controller tries to ensure that all apps running

simultaneously are performing at a consistent level. This

new docker controller was developed by addressing an

optimization challenge using five distinct optimization

strategies. We used a multi-docker configuration with

three NVMe discs for our tests. Using a variety of

different I/O applications and I/O behaviours, we test our

controller and compare it to containers without a

controller in parallel. The results of our tests show how

well our new Docker workload controller handles a large

number of apps running simultaneously on SSDs.

Increased services with unknown demand pattern in the

edge network, driven by the growing popularity of the

microservice architecture [16]. It’s unlikely that pre-

deployed services, which are impractical commercially,

would be mostly silent. In addition, our restricted storage

capacity restricts the amount of instances that we can

provide. Instead, we have an on-demand depletion

strategy thanks to the Docker platform. In Docker, each

layer of a unit image has a separate piece of

functionality. To prevent humiliating the storage,

different services are allowed to repeat layers. Users may

link to a server and download all layers from various

places, and then run the required application instance as

quickly as possible using our layer placement method.

Because of storage and latency limits, we seek for the

ideal layer placement to optimise fulfilled demand.

Through the subdivision of the global issue into smaller

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(6s), 782–793 | 785

subproblems, a less exhaustive iterative optimization was

also constructed. Our simulation results suggest that our

heuristic solves the problem of less machine capital.

Finally, we give a few examples of how this method

might be put to use in the real world.

Virtualisation Network Feature (NFV) is one of the main

facilitators in mobile network networks of next-

generation (5G)[17].There are a broad range of

virtualization systems (e.g. virtual servers or containers)

that may be used to construct virtual networks (NF) in a

cloud environment. With its great efficiency and

adaptability, it is an excellent choice. As a result, the 5G

core network’s NFs may be loaded as software on the

platform’s common hardware. JSON and HTTP/2.0 are

used to create the Network Depository (NRF) function in

the Docker-based platform for NFV service discovery.

This includes the usage of hardware platforms for

performance testing such as NFReg, NFRupdate and

NFRegDeregister The testing data shows that the NRF

performs well in the 5G NFV architecture and that the

NFV platform is more adaptable than traditional

communication networks from Docker..

Complex CNC system functions and a wide range of

product types are required to meet the needs of the

present industrial age and to create a modular CNC

framework that can be customised and expanded. In this

paper[18], With the high-performance multi-core

processor, we propose an integrated parallel CNC system

that can operate multiple CNC machine tools based on

the original architecture between CNC system and

machine tool and to increase integration level of Indus-

trial Control System. For example, Docker containers

have their own interpreters and interpolators because of

container virtualization technologies.

The Program Scheduling Software schedules over usable

modules and caches the data that each software produces

in order to optimize the quality of processing and the

utilization of resources [19]. The colored Petri networks

are used to model the system architecture for CNC

models and task planning. To decide the goals of the

system threads, two approaches for task preparation

dependent upon the task dependencies and the flow of

data are provided. The developed platform analyzes the

real time environment of the virtual system, the real-time

system environment and the integrated CNC

communication module. In addition, the results of the

tests show that synchronized control of two equipment

tools is possible with the proposed integrated CNC

parallel system.

Docker offers the chance to further enhance the

efficiency of DCs. However, existing models [20] and

schemes for the allocation of container-based resources

by Docker are not efficient. We are designed to minimise

infrastructure costs for DC installations and enable

Automated Scaling as the operating load of cloud

applications varies, using a new infrastructure-focused

Docker resource management architecture (AODC). The

AODC resource allocation issue will then be modelled

taking into consideration Docker characteristics, various

applications requirements and available resources in

cloud data centres, and a scalable DC algorithm with a

variety of dynamic applications and massive physical

resources.

Desktop applications across edge networks need to

transition services smoothly [21]. Edge computing

systems have to help these transitions of resources

seamlessly and keep up with network device movements.

Live migration of offload services in the wide area

network, even in the edge computing environment, is a

major challenge. In this paper we suggest the

architecture of the edge computing platform to facilitate

smooth file transfer, while still retaining the device user

in contact with the nearest edge server. In the state-of-

the-art container migration method, we define a crucial

issue. Based on our systemic analysis of the container

storage system in Docker, we propose to leverage the

storage system’s layered nature so that overhead

synchrography is reduced without reliance on the

distributed file system. Our system cuts handoff speed by

80 per cent (56 percent) under 5 Mbps (20 Mbps)

network bandwidth conditions in comparison to the

state-of-the-art service handoff approach in the edge

setting.

Docker is used in hosting facilities of data centres. A

hierarchic storage architecture is implemented in the

docker model [21], which means that this image consists

of a file system consisting of layers. Only the top layer is

read in writing in the process of creating images, while

all lower layers are read-only. In the process of image

creation, however, temporary files are also used.

However, if an unattended developer inserts and extracts

a temporary file in various layers then a file becomes

redundant. This scent leads to big images that

significantly restrict the reliability of image processing,

reducing the quality of operation in the face of

unexpected heavy loads. This has of- ten been dubbed

"Temporary File Scent" issue. In order to resolve this

problem, we conduct a case study on DockerHub for the

real world Dockerfiles. We summarize four different

smell patterns and propose a state-dependent static

analysis method for the detection of such smells. Based

on this case study, we also provide selective options to

remove the temporary file with three possible fixing

methods.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(6s), 782–793 | 786

2.1 Docker Hub’s

 When it comes to container images, Docker Hub has the

largest database available. Docker Hub official

repositories are divided into two types, official and

community, depending on their contents. Meta-

information such as repository descriptions, repository

histories, Docker files, the number of stars and pulls for

each repository, and developer information is also

included alongside each image in a Docker Hub

repository. Conducting a risk assessment is the first step

in analysing Docker Hub's security. Using the primary

factors that affect a Docker image's behaviour, we

pinpoint potential dangers [22].

2.2 A command and a sensitive variable

Users can launch a Docker container with the command

run-cmd. Running a container relies on the image and

parameters specified in the run command. "docker run

vipin-opencv2-privileged p 1234:11 vipin/opencv/x86"

is an example of how to launch a container on Docker

Hub. Suggested run-commands can be helpful to those

who have never used the image previously. For

customers, the instructions provided by anonymous

programmers are not explicit enough to tell them how

much trust they should put in them. Consequently, these

files are not filtered out by Docker Hub in any way.

Running a command with a variety of arguments can

also affect how the container behaves [23]. When it

comes to the isolation between a host computer and its

docker container or other containers when it comes to

network and storage, these elements are crucial. Running

an image with a privileged parameter is one method of

gaining root privileges. Neither the host nor the container

will be spared the consequences of a badly handled run

command that contains sensitive parameters.

2.3 Programs Execution in Container

Many Docker images already include duplicate software,

according to previous research [24]. Docker images

should be secure if we focus on the applications running

on them. According to our empirical research of Docker

images, an entry-file (an executable file in images,

determined by a configuration or execute commands) is

always the first software to be activated when a container

is launched. It is possible that other files will be

automatically started when the entry-file is run. Safety

depends on the programmes that are carried out on a

container (the entrance file and subsequent triggered

files). As a result, consumers are less likely to use

software that is distinct from what they have previously

used. Why do we need to look at the programmes that

have been executed in order to see whether any

hazardous images have been found?

2.4 Containment Program Vulnerabilities

Docker images are built from many different types of

programmes, each of which has unique vulnerabilities

that might pose a serious threat to the system. Exploiting

security holes might lead to data leaks and other

problems. Thus, Docker has no incentive to fix bugs in

software that has been reused from other systems [25].

Docker’s security concerns are increased since it takes

longer to fix bugs in Docker images.

3 Proposed Work

To better understand the security of Docker Hub, we

need to know what images are available on Docker Hub.

Since much of the data has never been gathered, the

analysis is incoherent. A custom web crawler that uses

the API provided in [26] is used to acquire the Docker

images and their related meta-information from [Docker

Hub]. The Docker Hub data we collect is openly

accessible to everyone, and it is permissible to do

research on this data set.

Namespaces in Linux are the primary method of

container separation. Using names-paces gives each

container a unique view of the system. Additionally,

namespaces may be used for network connectivity,

mount points, process IDs and user IDs, inter-process

communication as well as many other functions.

Namespaces can be considered as containers in a

collection [27]. Resource visibility is controlled through

namespaces, which may be used to restrict access to

resources in a container. Specifically, container

processes have access to a variety of network interfaces,

each with a unique IP address compared to other network

interfaces on the host or other containers. Some domains,

such as security subsystems, need more namespace

support in order for containers to function independently.

Namespace-less system are often inaccessible to

containers.

Many system calls are implemented in Linux and only

the root user of the host computer can utilise some of

them. A good example of this is changing the system

clock. As long as the containers are running on distinct

hosts, each can have its own root user and execute

privileged syscalls [28]. It is vital to limit access to the

syscall interface to prevent container users from

modifying the system clock, as namespaces do not

isolate the system clock. An example of a technology

that supports this is the Linux Capabilities. Linux

includes 37 features that can be used to prohibit access to

certain system calls or system calls with certain

parameters, at this time. Deprives container apps of 24 of

the 37 capabilities that Docker automatically removes for

processes that it starts in a container. Applications

running on virtual machines cannot adjust the system

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(6s), 782–793 | 787

clock and do other tasks that need privileged access, such

as activating or deactivating swap memory.

3.1 Threat Model

According to Figure 1, Docker Hub is vulnerable to two

types of attacks. In Vulnerable Docker Image inclusion

of meta information in Docker Hub images may result in

the introduction of security flaws. Hackers can gain

access to your personal information if you download and

run unsafe images. Developers may also distribute

commands that contain sensitive arguments, such as

allowing containers root access to the host, which may

present extra security vulnerabilities.

Sometimes, malicious Docker Hub images are uploaded

with harmful run-commands included in the description.

Docker Hub’s security mechanisms allow malicious

images and data to slip through the holes [29]. If a

person runs a malicious image they’ve obtained, they

may be exposed to cryptomining attacks. Host file leaks,

on the other hand, can be caused by malicious run-

commands. It is reasonable to assume that the tools we

use to analyse Docker images in this study are not known

by potential attackers. The conclusion is that the harmful

code may be able to evade the scrutiny as a result.

Fig 2: Threat Model Docker Security Analysis

Table 1: Data Set Collected from Docker hub

 Images Developers Repositories

Community 71 369860 985710

Official 13 1 151

Total 84 369861 985869

3.1.1 Analysis of proposed Framework

Security information may be found in Docker images on

Docker Hub. The study is nonsensical since a large

portion of the data has never been collected. The API

supplied by [Docker Hub] is utilised by a custom web

crawler to obtain the Docker images and their related

meta-information. The data-set of Docker Hub is

publicly available to everyone, and it is legal to do

research on this data.

3.1.2 Collection of Data from Docker Hub

Table 1 shows that our data set contains directories

containing more than 985,869 repositories. Each dataset

in each archive contains images and associated metadata.

The raw data also contains the following information and

code that we extract for research purposes.

The run-commands and any sensitive parameters; should

be carefully considered, as they can greatly affect the

way containers behave. When a repository's description

begins with "docker run," sensitive parameters are

extracted from run-commands using string matching so

that security analysis can be performed.

Collecting executed program: In order to protect a

container, the security of the container’s run programme

must be considered. We create an automatic parser tool

in order to locate and extract the running application.

The entry-file for each image is identified by a

Dockerfile or manifest. As soon as the parser encounters

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(6s), 782–793 | 788

an entry-file, it begins searching for other files that are

activated by that particular entry-file. Once again, the

image's programmes are extracted, and the process is

repeated. In order to assess ELF files and shell scripts,

we’ve implemented a custom script interpreter that uses

strings and a special interpreter for ELF files [29].

We can get a complete list of all the programmes that

have been run on the images examined by using the

parser. JAR, ELF, Shell Script, etc. are all file kinds that

may be found in the extracted executable applications.

Analyzing several different kinds of software at once is

difficult since developing and verifying malware

fingerprints takes a long time. Because of this, we resort

to internet virus analysis programmes for assistance.

Antivirus (AV) platforms such as Kaspersky, Symantec,

and BitDefender use VirusTotal [29] are used for

malware detection with different signature-based and

anomaly-based detection methodologies.

3.1.3 Track the malicious code and program

Malware of all types, such as Trojans, Backdoor Trojans,

and BitcoinMiners may be detected with this tool. As a

result, we use Virus Total to do a preliminary scan.

Previous research has demonstrated that VirusTotal may

incorrectly classify harmless software as harmful [14, 22,

29]. When a sufficient number of antivirus vendors

identify a programme as potentially harmful, earlier

studies used that information to migrate false positives.

In reality, there is no consensus on a threshold value for

a certain disease. A threshold of two, four, or five has

been used in previous detection methods [?]. At least five

of the leading antivirus (AV) vendors deem software

harmful in this article, and we define it as such. As a

result of this method, the evaluated programmes are

(nearly) appropriately categorised as either harmless or

harmful. Aside than reporting the type of each antivirus

company’s malware, the findings of the primary

screening are all that are available. First stage screening

findings are difficult to demonstrate, much alone the

behaviour of each malware kind. As a result, once the

main screening yields a list of potentially harmful files, a

follow-up screening is required to verify the detections

and examine the behaviour of the files in question.

Additionally, we gather logs of system calls, network

traffic, etc. to highlight security breaches caused by

potentially dangerous files that are dynamically launched

in a container.

A framework is then implemented to complete the

aforesaid workflow. To begin, our framework makes use

of parser to discover and extract running apps from

Docker images. VirusTotal API is used to identify

potentially harmful files. As a last step, we create a

container that includes strace and tcpdump tools for

security investigation. For example, we use this

container for automatically launching and tracking

potentially harmful files so that we may collect useful

system logs. In order to decrease the number of system

logs created, main screening filters out most non-

malicious images. Automated detection of malicious

images is substantially facilitated by the use of this

framework.

3.1.4 Malicious Image Dissemination in Docker

There are no dangerous applications running in the

newest images from 147 authoritative repositories,

according to our first investigation. Extracting the

following subsets from the dataset will allow us to

conduct in-depth studies of community images. A list of

the most popular images in the top 10,000 repositories is

identified and randomly selected 100 most recent images

from each category on basis of popularity rankings of the

remaining community repositories.

4 Results

A single image or file is processed by our parser in

Section 3.2 in 5 and 0.15 seconds on average.

The parser identifies 693,757 running processes in the

images evaluated. After duplication, we are left with

36,584 distinct programmed that have been run, of which

our framework has detected 13 as dangerous. In all, there

are 17 images of the 13 harmful applications.

Furthermore, we observe that all of the malicious

programmed in these malicious images are entry files.

This suggests that malicious images frequently use a

single entry-file to carry out assaults, rather than relying

on a series of triggered files.

Docker Hub is a good place to look for malicious images

created by the same person. The harmful images that are

associated should be checked. In the repositories, we

notice two types of linked malicious images; Newest 10

images and most popular images.

A total of 48 and 84 linked images are identified; among

them 24 images are detected that have the same

malicious file. There are 186 new programmes that have

been executed since the framework was built, with 20 of

those applications being malicious. Using heuristic

techniques like the ones presented here to analyses

related images can be an excellent way to uncover

harmful images and programmes, as this enlightening

discovery shows. Each of the blocks that make up the

pipeline must be defined in a file configuration inside the

Logstash directory.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(6s), 782–793 | 789

Fig 3: Docker model for task execution

Attq is defined as the attack task queue length: the

mathematical anticipation of the number of Attack which

launched in the docker and handled in the proposed

model. According to the Equations (1) and (3)

restrictions their relationship identified and they exist:

𝐴𝑡𝑡𝑞 = ∑ (𝑚 − 𝑡)𝑞𝑚

𝐿

𝑚−1

=
qpρtρt

t! (1 − ρt)
2

[1 − ρt
L−t+1 − (1 − ρt)(L − t + 1)ρt

L−t]

Where ρ = λ/µ,ρs = λ/tµ expressing the level of service

intensity, which is a reflection of the system’s

performance.

Pp = (∑
ρm

m!

t−1

m=0

+
ρt(1 − ρt

L−t+1)

t! (1 − ρt)
)

−1

qm =
ρm

t! tm−t
 q0

From these eEquations Wr can be obtained.

Wr =
Mr

λf

λe = λ (1− pk) reflects the pace at which jobs are

completed. An issue with the cluster service caused the

task request’s effective arrival rate to be higher than

expected. The reason for this is that jobs with probability

Qo can’t be handled adequately by cluster service, but

tasks with probability Qi can. As a result, we may arrive

to the arrangement Equation in a straightforward manner.

Wq =
rq

λe

=
∑ (m − s)pm

K
m=1

λPi

=
∑ (m − t)pm

K
m=1

λ(1 − Po)

It represent the existence of QoS constraints, so it must

satisfy the Wq < Wqmax, the relationship to execute the

docker program.

Wr =
Rr

λe

=
∑ (m − t)pm

K
n=1

λPi

=

K
m=1

(m − t)pm

λ(1 − Po)

< Wrmax ,

𝐸[𝑊𝑟|𝑡 = 𝑡] < W𝑟𝑚𝑎𝑥 and 𝐸[𝑊𝑟|𝑡 = 𝑡 − 1]W𝑟𝑚𝑎𝑥 ,

𝑈𝑑𝑜𝑤𝑛 < E [∑
𝑈𝑖

𝑡
|𝑡 = 𝑡

𝑡

𝑖=1

] < U𝑢𝑝

𝑈𝑑𝑜𝑤𝑛 > E [
K

i = 1

𝑈𝑖

𝑡
|𝑡 = 𝑡 + 1] or EE [

K

i = 1

𝑈𝑖

𝑡
|𝑡 = 𝑠

− 1] > U𝑢𝑝

here Equation show that attack Wr is related with

resource in cluster t,K,λ, and µ, and since λ,µ, and K

independent if the u share the same Network, t Qot

constraints are a collection of viable solutions, and the

solution space is the set of all feasible solutions. As a

result, finding the best cluster index is a challenging task.

Relevant information of the analyzed traffic in logs at the

location / usr / local / bro / logs / current, these logs are

written in ASCII format, organized in columns and

separated by tabs. The possible records or logs generated

by Zeek from the analyzed traffic are indicated in the

table3.

Table 2: Log file Location to analysis

Log file Depiction

files.log File analysis

dns.log DNS requests

http.log HTTP requests and responses

conn.log TCP, UDC and ICMP connections

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(6s), 782–793 | 790

ssh.log SSH connections

notice.log Detection notifications

intel.log Intelligence Framework data matches

The logs that will allow the identification of anomalies are following:

intel.log is one of the most remarkable feature of Zeek is

the possibility of working jar with its Intelligence

Framework, which allows consuming data from different

sources with relevant and updated information on

potential threats. The main element of intelligence data is

the indicator, which can be an IP address, email address,

hash of a file or certificate, subnet, domain, etc. In

addition, the indicator contains a set of metadata to

provide more information about the security event.

Intelligence data is usually generated by incident

response processes and is available for free use in many

cases. For this project, intelligence data will be produced

through integration with a threat management system

called CIF (Collective Intelligence Framework), which

allows combining information from different feeds

(datasets) and consuming them in order to identify and

detect malicious activity.

notice.log contains security events related to port

scanning, brute force attacks, SQL injection attacks,

invalid SSL certificates, among others are sent to this

registry.

conn.log contains session data between two nodes is

security related information. The conn.log record stores

all connections established through TCP / UDP and

ICMP network protocols. The storage of the logs can be

done in a JSON format facilitating the subsequent

ingestion of these logs in the collection tool, this can be

done by using a script and loading it into the /local.bro

file. For ease, this format modification will be carried out

directly in the tool for collecting all the data from

different sources.

What’s more, on the file /local.bro se define the script

that has to run, Directives necessary for the operation of

intelligence data were added to the default configuration.

The content of this file is indicated below setting.

4.0.1 Tickets generation in Docker

They allow to establish the source of the logs sent, in this

case it is necessary to define This information is sent

from the Filebeat agent through the listening TCP port

5044, the port published in the container for establishing

the connection between Filebeat and Logstash.

4.0.2 Filters

Filters perform event processing in order to transform the

data into a defined format or normalize it. Basically, the

complexity in the implementation of the pipeline lies in

the filter block. For example, the following Steps are

performed at this stage for the conn.log records:

(1) Elimination of comments located at the top of the

log files. Regular expressions are used to

 remove all lines that start with.

(2) Elimination of the tabs using the CSV filters to

carry out the transformation of the data.

 Although the separation of the columns is not

carried out

(3) Transformation of the time stamp (timestamp) that

Zeek establishes from UNIX type to date type, this

is done using a filter that Logstash has.

A 1560212576.046810 -> Jun 11, 2019 0: 22: 56.046

Finally, it is necessary to carry out two tasks: modify the

names of the fields. It is necessary to use the filter called

Mutate to modify the names of fields that contain points,

because Logstash has certain disadvantages in processing

these characters. For example, the following change will

be made to the names of the fields for the logs.

id. resp_p => id_resp_port id. orig_h => id_orig_host id.

resp_h => id_resp_host id. orig_p => id_orig_port

At the same time, it supports data types in its scripting

language:

id. resp_p => integer duration => float orig_bytes =>

integer missed_bytes => integer id. orig_p => integer

resp_bytes => integer

Data normalisation is achieved by the creation of filters

for each of the log files that Logstash processes. An

image’s release and update dates and times must be

determined exactly as part of the Docker life cycle in

order to fully grasp the chronology. We can’t reliably

predict the exact timing because of these challenges.

Several vulnerabilities have been addressed numerous

times. As fresh data is discovered, it is feasible that

different manufacturers will announce different

timetables. Due on earlier research, these times are

proposed to be defined in the following manner: There

has been a software vulnerability discovered and deemed

dangerous to the general population on this day. For

vulnerability, patch-time refers to when a workaround or

patch is made available by the software vendor or the

product’s originator to guard against its exploitation. As

an alternative to reporting a vulnerability that has been

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(6s), 782–793 | 791

fixed by software update, we instead publish the date of

such update.

4.1 Leakage of Host File detection

For detection of anomalies we use the following Data set

as input and output.

Input: the type of entry and the routes where the records

of interest are stored are defined. The following table

indicates the defined paths for the records generated.

Table 3: Generated Log Paths got Anomalies Detection

Item Log Route Description

intel.log /usr/local/bro/logs/current/intel.log Intelligence information

notice.log /usr/local/bro/logs/current/notice.log Detected anomalies

conn.log /usr/local/bro/logs/current/conn.log Session data

Output: The IP address of the server and the default

listening port, 5044, must be entered in the output. We

demonstrate how to leak user files from the host with the

critical attributes shown in Figure 3. In order to mount a

volume from the host to the container, use the -volume

or option. A -volume on the host can be made available

to the container using the -v src: dest parameter.

Attackers can use this method to upload user data from

the host disc to a remote internet repository. Docker

images include critical characteristics, thus we looked at

how they were distributed. Many Docker repositories

contained descriptions that included the proposed run

instructions, according to our research. The total number

of sensitive parameters in these commands is 81,294

since each command has an average of one sensitive

parameter (see Table 1). In light of how widely they are

used and the significant impact they have on security, we

must do everything we can to improve user knowledge

of the security threats posed by sensitive parameters and

to provide approaches that can effectively identify these

hazards.

5 Conclusions

Runtime security can be provided by node-based

solutions in a number of different ways, such as at the

orchestration layer (Kubernetes admission controller) or

the application layer (Node level agent, privileged

container). While effective, these consequences are

either overly restrictive (such as requiring complex

deployment checks via the Kubernetes admission

controller) or ineffective (such as requiring simple

deployment checks. Although security hooks are being

incorporated into container-as-a-service environments,

these efforts are still in their infancy and may not be

fully implemented across your entire container

infrastructure. The inability to install an agent on the host

or node makes it challenging to migrate from traditional

node-based approaches (which have their own benefits)

to modern Container as a Service environments (such as

AWS Fargate, Azure Container Instances, and Google

CloudRun).

References

[1] Jiang, Y., Liu, W., Shi, X., Qiang, W. (2021).

Optimizing the copy-on-write mechanism of

Docker by dynamic prefetching. Tsinghua

Science and Technology, 26(3), 266–274.

[2] Kwon, S., Lee, J.-H. (2020). Divds: Docker image

vulnerability diagnostic system. IEEE Access, 8,

42666–42673.

[3] Zhao, N., Tarasov, V., Albahar, H., Anwar, A.,

Rupprecht, L., et al. (2021). Large-scale analysis

of docker images and performance implications

for container storage systems. IEEE Transactions

on Parallel and Distributed Systems, 32(4), 918–

930.

[4] Xie, Y., Jin, M., Zou, Z., Xu, G., Feng, D., et al.

(2020). Real-time prediction of docker container

resource load based on a hybrid model of arima

and triple exponential smoothing. IEEE

Transactions on Cloud Computing, 1–1.

[5] Jin, H., Wang, Y., Wang, Q., Liu, J., Wang, S., et

al. (2019). Architecture modelling and task

scheduling of an integrated parallel cnc system in

docker containers based on colored petri nets.

IEEE Access, 7, 47535–47549.

[6] Divya, V., Sri, R. L. (2021). Docker-based

intelligent fall detection using edge-fog cloud

infrastructure. IEEE Internet of Things Journal,

8(10), 8133–8144.

[7] Melo, L., Wiese, I., d.Amorim, M. (2021). Using

docker to assist q amp;a forum users. IEEE

Transactions on Software Engineering, 47(11),

2563–2574.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(6s), 782–793 | 792

[8] Sollfrank, M., Loch, F., Denteneer, S., Vogel-

Heuser, B. (2021). Evaluating docker for

lightweight virtualization of distributed and time-

sensitive applications in industrial automation.

IEEE Transactions on Industrial Informatics,

17(5), 3566–3576.

[9] Ma, L., Yi, S., Carter, N., Li, Q. (2019). Efficient

live migration of edge services leveraging

container layered storage. IEEE Transactions on

Mobile Computing, 18(9), 2020–2033.

[10] Zou, Z., Xie, Y., Huang, K., Xu, G., Feng, D., et

al. (2019). A docker container anomaly

monitoring system based on optimized isolation

forest. IEEE Transactions on Cloud Computing,

1–1.

[11] Lu, Z., Xu, J., Wu, Y., Wang, T., Huang, T.

(2019). An empirical case study on the temporary

file smell in dockerfiles. IEEE Access, 7, 63650–

63659.

[12] Sami, H., Mourad, A., El-Hajj, W. (2020).

Vehicular-obus-as-on-demand-fogs: Resource and

context aware deployment of containerized

micro-services. IEEE/ACM Transactions on

Networking, 28(2), 778–790.

[13] Diekmann, C., Naab, J., Korsten, A., Carle, G.

(2019). Agile network access control in the

container age. IEEE Transactions on Network and

Service Management, 16(1), 41–55.

[14] Sairam, R., Bhunia, S. S., Thangavelu, V.,

Gurusamy, M. (2019). Netra: Enhancing iot

security using nfv-based edge traffic analysis.

IEEE Sensors Journal, 19(12), 4660–4671.

[15] Wu, Y., Zhang, Y., Wang, T., Wang, H. (2020).

Characterizing the occurrence of dockerfile

smells in open-source software: An empirical

study. IEEE Access, 8, 34127–34139.

[16] Bellavista, P., Corradi, A., Foschini, L., Scotece,

D. (2019). Differentiated service/data migration

for edge services leveraging container

characteristics. IEEE Access, 7, 139746–139758.

[17] Mahmud, R., Toosi, A. N. (2021). Con-pi: A

distributed container-based edge and fog

computing framework. IEEE Internet of Things

Journal, 1–1.

[18] Kim, T., Al-Tarazi, M., Lin, J.-W., Choi, W.

(2021). Optimal container migration for mobile

edge computing: Algorithm, system design and

implementation. IEEE Access, 1–1.

[19] Cai, L., Qi, Y., Wei, W., Li, J. (2019). Improving

resource usages of containers through auto-tuning

container resource parameters. IEEE Access, 7,

108530–108541.

[20] Tsung, C.-K., Hsieh, H.-Y., Yang, C.-T. (2019).

An implementation of scalable high throughput

data platform for logging semiconductor testing

results. IEEE Access, 7, 26497–26506.

[21] Cinque, M., Della Corte, R., Pecchia, A. (2019).

Microservices monitoring with event logs and

black box execution tracing. IEEE Transactions

on Services Computing, 1–1.

[22] Jimenez, L. L., Schelen, O. (2020). Hydra:

Decentralized location-aware orchestration of

containerized applications. IEEE Transactions on

Cloud Computing, 1–1.

[23] Karn, R. R., Kudva, P., Huang, H., Suneja, S.,

Elfadel, I. M. (2021). Cryptomining detection in

container clouds using system calls and

explainable machine learning. IEEE Transactions

on Parallel and Distributed Systems, 32(3), 674–

691.

[24] Nakata, R., Otsuka, A. (2021). Cyexec*: A high-

performance container-based cyber range with

scenario randomization. IEEE Access, 9, 109095–

109114.

[25] Ramanathan, S., Kondepu, K., Razo, M., Tacca,

M., Valcarenghi, L., et al. (2021). Live migration

of virtual machine and container based mobile

core network components: A comprehensive

study. IEEE Access, 9, 105082–105100.

[26] Karn, R. R., Kudva, P., Elfadel, I. A. M. (2019).

Dynamic autoselection and autotuning of machine

learning models for cloud network analytics.

IEEE Transactions on Parallel and Distributed

Systems, 30(5), 1052–1064.

[27] Epiphaniou, G., Pillai, P., Bottarelli, M., Al-

Khateeb, H., Hammoudesh, M., et al. (2020).

Electronic regulation of data sharing and

processing using smart ledger technologies for

supply-chain security. IEEE Transactions on

Engineering Management, 67(4), 1059–1073.

[28] Sultan, S., Ahmad, I., Dimitriou, T. (2019).

Container security: Issues, challenges, and the

road ahead. IEEE Access, 7, 52976–52996.

[29] Xu, R., Jin, W., Kim, D. (2021). Enhanced

service framework based on microservice

management and client support provider for

efficient user experiment in edge computing

environment. IEEE Access, 9, 110683–110694.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(6s), 782–793 | 793

[30] Souquet, L., Talbi, E. G., Nakib, A. (2020).

Fractal decomposition approach for continuous

multiobjective optimization problems. IEEE

Access, 8, 167604–167619.

[31] Sami, H., Mourad, A. (2020). Dynamic on-

demand fog formation offering on-the-fly iot

service deployment. IEEE Transactions on

Network and Service Management, 17(2), 1026–

1039.

[32] Cui, H., Zhou, Y., Wang, C., Wang, X., Du, Y., et

al. (2021). Ppsb: An open and flexible platform

for privacy-preserving safe browsing. IEEE

Transactions on Dependable and Secure

Computing, 18(4), 1762–1778.

[33] Kafle, V. P., Muktadir, A. H. A. (2020).

Intelligent and agile control of edge resources for

latencysensitive iot services. IEEE Access, 8,

207991–208002.

[34] Kim, A., Park, M., Lee, D. H. (2020). Ai-ids:

Application of deep learning to real-time web

intrusion detection. IEEE Access, 8, 70245–

70261.

[35] Cai, B., Li, K., Laiping, Z., Zhang, R. (2020).

Less provisioning: A hybrid resource scaling

engine for long-running services with tail latency

guarantees. IEEE Transactions on Cloud

Computing, 1–1.

[36] Vedant Bhatt, Harvinder Singh Diwan, S. K. A.,

Yashika Saini (2021), Empowering ML Work-

Flow with DevOps within Micro Service

Architecture and Deploying A Hybrid-Multi

Cloud, Maintaining CI/CD Pipeline: An Open

Shift Orchestration of ML-OPS. International

Journal of Contemporary Architecture The New

ARCH, e-ISSN: 2198-7688, Vol. 8 No. 2 (2021):

Vol. 8 No. 2.

[37] Ashutosh Kumar & S. K. A. (2018).

Implementation of new Cryptographic Encryption

Approach for Trust as a Service (TAAS) in Cloud

Environment. International Journal of Computer

Application (2250-1797) Issue 8 Volume 4,

https://dx.doi.org/10.26808/rs.ca.i8v4.03

https://scholar.google.com/citations?view_op=view_citation&hl=en&user=rXOEM6cAAAAJ&cstart=20&pagesize=80&citation_for_view=rXOEM6cAAAAJ:WF5omc3nYNoC
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=rXOEM6cAAAAJ&cstart=20&pagesize=80&citation_for_view=rXOEM6cAAAAJ:WF5omc3nYNoC
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=rXOEM6cAAAAJ&cstart=20&pagesize=80&citation_for_view=rXOEM6cAAAAJ:WF5omc3nYNoC
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=rXOEM6cAAAAJ&cstart=20&pagesize=80&citation_for_view=rXOEM6cAAAAJ:WF5omc3nYNoC
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=rXOEM6cAAAAJ&cstart=20&pagesize=80&citation_for_view=rXOEM6cAAAAJ:WF5omc3nYNoC

