
 

International Journal of 

INTELLIGENT SYSTEMS AND APPLICATIONS IN 

ENGINEERING 
ISSN:2147-67992147-6799                                       www.ijisae.org Original Research Paper 

 

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(7s), 138–157 |  138 

Enhancement of Speech for Hearing Aid Applications Integrating 

Adaptive Compressive Sensing with Noise Estimation Based Adaptive 

Gain 

Mr. Hrishikesh B. Vanjari 1, Dr. Sheetal U. Bhandari2 Dr. Mahesh T. Kolte3 

Submitted:23/03/2023                Revised:25/05/2023               Accepted:11/06/2023 

Abstract: Hearing aids provide the necessary amplification for successful rehabilitation of hearing-impaired persons. It becomes very 

challenging for hearing aid devices to attain close to normal hearing. This research suggests a method for improving communication for 

hearing-impaired people utilizing a combination of three strategies: noise estimation based integrated based gain function, adapted 

compressive sensing, and listener preference-based customization gain function. Use of integrated gain function and adapted compressive 

sensing helps to reduce the noise distortion. Use of the customization gain function allows for enhancing the noise-removed speech to the 

comfort level of the listener. It is achieved by shaping the frequency and amplitude of signal. The overall objective is to enhance quality 

(noise suppression) and intelligibility (perception) of speech. Performance of proposed solution is tested against noise at various SNR. 

Results are compared with existing works to established speech quality metrics. The proposed solution is able to attain about 40% 

improvement in noise quality and 70% reduction in processing time compared to existing works.   

Keywords: Compressive sensing, customized hearing loss, hearing aid, speech enhancement.  

1. Introduction 

Worldwide, among sensory deficits, hearing loss is most 

prevalent.. According to recent WHO estimates [1], about 

450 million people worldwide have been disabled by 

hearing loss. For those with mild to severe hearing loss and 

various combinations of conductive and sensorineural 

impairments, hearing aids provide a solution. Frequency 

dependent elevation of hearing thresholds is done to 

mitigate conductive loss. Frequency selective amplification 

is done to reduce conductive losses.  

The dynamic range of hearing in people with sensorineural 

deficits has been diminished, along with the loudness 

connection between speech components and frequency-

dependent elevation of hearing thresholds [29]. Speech 

comprehension is very challenging for those with 

sensorineural loss, particularly in loud settings [30]. 

Many works on speech enhancement for sensorineural loss 

have been carried out in the last two decades. The existing 

works are in the categories of selective frequency 

amplification, range compression and suppression of tones 

[28]. Under the presence of noise of different types, the 

performance degrades in these approaches. These 

approaches fail to prevent temporal and spectral masking. 

They also fail to suppress wideband nonstationary noise. 

The computational complexity of hearing aids limits the use 

of sophisticated signal processing methods.  

In this paper, we provide a speech enhancement solution 

combining noise estimation based integrated gain function, 

adaptive machine learning based compressive sensing, and 

customizable gain function for shaping the frequency and 

amplitude according to the comfort level of the hearing-

impaired listeners. The suggested remedy solves the two 

challenges of enhancing voice quality by reducing noise and 

enhancing speech understandability. More and more voice 

processing applications are using compressed sensing (CS). 

It is based on exploiting the signal sparsity and offers better 

utilization of the resources. Speech enhancement via 

compressive sensing enables the reconstruction of sparse 

data, thereby allowing a simpler implementation and no 

need of voice activity detection. Different from previous 

compressive sensing works, this work uses machine 

learning based optimal sensing matrix selection based on 

features of noise speech signal. This allows for faster 

convergence of ℓ1 − 𝑛𝑜𝑟𝑚 in compressive sensing. 

Proposed solution is tested for different noisy speech 

samples in NOIZEUS corpus dataset. Results are compared 

with existing solutions for various speech quality metrics 

and processing delay. Significance of this work's 

contributions are listed below. 
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1. Ensemble of three strategies is done in a pipeline for 

reducing the noise and improving the speech 

intelligibility 

2. Compressive sensing is fine-tuned with the adaptation 

of sensing matrix generation using machine learning. 

The adaptation is able to decrease computational 

complexity, storage, and delay compared to use of 

Gaussian random sensing matrix.  

3. The frequency and power level are customizable 

according to the comfort of the hearing impaired 

listeners. The customization is achieved using a 

frequency and amplitude shaping gain function.  

The organization of paper is: in section 2 provides a 

detailed survey on existing works and summarizes the open 

issues. Section 3 provides further information on the 

suggested speech enhancement method. Part 4 presents 

experimental findings and a comparison analysis of the 

suggested work. Part 5 concludes the study and outlines its 

future scope.       

2. Related Work: 

Authors of [2] suggested a compressive sensing-based voice 

enhancement technique that is devoid of previous noise 

estimate. Compressive sensing allows for the recovery of 

speech signals, that are normally spare and nonspare signals 

are filtered. Solution was specific to Arabic speech with 

Gaussian noise. The solution takes considerably higher 

delay and performs poorly for real world noise. 

Convolutional neural networks with multiobjective learning 

were employed for voice augmentation by the authors in 

[3]. The noisy voice spectrum is cleaned up using a 

convolutional neural network. An algorithm is fast and 

targeted to be executed on smartphone. A review of some of 

the existing two-channel speech enhancement algorithms 

are presented in [4]. Most of the approaches need manual 

tuning by hearing aid users to adjust the noise suppression 

level. Deep learning algorithms for hearing loss and speech 

enhancement were experimented in [5]. A Mel-frequency 

feature along with LSTM is found to provide better PESQ 

scores. Authors in [6] used an integrated gain function for 

speech enhancement. One gain function is obtained using 

the coherence between speech and noise and another gain 

function is obtained using Super Gaussian Joint Maximum a 

Posteriori (SGJMAP). Background noise is suppressed 

using the coherence gain function and speech quality is 

improved using SGJMAP. Users with cochlear implants 

may read an evaluation of neural network-based speech 

improvement in [7]. Decomposition of a noisy voice signal 

into time-frequency units. Features that are extracted from 

time-frequency units and passed to the neural network. 

Frequency channel estimates are provided by the neural 

network. This estimation is used for noise suppression.  

Speech enhancement using multichannel Kalman filter is 

proposed in [8]. 

An optimal filter gain is achieved by joint exploitation of 

multichannel spatial information and temporal speech 

correlations. The approach is not suitable for hearing aid 

applications because of noise varsity in real environment. 

Authors in [9] proposed quantile noise estimation-based 

speech enhancement. Two noise estimation techniques – 

fixed and adaptive quantiles are proposed. Computational 

complexity is lower in this approach and it provides 

consistent performance for different noise types at different 

SNRs. Authors in [10] presented a 2 stage method to deal 

with speech corrupted by room reverberation and 

background noise. Authors used deep neural networks 

(DNN) to train a gain function to be applied to noisy speech 

signal to remove noise. However, the effectiveness of the 

method for hearing aid applications is not experimented. A 

supervised method for speech enhancement using deep 

learning is proposed in [11]. Deep learning model is trained 

for mapping between noisy signals to clear speech. Non-

linear regression function based deep- Neural Network is 

used for modeling the relationship among noisy speech and 

clean speech. Over smoothing problem in nonlinear 

regression are resolved using global variance equalization. 

Noise aware training strategies are applied to improve the 

performance of DNN for unseen noise conditions. A 

method for enhancement of speech in a noisy and 

reverberant environment using DNN is proposed in [12]. A 

spectral mapping among corrupted speech in a reverberant 

environment and the clear speech is learnt using a DNN. 

Log magnitude spectrum of clear speech is output of DNN. 

The DNN has been conditioned for various loud speech 

types. Goal of training is to minimize mean square error 

(MSE). Authors in [13] proposed a mechanism to solve the 

generalization problem in supervised speech segregation 

although the use of large-scale training. A DNN is trained 

with 10,000 noises to predict ideal ratio mask and used to 

separate new noises from the sentences with several signal-

to--to-noise ratio. The approach is found to be promising in 

new acoustic environments. For enhancing speech, [14] 

uses a log spectral amplitude estimation. Amount of speech 

distortion is controlled using the knowledge of frequency 

information. Scaling parameter is presented into gain 

function allowing the user to customize speech according to 

his listening preference. Authors in [37] proposed a hybrid 

speech estimator using two-stage filter. Filtering is based on 

Discrete Krawtchouk-Tchebichef transform. Linear 

estimation is done for noise prediction, which cannot be 

applied for hearing aid applications.  Authors in [38] 

proposed an optimum low distortion estimator to estimate 

the noise. However, it requires the signal to be transformed 

using an orthogonal polynomial function which is 

computation intensive for hearing aid applications. Authors 

in [15] proposed a new speech enhancement gain function 

called as super-Gaussian joint maximum a posteriori. The 

gain function also has a trade-off parameter allowing 

customization according to listener preference. This 
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customization controlled the noise suppression and speech 

distortion in real time. Similar to [13], authors in [16] 

proposed a method to solve the generalization problem. 

Ideal ratio mask is predicted utilizing deep neural network. 

The method was able to provide substantial sentence 

intelligibility benefits for hearing impaired listeners. A 

solution to the mismatch issue in deep neural networks used 

for voice enhancement was put out by the authors in [17]. 

The methodology uses an ideal binary masked dynamic 

noise estimation strategy to include noise information in test 

utterances based on noise conscious training. To improve its 

generalization ability for unobserved and nonstationary 

noise settings, DNN is trained with 100 different forms of 

noise. To increase the quality of improved speech, global 

variance equalization is also employed.  Multi objective 

framework for speech enhancement is proposed in [18]. 

Secondary features like categorical information like ideal 

binary mask and mel-frequency cepstral coefficients 

(MFCCs) are used in noise estimation. A novel ensemble 

deep neural network with two deep networks for speech 

enhancement in [19]. However, the computation complexity 

is very high in this approach.  

Noise Estimation of priori SNR

Apply Gain Function for noise reduction

Speech + Noise signal

Gain function 

Neural Network based Binary Measurement 

Sensing Matrix Selection for compressive 

sensing

Compressive Sensing with thresholding on 

wavelet coeffcients using adaptive 

thresolding

Reconstruction using L1 

Frequency and Amplitude shaping specific 

to Hearing loss parameters

Hearing loss 

parameters
Enhanced speech

 

Fig 1 Proposed Speech Enhancement Solution 

Coherance based speech enhancement function is proposed 

in [20]. Combining a gain function based on spectral 

subtraction with adaptive gain averaging with a gain 

function based on coherence. Background noise is 

suppressed effectively using a coherence based gain 

function. Gain function weighting factor is also introduced 

to customize the speech enhancement to the environment's 

noise level and hearing comfort. Technique is able to have 

higher performance compared to stand-alone spectral 

subtraction. Independent component analysis is used for 

speech enhancement with a single microphone in [21]. 

Speech spectrum estimation is needed prior to this approach 

and it can work for only one noise type.  

3. Proposed Speech Enhancement Solution 

Figure 1 shows the suggested voice enhancement solution's 

process flow. The noisy speech goes through three stages 

before it becomes noise suppressed and intelligible to the 

hearing-impaired listener. The first stage of filtering is 
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applying a noise estimation based gain function to suppress 

the noise. The second stage is adaptive compressive sensing 

and the third stage is a gain function tuned for the comfort 

level of the listener. Each of these stages are explained 

below 

A. Gain function for Noise reduction  

The noisy speech 𝑥(𝑡) for a additive noise is modeled as 

𝒙(𝒕) = 𝒔(𝒕) +  𝒏(𝒕)   Eq 1 

Where speech is given as 𝑠(𝑡) and 𝑛(𝑡) is noise signal.   

Signals can be represented in terms of spectral components 

as 

𝒙(𝒕) =  ∑ ∑ 𝑿(𝒔, 𝒕)𝑲
𝒕=𝟏

𝑴
𝒑=𝟏    Eq 2 

Where M and K are number of frames and number of 

spectral components and X is spectral component. 

Similarly, noise and speech can be represented in terms of 

spectral components as 

𝒔(𝒕) =  ∑ ∑ 𝑺(𝒑, 𝒕)𝑲
𝒕=𝟏

𝑴
𝒑=𝟏    Eq 3 

 

𝒏(𝒕) =  ∑ ∑ 𝑵(𝒑, 𝒕)𝑲
𝒕=𝟏

𝑴
𝒑=𝟏    Eq 4 

 

Finding an estimate for S that reduces predicted value of a 

specific distortion measure for a collection of spectral 

characteristics is the aim of noise reduction. An estimation 

is made in terms of SNR from the noise features. By 

applying gain to each of spectrum components of X, one 

may estimate S from the estimated SNR. Gain is a 

compromise between voice distortion and noise 

suppression. As a result, the predicted SNR for a certain 

noise power spectrum density (PSD) determines how 

effective speech augmentation is. The speech activity 

detection technique put out in [22] serves as the foundation 

for the proposed noise estimates. A posteriori and a priori 

SNR is calculated from PSD(𝛾̃𝑛) given by [22] as  

𝑺𝑵𝑹𝒑𝒐𝒔𝒕(𝒔, 𝒕) =̃ |𝑿(𝒔,𝒕) |𝟐

𝜸̃𝒏(𝒔,𝒕)
   Eq 5 

𝑺𝑵𝑹𝒑𝒓𝒊(𝒔, 𝒕) =̃ 𝜷
|𝑺̅(𝒔−𝟏,𝒕) |𝟐

𝜸̃𝒏(𝒔,𝒕)
+  (𝟏 − 𝜷)𝑷[𝑺𝑵𝑹̅̅ ̅̅ ̅̅

𝒑𝒐𝒔𝒕(𝒔, 𝒕) −

𝟏]     Eq 6 

 

𝑃 is the half wave rectification function.𝑆̅(𝑠 − 1, 𝑡) is 

estimated speech spectrum for the previous frame. 𝛽 is 

behavior control parameter with value from 0 to 1. Based on 

the SNR a priori estimate, the gain function is designed as  

 

𝑮(𝒔, 𝒕) =  
𝑺𝑵𝑹̅̅ ̅̅ ̅̅ 𝒑𝒓𝒊(𝒔,𝒕)

𝟏+ 𝑺𝑵𝑹̅̅ ̅̅ ̅̅ 𝒑𝒓𝒊(𝒔,𝒕)
   Eq 7 

The speech spectrum is obtained by applying the gain 

function to the noisy speech spectrum for each of the frames 

as  

𝑺̅(𝒔, 𝒕) =  ∑ ∑ 𝑿(𝒔, 𝒕)𝑲
𝒕=𝟏

𝑴
𝒑=𝟏 𝑮(𝒔, 𝒕) Eq 8 

B. Adaptive Compressive Sensing  

Signals with sparse representation in certain bases may be 

compressed and recovered using the method of 

"compressive sensing." It is used to improve speech since it 

has the ability to handle sparse signals. The stages for CS-

based speech augmentation are as follows: 

1. Conversion to sparse representation   

2. Sensing matrix construction 

3. Acquisition of signal 

4. Reconstruction  

Wavelet basis is presented with the nonsparse noisy speech, 

and a hard threshold is used to replace any significant 

coefficients with a value of 0. 

The creation of a random Gaussian sensing matrix. 

Sparse vector coefficients are multiplied by the random 

Gaussian-sensing matrix. Inverse wavelet transform and l1 

minimization are used to reconstruct speech signal. There 

are two issues with using compressive sensing to improve 

speech. 

• Selection of a suitable thresholds for sparse 

representation to achieve a fine balance between 

sparseness and minimum distortion of speech is 

lacking 

• The sensing matrix must be constructed in such a way 

to reduce loss of input signal  

• Reduce number of iterations of  ℓ1 minimization and 

speedup the recovery process. 

1. Threshold Selection  

An adaptive thresholding scheme is proposed in this work 

satisfying two goals of minimum degradation of the signal 

and reduction of background noise with uniformly 

distributed power spectral density. The proposed 

thresholding is done on the DFT spectrum of noised speech 

signal. Input noised speech signal is split into short 

segments as  

𝑥𝑖(𝑛) =  {
𝑤(𝑛)𝑥(𝑛 + 𝑖𝑁(1 − 𝑣), ∀ n = 0,1, . . N − 1 

0, ∀ n ≠ 0,1, . . N − 1  𝑎𝑛𝑑 𝑖 = 0,1,2 … 𝐼 − 1
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Where N is length of segment 𝑥𝑖(𝑛) ,  the segment index is 

denoted as i, I is total number of segments, 𝑤(𝑛) is 

weighting window,  v is the overlap ratio. The length of 

segment N is chosen in a power of 2 in the case of easy 

application of DFT. The coefficient resulting from 

application of DFT on the 𝑥𝑖(𝑛) is given as 

𝑿𝒊(𝒌) = 𝑫𝑭𝑻(𝒙𝒊(𝒏)) = ∑ 𝒙𝒊(𝒏)𝒆−𝒋
𝟐𝝅

𝑵
𝒌𝒏𝑵−𝟏

𝒏=𝟎      Eq 9 

The threshold function T transforming 𝑋𝑖(𝑘) can be given 

as 

𝑻(𝑿𝒊(𝒌)) = {
𝟎                            , ∀ |𝐗𝐧𝐢| < 𝑻𝟏

𝑿𝒊(𝒌) 𝝎(|𝐗𝐧𝐢(𝐤)|), |𝐗𝐧𝐢| ≥ 𝑻𝟏
   Eq 10 

 

Xniis calculated based on estimation of the mean and 

standard deviation of coefficients as  

𝐗𝐧𝐢 =
𝑿𝒊(𝒌)− 𝝁𝒎(𝒌)

𝝈𝒎(𝒌)
     Eq 11 

The mean and standard deviation estimation is as follows 

𝝁𝒎(𝒌) =  
∑ 𝑿𝒊(𝒌)𝑰−𝟏

𝒊=𝟎

𝑰
     Eq 12 

𝝈𝒎(𝒌) = √∑ 𝑿𝒊(𝒌)𝟐𝑰−𝟏
𝒊=𝟎

𝑰
− 𝝁𝒎(𝒌)𝟐    Eq 13 

I is the number of segments.  

2. Sensing Matrix Construction  

Sensing matrix used by majority of compressive sensing 

techniques is Gaussian random matrix. The presence of 

nonzero noninteger values makes the Gaussian random 

matrix denser. More computational and storage complexity 

are the results. Gaussian random matrix also raises 

hardware implementation costs. In this paper, a sparse 

binary matrix is suggested in replacement of a Gaussian 

random matrix.  

 

Fig 2 Neural Network with control 
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Fig 3 Sensing Matrix 

Algorithm 1: Sensing Matrix generator  

Input: Number of measurements M and the length of the signal N 

Output: Array of Sensing Matrix (M*N) 

𝑚 ≅ 𝑄/𝑃 

𝑚1 = integer less than m  

𝑚2 = integer less than m  

𝑁𝑚2 = 𝑄 − 𝑃 × 𝑚1 

𝑁𝑚1 = 𝑃 −  𝑁𝑚2 

𝑅𝑝𝑚2 =  𝑟1 𝑎𝑛𝑑 𝑟𝑀 

𝑅𝑝𝑚1 = [𝑟1 , 𝑟2 , 𝑟3, … 𝑟𝑀] −  𝑅𝑝𝑚2 

𝑟𝑜𝑤𝑡1 = {11 , 12 , 13, … 1𝑚1, 01 , 12 , 13, … 1𝑁−𝑚1} // 𝑚1 ones and 𝑁 − 𝑚1 zeros 

𝑟𝑜𝑤𝑡2 = {11 , 12 , 13, … 1𝑚2, 01 , 12 , 13, … 1𝑁−𝑚2} // 𝑚2 ones and 𝑁 − 𝑚2 zeros 

For k=1 to M do  

 If 𝑟𝑘  ∈  𝑅𝑝𝑚1 then 

  𝑟𝑜𝑤𝑘 =  𝑟𝑜𝑤𝑡1  

  𝑟𝑜𝑤𝑡1 = 𝑐𝑖𝑟𝑐𝑢𝑙𝑎𝑟 𝑠ℎ𝑖𝑓𝑡 𝑟𝑜𝑤𝑡1 𝑟𝑖𝑔ℎ𝑡 𝑏𝑦 𝑚1  𝑡𝑖𝑚𝑒𝑠   

  𝑟𝑜𝑤𝑡2 = 𝑐𝑖𝑟𝑐𝑢𝑙𝑎𝑟 𝑠ℎ𝑖𝑓𝑡 𝑟𝑜𝑤𝑡2 𝑟𝑖𝑔ℎ𝑡 𝑏𝑦 𝑚1  𝑡𝑖𝑚𝑒𝑠 

            Else 

𝑟𝑜𝑤𝑘 =  𝑟𝑜𝑤𝑡2 

  𝑟𝑜𝑤𝑡1 = 𝑐𝑖𝑟𝑐𝑢𝑙𝑎𝑟 𝑠ℎ𝑖𝑓𝑡 𝑟𝑜𝑤𝑡1 𝑟𝑖𝑔ℎ𝑡 𝑏𝑦 𝑚2  𝑡𝑖𝑚𝑒𝑠   

  𝑟𝑜𝑤𝑡2 = 𝑐𝑖𝑟𝑐𝑢𝑙𝑎𝑟 𝑠ℎ𝑖𝑓𝑡 𝑟𝑜𝑤𝑡2 𝑟𝑖𝑔ℎ𝑡 𝑏𝑦 𝑚2  𝑡𝑖𝑚𝑒𝑠 

 End if  



International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(7s), 138–157 |  144 

End for  

Diagonalblock,  𝐷𝑏 = {𝑟𝑜𝑤1
𝑇 , 𝑟𝑜𝑤2

𝑇 , … . 𝑟𝑜𝑤𝑀
𝑇 }𝑇 

𝑀𝑠 = 𝑚𝑎𝑡𝑟𝑖𝑥 𝑤𝑖𝑡ℎ 𝑈 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐷𝑏𝑠 

End if  

 

allM = []  

L= 𝑚1 

For i=1: 𝑚1 

𝑀𝑡𝑒𝑚𝑝 =  𝑀𝑠 

       For j=1:rows in 𝑀𝑡𝑒𝑚𝑝 

 𝑀𝑡𝑒𝑚𝑝[𝑗][𝐿] = 0  

       End  

       L=L-1; 

      allM[i] = 𝑀𝑡𝑒𝑚𝑝  

End for  

Return allM  

The suggested sparse binary matrix contains fewer nonzero 

values than the Gaussian random matrix, which lowers the 

complexity, time, and storage needs of computing. The 

proposed solution for sensing matrix generation uses 

machine learning for fine-tuning the sensing matrix 

selection. It is done based on features extracted from noisy 

speech signals. 

With sensing matrix serving as outcome and the 

characteristics of noisy speech signals serving as the input, 

a multilayer feed-forward neural network [36] is trained. Up 

until a suitable accuracy level is reached, the feed-forward 

neural network is loop regulated and retrained. The feed-

forward neural network shown in Figure 2 is trained using 

following characteristics that are retrieved from noisy voice 

samples. 

1. Zero crossing rate (ZCR) [34] 

2. Average power (AP) 

3. MFCC [35] 

A minor modification to the sensing matrix synthesis 

technique suggested in [23] produces sparse binary sensing 

matrix for a noisy voice sample. M*N sensing matrix is 

created for M measurements of a signal of length N. The 

produced sensing matrix is shown in Figure 3.  Dimension 

of diagonal block is given as
𝑄

𝑃
≅ 𝑚 . Less and more than m, 

m1 and m2, an integer value is assigned. Entire number of 

rows in D is split between rows with m1 ones and rows with 

m2 ones. Expression for how many rows include m2 ones is  

𝑁𝑚2 = 𝑄 − 𝑃 × 𝑚1 

Where 𝐷 = 𝑄 × 𝑃. Number of rows with 𝑚1 is given as 

𝑁𝑚1 = 𝑃 −  𝑁𝑚2 

By stacking and rotating rows with m 1 and m 2 values, the 

diagonal block D is created. The sensing matrix is made by 

inserting the diagonal block into zero matrix of size M*N. 

This sensing matrix is utilized as a foundation matrix, and a 

new sensing matrix is created for each iteration equivalent 

to continuous ones by setting each one in all rows to zero. 

An algorithm for sensing matrix generation is given in 

Algorithm 1.  

A training dataset for training neural network for sensor 

selection is given in Algorithm 2. The characteristics of 

zero crossing rate, AP, and MFCC are recovered for each of 

the noised speech samples.  

ZCR provides the noised speech signal's rate of sign change 

over time. It may be used to locate the frequencies around 

the area of energy concentration. It is determined as  
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𝒁𝑪𝑹 =  
𝟏

𝑳−𝟏
∑ 𝑰𝑹<𝟎(𝒙(𝒏)𝒙(𝒏 + 𝟏))𝑳−𝟏

𝒏=𝟏   Eq 14 

𝐼𝑅<0 is indicator function. An AP of noised speech signal is 

computed as 

𝑨𝑷 =  
𝟏 

𝑳
∑ |𝒙𝒋(𝒏)|𝟐𝑳

𝒋=𝟏     Eq 15 

Using Algorithm 1, each of the noised speech samples 

receives a sensing matrix, which is subsequently applied to 

the noised speech sample. L1 minimization is used for 

reconstruction. Several sensing matrices are used to 

compare the PESQ quality metric between reconstructed 

signal and noised speech samples, and sensing matrix with 

the highest PESQ is chosen as associated class label for 

input noised speech sample. Outcome sensing matrix for 

each of the noised speech samples is created using the 

aforementioned technique, and it is then utilized to train a 

neural network. The ZCR, AP, and MFCC characteristics 

are recovered from a fresh noised speech signal and sent to 

the trained neural network to create sensing matrix. The 

spare matrix produced after adaptive thresholding is then 

multiplied using this sensing matrix.  

C. Customization gain function  

The frequency and amplitude of the signal is shaped by the 

customized gain function considering the comfort level of 

the listener.   

The frequency shaping is achieved by applying an adaptive 

gain function based on the frequencies listeners has hearing 

discomfort. The difficult to hear frequencies are raised 

using the gain function. 

The adaptive gain function is given below in Figure 4. 

 

Fig 4 Frequency Gain function 

Users can select two frequencies (fc and lc). The sc and tc 

in the above response is set as 

𝑠𝑐 = (𝑓𝑐 − 2000) 

𝑡𝑐 = 𝑠𝑐 +  (𝑠𝑐 − 𝑓𝑐) 

Amplitude shaper ensures that the output power of the 

signal does not exceed a saturation level. Another advantage 

of amplitude shaping is that noises concentrated in low 

power levels are also filtered. The gain function for 

amplitude shaping is given as  

𝐴𝐺 = {
𝑃𝑜𝑢𝑡 , ∀ 𝑃𝑜𝑢𝑡 < 𝑃𝑠𝑎𝑡

𝑃𝑠𝑎𝑡 , ∀ 𝑃𝑜𝑢𝑡 ≥  𝑃𝑠𝑎𝑡
 

4. Results 

Performance of proposed solution is compared with 

compressed sensing-based speech enhancement presented in 

[2], noise adaptable speech enhancement proposed in [26], 

and noise estimation-based speech enhancement proposed 

in [9]. Noisy speech corpus [25] was utilized for evaluating 

performance.  The performance was measured in terms of  

1. Perceptual Evaluation of Speech Quality (PESQ) 

[31] 

2. Mean Opinion Score on a five-point scale for 20 

listeners (Table 1) 

 

Quality Excellent Good Fair Poor Bad 

Rating 5 4 3 2 1 

Table 1 MOS Ratings 

3. Processing time  

4. Segmental SNR (seqSNR) computed as 

𝑠𝑒𝑞𝑆𝑁𝑅

=
1

𝑀
∑

10 log [
∑ 𝑥2(𝑛, 𝑚)𝑅𝑚

𝑛=𝑅(𝑚−1)+1

∑ (𝑥(𝑛. 𝑚) − 𝑦(𝑛. 𝑚))
2𝑅𝑚

𝑛=𝑅(𝑚−1)+1

]

𝑀

𝑚=1

 

Where M is the frame count, x is the noise-added 

signal, and y is the suggested solution's output. 

X(n,m) is the mth frame's nth sample. 

5. Perceptual Evaluation of Audio Quality (PEAQ) 

[32] 

6. Perceptual Speech Quality Measure (PSQM) MOS 

Score [33]  

7. Output SNR calculated as  

𝑆𝑁𝑅(𝑑𝐵) = 20 log
||𝑋||2

||𝑋 − 𝑋̅||2

 

D. Impact on output SNR 

The performance was tested for different noise types in 

three different SNR of 0, 5 and 10 and the average output 

SNR is given in Table 2. The proposed solution has better 

output SNR compared to [2], [26], and [9] even at low input 

SNR of 0 dB.  
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Noise Type Solution 0 dB 5 dB 10 dB 

Airport 

 

 

 

Proposed 

 

3.34 4.96 8.14 

[2] 

 

6.25 8.14 11.4 

[9] 

 

7.24 8.67 11.86 

[26] 

 

4.78 6.94 9.57 

Babble Proposed 

 

3.32 4.86 7.12 

[2] 

 

6.12 7.96 10.56 

[9] 

 

7.43 8.21 11.24 

[26]  

 

5.92 8.67 9.12 

Car Proposed 

 

4.12 5.24 8.50 

[2] 

 

7.13 8.12 11.78 

[9] 

 

7.96 8.45 11.96 

[26] 

 

6.50 7.12 10.1 

Restaurant Proposed 

 

4.25 6.63 9.60 

[2] 

 

7.64 8.13 12.86 

[9] 

 

7.89 8.86 13.12 

[26]  5.96 7.74 10.56 
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Station Proposed 

 

3.46 5.67 8.89 

[2] 

 

7.83 8.14 11.67 

[9] 

 

7.96 8.67 11.93 

[26] 

 

4.86 6.24 10.21 

Street Proposed 

 

4.46 6.20 8.95 

[2] 

 

7.65 11.65 12.12 

[9] 

 

7.96 11.97 12.54 

[26]  

 

5.65 9.12 10.24 

Table 2 Comparison of Output SNR 

Noise Type Solution 0 dB 5 dB 10 dB 

Airport 

 

 

 

Proposed 

 

3.12 3.32 4.19 

[2] 

 

2.0 2.17 2.34 

[9] 

 

2.12 2.54 2.87 

[26] 

 

2.9 3.1 3.5 

Babble Proposed 

 

3.5 3.67 4.21 

[2] 

 

2.65 2.73 2.88 

[9] 2.73 2.86 2.94 
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[26] 

 

3.1 3.2 3.5 

Car Proposed 

 

3.67 3.87 4.43 

[2] 

 

2.43 2.68 3.1 

[9] 

 

2.56 2.83 3.2 

[26] 

 

3.1 3.2 3.5 

Restaurant Proposed 

 

3.89 4.1 4.32 

[2] 

 

2.54 2.67 2.94 

[9] 

 

2.63 2.87 2.95 

[26] 

 

3.1 3.4 3.7 

Station Proposed 

 

3.12 3.57 3.89 

[2] 

 

2.56 2.64 2.84 

[9] 

 

2.62 2.84 2.96 

[26] 

 

2.9 3.0 3.1 

Street Proposed 

 

3.31 3.56 3.83 

[2] 

 

2.17 2.67 2.87 

[9] 

 

2.22 2.71 2.93 
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[26] 

 

3.1 3.2 3.3 

Table 3 Comparison of PESQ 

Noise Type Solution 0 dB 5 dB 10 dB 

Airport 

 

 

 

Proposed 

 

4.12 5.23 6.15 

[2] 

 

3.34 3.87 4.45 

[9] 

 

3.67 4.13 4.67 

[26] 

 

3.8 4.1 5.4 

Babble Proposed 

 

4.32 5.34 6.26 

[2] 

 

3.36 3.91 4.41 

[9] 

 

3.71 4.21 4.81 

[26]  

 

3.7 4.1 4.9 

Car Proposed 

 

4.43 5.51 6.35 

[2] 

 

3.47 4 4.47 

[9] 

 

3.8 4.34 4.68 

[26] 

 

3.9 4.4 4.6 

Restaurant Proposed 

 

4.32 5.24 6.14 

[2] 

 

3.67 3.89 4.12 
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[9] 

 

3.91 4.21 4.43 

[26] 

 

4.0 4.4 5.4 

Station Proposed 

 

4.45 5.12 5.97 

[2] 

 

3.63 3.92 4.31 

[9] 

 

3.68 3.96 4.41 

[26] 

 

4.0 4.5 4.8 

Street Proposed 

 

4.82 5.12 5.57 

[2] 

 

3.31 3.98 4.14 

[9] 

 

3.42 4.24 4.35 

[26] 4.1 4.5 4.7 

Table 4 Segmental SNR 

Noise Type Solution 0 dB 5 dB 10 dB 

Airport 

 

 

 

Proposed 

 

3.52 3.81 4.59 

[2] 

 

2.51 2.67 2.54 

[9] 

 

2.52 3.04 3.37 

[26] 

 

3.1 3.2 3.5 

Babble Proposed 

 

3.8 4.1 4.71 

[2] 3.15 3.33 3.38 
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[9] 

 

3.23 3.16 3.44 

[26] 

 

3.2 3.8 4.1 

Car Proposed 

 

4.17 4.37 4.93 

[2] 

 

3.93 3.18 3.6 

[9] 

 

3.16 3.33 3.7 

[26] 

 

4.1 4.2 4.3 

Restaurant Proposed 

 

4.39 4.6 4.82 

[2] 

 

3.14 3.17 3.44 

[9] 

 

3.13 3.37 3.45 

[26] 3.8 4.0 4.2 

Station Proposed 

 

3.52 4.17 4.39 

[2] 

 

3.16 3.14 3.34 

[9] 

 

3.12 3.24 3.38 

[26] 3.2 3.4 3.8 

Street Proposed 

 

3.81 4.16 4.33 

[2] 

 

2.87 3.17 3.37 

[9] 

 

2.72 3.21 3.33 
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 [26] 

 

3.2 3.5 3.8 

Table 5 Comparison of PEAQ 

Noise Type Solution 0 dB 5 dB 10 dB 

Airport 

 

 

 

Proposed 

 

3.63 3.93 4.64 

[2] 

 

2.64 2.80 2.67 

[9] 

 

2.65 3.17 3.40 

[26] 

 

3.1 3.3 3.6 

Babble Proposed 

 

3.93 4.24 4.84 

[2] 

 

3.28 3.46 3.41 

[9] 

 

3.36 3.29 3.57 

[26] 

 

3.3 3.6 3.8 

Car Proposed 

 

4.20 4.41 4.6 

[2] 

 

2.9 3.3 3.7 

[9] 

 

3.1 3.4 3.8 

[26] 

 

3.5 3.7 3.9 

Restaurant Proposed 

 

4.1 4.4 4.62 

[2] 

 

3.2 3.4 3.6 
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[9] 

 

3.1 3.4 3.7 

[26] 

 

3.5 3.8 4.1 

Station Proposed 

 

3.5 4.1 4.3 

[2] 

 

3.1 3.1 3.3 

[9] 

 

3.2 3.4 3.6 

[26] 

 

3.2 3.5 3.7 

Street Proposed 

 

3.9 4.2 4.3 

[2] 

 

2.8 3.1 3.3 

[9] 

 

2.7 3.2 3.3 

[26] 

 

3.1 3.4 3.7 

Table 6 Comparison of PSQM 

E. Impact on PESQ 

PESQ was tested for several forms of noise at different 

input SNRs, and the results are shown in Table 3. PESQ in 

proposed is 47% higher than [2], 16.46% higher than [26] 

and 39% higher than [9]. Even at a low SNR of 0 db, PESQ 

is above 3 in proposed solution.  

F. Impact on SEGSNR 

Table 4 provides the segmental SNR data for various noise 

types for various input SNRs. When input SNR rises 

consistently across all noise types, segmental SNR rises as 

well. The segmental SNR exceeds [2], [26], and [9] by 

38%, 12.19%, and 31%, respectively.  

G. Impact on processing time  

The processing time for speech enhancement is compared 

with three different solutions for different samples in 

NOIZEUS corpus and the average processing time is given 

in Figure 5. 
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Fig. 5 Comparison of processing time 

Time taken in the proposed solution is very much reduced 

compared to the compressive sensing solution used in [2]. It 

is 30% lower compared to [26]. It has reduced 63% 

compared to [2], but still it is higher than the noise 

estimation based solution proposed in [9].  

H. Impact on PEAQ 

The results of measuring PEAQ for various noise types at 

various input SNR are shown in Table 5. PEAQ in proposed 

is 40% higher than [2] , 23.17% higher than [26] and 34% 

higher than [9]. Even at a low SNR of 0 db, PEAQ is above 

3.5 on an average in the proposed solution.  

I. Impact on PSQM MOS Score 

The results of measuring PSQM for various noise types at 

various input SNR are shown in Table 6. PSQM in 

proposed is 2 scales higher than [2] and 1 scale higher than 

[9] and [26].  

 

J. Impact on MOS Score 

For a total of 20 participants, the MOS score is calculated 

for three separate noise sources (street, car, and restaurant). 

Figure 6 displays the average subjective rating for each of 

the three forms of noise from the 20 participants.

 

Fig. 6 Comparison of MOS 

MOS score of proposed solution is 40% higher than [2], 

6.25% higher than [26], and 19% higher than [9]. 

K. Machine Learning for Sensing Matrix Selection  

The following parameters are used to train neural network 

for the sensing matrix and are listed in Table 7. 

Input Layer Neurons 12 ( 10 MFCC coeff + 1 ZCF 

+ 1 Average power) 

Hidden Layer Neurons 25 

Output Layer Neurons 80 (Number of measurements 

was set as 80) 

Input and Hidden layer 

activation 

Relu 

Output layer activation Sigmoid 

Optimizer Rmsprop 

Table 7 Neural Network Parameters 
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The accuracy achieved over different epocs of training is given in Figure 7. 

 

Fig. 7 Accuracy in Neural Network 

An overall accuracy of 95% was achieved for sensing matrix selection by neural network. 

Accuracy of neural network is tested with three different hinge loss functions. 

 

Fig. 8 Hinge loss functions 

Figure 9 displays the neural network's accuracy for three distinct hinge loss functions. 

 

Fig. 9 Comparison of accuracy across hinge loss functions 

Using Zhang quadratically smoothed hinge loss function, maximum precision is attained.   

5. Conclusion  

This paper proposes a way for hearing-impaired individuals 

to improve their speech using a combination of three 

distinct strategies. A gain function based on noise 

estimation using a priori estimation of SNR is used at the 

first level and noise reduction is done with it. After that, 

adaptive compressive sensing is carried out. Compression 

sensing is optimized for computation, storage, and delay by 

suitable binary sensor matrix selection. The sensor matrix 

selection was done based on the input signal features.  

Finally, a frequency – amplitude shaping customization 

gain function is applied to adjust outcome signal according 

to listeners comfort. The approach was able to obtain an 

average PESQ that was 40% higher than that of noise 

estimation and other compressive sensing-based speech 
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enhancement techniques, according to the performance 

findings, which also indicate a 63% decrease in processing 

time when compared to those other methods.  
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