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Abstract:  Background subtraction from moving video faces problems such as the complexity of the background, its movement and the 

change in light intensity arise and fragmented object make it difficult to detect moving objects in video. This paper presents a Novel 

hybrid model using Robust Principal Component Analysis (RPCA) and LBP (Local Binary Pattern) for background subtraction using 

Grassmann Average. Grassmann Average (GA) reduces the big outliers and RPCA gives sparse matrix (foreground information) and low 

rank matrix (back ground information). Feature extraction is done by using Local Binary Pattern (LBP). Finally, proposed RPCA-GA 

algorithm is executed in CD Net dataset. The results of proposed method are compared with various methods and also yields high 

Precision and Recall. 

Keywords – Histogram equalization, Local Binary Pattern, Robust Principal Component Analysis, Grassmann Average, etc. 

1. Introduction 

Background subtraction plays a vital role in detecting 

moving objects, enabling automated video analytics in 

applications such as traffic monitoring, driving, and fire 

detection. The technique involves creating a background 

model without any moving objects and comparing it with 

each incoming video frame. Pixels that surpass a 

predefined threshold are identified as moving objects. 

This process serves as the foundation for accurate object 

detection and tracking. 

Robust Principal Component Analysis (RPCA) [1] is a 

valuable approach for effectively reducing the static 

background in video sequences. By reconstructing low-

rank matrices, RPCA is capable of simulating the static 

background component, while the remaining component 

represents the moving objects. However, it is important 

to note that the low-rank output of RPCA closely 

resembles the low-level matrix, limiting its ability to 

capture dynamic background variations. Additionally, in 

datasets with substantial outliers, the performance of 

RPCA can be affected due to the large presence of these 

outliers. 

Principal Component Analysis (PCA) is widely 

recognized as one of the most prevalent techniques for 

dimensionality reduction, modeling, and data analysis 

across various scientific fields and applications. It serves 

as a fundamental tool in computer vision. While there are 

methods available to adapt PCA to large datasets, a 

persistent challenge remains unresolved. Large datasets 

are often generated automatically and are too vast for 

manual validation, leading to the inclusion of significant 

outliers within the so-called "big data" paradigm. While 

there exist solutions that enhance the robustness of PCA 

against outliers [2-5], they are generally not well-suited 

for large datasets. In general, methods that prioritize 

robustness in PCA lack scalability, while scalable PCA 

methods tend to sacrifice robustness. In this research, the 

authors introduce a novel formulation and scalable 

algorithm for robust PCA that surpasses the performance 

of previous methods. The primary contribution lies in 

formulating the subspace estimate as the mean 

computation of the subspace. 

The research work delves into the development of the 

mean operator on the Grassmann manifold [6], which 

formalizes the concept of the mean subspace 

encompassed by the data. This approach, known as 

Grassmann Average (GA), exhibits a connection to 

standard PCA and demonstrates that, for Gaussian data, 

the subspace derived through GA aligns with the 

subspace obtained via standard PCA. In the context of 

background subtraction, when moving objects are 

detected, a low-rank matrix derived from the RPCA 

process undergoes processing to model the background. 

By leveraging GA, the mean subspace estimation allows 

for more accurate and reliable background modeling, 

further enhancing the effectiveness of the overall RPCA-

GA algorithm in capturing foreground objects and 

isolating the stationary background. 
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The study begins by providing a comprehensive 

literature review in Section II, highlighting the relevant 

research in the field. In Section III, the proposed 

methods are explained in detail. The results of the 

MATLAB-based simulation are presented and analyzed 

in Section IV. Finally, the paper concludes with a 

summary of the findings and conclusions in Section V. 

2. Literature Review 

The motion detection literature is presented below and 

shows some of the important methods for detecting an 

area of a CCTV scene. 

However, motion detection suffers from a number of 

problems caused by noise sources, complex 

backgrounds, variations in scene lighting, and shadows 

from stationary and moving objects. For this reason, 

several methods have been proposed to solve this 

problem by keeping only the moving objects of interest. 

These methods fall into three categories: background 

reduction, time difference, and optical flux [7-18]. 

The time difference is highly adaptable and dynamic 

depending on the environment; however, it does a poor 

job of fetching all the relevant functional pixels. 

Therefore, to obtain the desired shape of a moving 

object, methods based on morphological operations and 

space filling are used. On the other hand, background 

reduction provides the most complete asset data, but is 

sensitive to dynamic changes due to lighting and 

extraneous events. Background reduction techniques 

have been classified as follows: basic background 

modeling, statistical background modeling, fuzzy 

background modeling, background clustering, neural 

network background modeling, background wave 

modeling, and background estimation [19-24]. In turn, 

the optical flow method can also be used to detect 

moving objects. However, most optical streaming 

techniques are computationally complex and cannot be 

applied to full-screen real-time video streams without 

dedicated hardware [25]. 

In [26], a method is shown that increases the frame 

differences by first sorting the blocks in the background 

and then using the correlation coefficients. They used a 

pixel-level block classification technique to detect the 

movement of people in various scenes from the dataset 

(Wall eur and I2R) with an average accuracy of 

0.6396%. 

In turn, in [27] they present a robust approach to 

background triggering based on superpixel motion 

detection. The spatial and temporal properties of the 

frame are adjusted to remove foreground objects. First, 

select a partial sequence with stable lighting conditions 

to get closer to the background, then segment the image 

into superpixels to preserve texture and filter out 

foreground objects. They used the SBMnet dataset, 

which contained 8 categories, which, unlike other 

methods in the prior art, achieved the best average F-

score in the low frame rate category with a score of 

0.7222. 

In [28], they demonstrated an algorithm based on W4 

and frame difference that overcomes the inadequacy of 

false detection due to background mutations; as well as 

elimination of gaps caused by differences in frames. This 

algorithm is used to detect security issues such as illegal 

intrusions, persistent warnings, and illegal movements. 

Three infrared categories (TM, SC and ROD) of DM642 

were analyzed, with results of 0.99 for the DIN sequence 

and 0.9608 for the ROA scene. 

In [29], they proposed a method that searches for areas 

of dynamic background by analyzing video from CCTV 

cameras and helps to eliminate false alarms. This was 

estimated using the 2012/2014 CDnet dataset with an 

average accuracy of 0.8650 for CDnet2012 and 0.7668 

for CDnet2014. 

In [30], they analyzed methods for reducing the 

background, frame difference and SOBS; for detecting 

moving objects from CCTV cameras. In the end, they 

did not provide any numerical results, but did mention 

that the best way to find motion is to use background 

subtraction, because the screen difference method has the 

disadvantage of detecting objects with uniform intensity 

distribution values. On the other hand, the SOBS method 

gives good results, but the processing time is very long. 

In a study [31] based on motion detection, which 

presents 12 methods based on motion detection, which 

demonstrated different methods of motion detection, 

such as: time differentiation (frame difference), three-

plane difference (3FD), adaptive background (middle 

filter ), forgetting morphology temporal gradient 

(FMTG), background estimation, space-time Markov 

field, Gaussian mean (RGA), Gaussian mixing (MoG), 

space-time image entropy (STEI), space-time image 

entropy difference (DSTEI) , clear background (Eig-Bg) 

and simplified self-organizing map (Simp-SOM). In the 

end, the best results were analyzed using the CDnet2014 

dataset, it was the result classified by the GMM with a 

specificity of 0.99993, 3.08499 in PWC and an accuracy 

of 0.61021. The lowest efficiency of the motion 

detection method is STEI with a specificity of 0.78646, 

PWC 22.18321 and an accuracy of 0.12881. 

3. Proposed Methodology 

The experiment computes a background model with 

different video to observe the effectiveness of different 

RPCA approaches and the effect of preprocessing on the 

results. Figure 1 shows histogram equalization as a 

preliminary process for each raw frame obtained from 
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video. Various frames are extracted from video and then 

processed through LBP features to get texture features. 

RPCA is applied to differentiate the foreground and 

background as matrix decomposition. Further RPCA 

projection is scaled by Grassmann Average to get low 

rank matrix contains the background and sparse matrix 

contains the foreground information.  

The foreground was obtained by post-processing as 

given in Figure 1 the sparse matrix. Post-processing is 

the same for all attempts. These measures include hard 

boundaries, morphological filters, and active boundaries 

with negative compression shears [32]. 

 

Fig 1: Block diagram for pre-processing phase 

The novel hybrid model combines Robust Principal 

Component Analysis (RPCA) and Local Binary Pattern 

(LBP) techniques for background subtraction using 

Grassmann Average (GA). The goal is to accurately 

separate the foreground objects from the background in a 

given video sequence. The Grassmann Average (GA) is 

employed to reduce the impact of big outliers, which 

often result from sudden changes in lighting conditions 

or moving objects that do not belong to the foreground. 

This step helps in improving the robustness of the 

background subtraction process. RPCA is utilized to 

decompose the input video frames into a sparse matrix 

representing the foreground information and a low-rank 

matrix representing the background information. The 

sparse matrix captures the salient moving objects in the 

scene, while the low-rank matrix models the stationary 

background. To perform feature extraction, Local Binary 

Pattern (LBP) is applied to each frame. LBP is a texture 

descriptor that encodes the local texture patterns of an 

image. By extracting LBP features, the model can 

capture and represent the textural characteristics of the 

foreground and background regions. The proposed 

RPCA-GA algorithm is then executed on the CD Net 

dataset, which is a benchmark dataset widely used for 

evaluating background subtraction algorithms. The 

dataset contains various challenging scenarios, such as 

dynamic backgrounds, camera jitter, and intermittent 

object motion. Rest of methodology is explained in 

following subheadings. 

A. Feature Extraction using Local Binary Pattern 

(LBP) 

Feature extraction plays a crucial role in background 

subtraction from moving video frames. In this case, 

Local Binary Pattern (LBP) is utilized as a texture 

descriptor to capture the local texture patterns of the 

foreground and background regions. LBP computes a 

binary code for each pixel by comparing its intensity 

value with its neighboring pixels. The extracted LBP 

features are then used to represent the textural 

characteristics and discriminate between the foreground 

and background regions. 

LBP is a pattern recognition method with high binary 

coding-based discrimination between each pixel in the 

image and its neighbors. The LBP operator transforms 

the pixels of the given image into a sequence of 1 or 0 

values, as shown in Figure 2, by matching the value of 

each pixel in the 3×3 neighborhood of a selected pixel in 

the image with the selected pixel. A label is created for 

each pixel of the image with a label where the generated 

binary number: 11001010 is converted to 83. 
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Fig 2: Implementation of the LBP operator 

The main disadvantage of the basic local binary operator 

is that it estimates a small space around a 3×3 matrix. 

Thus, for large structures, significant features can be 

neglected. The extended LBP operator (𝑃, 𝑅) is 

represented by the area of a circle, where 𝑃 is the 

number of pixels in the vicinity of the circle and 𝑅 is the 

radius of the area of the circle. Thus, it was possible to 

perform texture analysis of images of different sizes 

more effectively. An example of different LPB operators 

is given in Figure 3. 

 

     

 

(a) R = 1, P = 8  (b) R = 2, P = 8  (c) R = 2, P = 12 

Fig 3: Neighbor set’s circular symmetry 

Mathematical Formulation: 

LBP is computed for each pixel in an image by 

comparing its intensity value with its neighboring pixels. 

The LBP value for a pixel is calculated as follows: 

𝐿𝐵𝑃(𝑥𝑐) = ∑ 𝑠(𝐼(𝑥𝑖) − 𝐼(𝑥𝑐))2𝑖𝑃−1
𝑖=0                    (1) 

Here, 

𝑥𝑐 represents the central pixel. 

𝑥𝑖 denotes the neighboring pixels. 

𝑃 is the number of neighboring pixels. 

𝑠(. ) is the sign function (1 if the argument is non-

negative, otherwise 0). 

𝐼(. ) denotes the intensity value of a pixel. 

Pseudo Code for Feature Extraction using LBP: 

1. 𝐼𝑛𝑝𝑢𝑡: 𝑉𝑖𝑑𝑒𝑜 𝑓𝑟𝑎𝑚𝑒𝑠 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝐹 = {𝐹1, 𝐹2, . . . , 𝐹𝑇} (𝑇 𝑓𝑟𝑎𝑚𝑒𝑠)   

2. 𝑂𝑢𝑡𝑝𝑢𝑡: 𝐿𝐵𝑃 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝐿𝐵𝑃 =  {𝐿𝐵𝑃1, 𝐿𝐵𝑃2, . . . , 𝐿𝐵𝑃𝑇} (𝑇 𝑓𝑟𝑎𝑚𝑒𝑠)   

3. 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝐿𝐵𝑃𝐸𝑥𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛(𝑖𝑚𝑎𝑔𝑒):   

    3.1. 𝐶𝑜𝑛𝑣𝑒𝑟𝑡 𝑡ℎ𝑒 𝑖𝑚𝑎𝑔𝑒 𝑡𝑜 𝑔𝑟𝑎𝑦𝑠𝑐𝑎𝑙𝑒.   

    3.2. 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 𝑎𝑛 𝑒𝑚𝑝𝑡𝑦 𝐿𝐵𝑃 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝑣𝑒𝑐𝑡𝑜𝑟 𝐿𝐵𝑃𝑣𝑒𝑐 .   

    3.3. 𝐹𝑜𝑟 𝑒𝑎𝑐ℎ 𝑝𝑖𝑥𝑒𝑙 (𝑥, 𝑦) 𝑖𝑛 𝑡ℎ𝑒 𝑖𝑚𝑎𝑔𝑒:   

        3.3.1. 𝑅𝑒𝑡𝑟𝑖𝑒𝑣𝑒 𝑡ℎ𝑒 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑐𝑒𝑛𝑡𝑟𝑎𝑙 𝑝𝑖𝑥𝑒𝑙 𝐼(𝑥, 𝑦).   

        3.3.2. 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 𝑎 𝑏𝑖𝑛𝑎𝑟𝑦 𝑐𝑜𝑑𝑒 𝐿𝐵𝑃𝑐𝑜𝑑𝑒  𝑡𝑜 0.     

        3.3.3. 𝐹𝑜𝑟 𝑒𝑎𝑐ℎ 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑖𝑛𝑔 𝑝𝑖𝑥𝑒𝑙 (𝑥𝑖 , 𝑦𝑖) 𝑎𝑟𝑜𝑢𝑛𝑑 (𝑥, 𝑦):    

            3.3.3.1. 𝑅𝑒𝑡𝑟𝑖𝑒𝑣𝑒 𝑡ℎ𝑒 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑖𝑛𝑔 𝑝𝑖𝑥𝑒𝑙 𝐼(𝑥𝑖 , 𝑦𝑖).    

  31      129     214 

  74       40       15 

   9        60       38 

   0         1        1 

   1         0         0 

   0         1         0 

20 + 21 + 24 + 22 = 83 

Thresholding 

= × 

Coding 

  27         20        21  

  26         0          22  

  25         24        23  

  ?          ?           ? 

  ?          83           ? 

  ?          ?           ? 
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            3.3.3.2. 𝑈𝑝𝑑𝑎𝑡𝑒 𝑡ℎ𝑒 𝑏𝑖𝑛𝑎𝑟𝑦 𝑐𝑜𝑑𝑒 𝐿𝐵𝑃_𝑐𝑜𝑑𝑒 𝑏𝑎𝑠𝑒𝑑 𝑜𝑛 𝑡ℎ𝑒 𝑐𝑜𝑚𝑝𝑎𝑟𝑖𝑠𝑜𝑛 𝑜𝑓 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑖𝑒𝑠:   

𝐿𝐵𝑃𝑐𝑜𝑑𝑒 = 𝐿𝐵𝑃𝑐𝑜𝑑𝑒  𝑂𝑅 (𝑠(𝐼(𝑥𝑖 , 𝑦𝑖)  −  𝐼(𝑥, 𝑦)) << 𝑖)     (2) 

        3.3.4. 𝐴𝑝𝑝𝑒𝑛𝑑 𝑡ℎ𝑒 𝐿𝐵𝑃𝑐𝑜𝑑𝑒  𝑡𝑜 𝑡ℎ𝑒 𝐿𝐵𝑃𝑣𝑒𝑐 .   

    3.4. 𝑅𝑒𝑡𝑢𝑟𝑛 𝑡ℎ𝑒 𝐿𝐵𝑃𝑣𝑒𝑐 .   

4. 𝑃𝑟𝑜𝑐𝑒𝑑𝑢𝑟𝑒 𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝐸𝑥𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛(𝐹):   

    4.1. 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 𝑎𝑛 𝑒𝑚𝑝𝑡𝑦 𝐿𝐵𝑃 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝐿𝐵𝑃.   

    4.2. 𝐹𝑜𝑟 𝑒𝑎𝑐ℎ 𝑓𝑟𝑎𝑚𝑒 𝐹𝑡  𝑖𝑛 𝐹:   

        4.2.1. 𝐴𝑝𝑝𝑙𝑦 𝑡ℎ𝑒 𝐿𝐵𝑃𝐸𝑥𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛  𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑜𝑛 𝑡ℎ𝑒 𝑓𝑟𝑎𝑚𝑒 𝐹𝑡  𝑡𝑜 𝑜𝑏𝑡𝑎𝑖𝑛 𝑡ℎ𝑒 𝐿𝐵𝑃 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 𝐿𝐵𝑃𝑡 . 

        4.2.2. 𝐴𝑝𝑝𝑒𝑛𝑑 𝐿𝐵𝑃𝑡  𝑡𝑜 𝑡ℎ𝑒 𝐿𝐵𝑃 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒.    

    4.3. 𝑅𝑒𝑡𝑢𝑟𝑛 𝑡ℎ𝑒 𝐿𝐵𝑃 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒.   

5. 𝐶𝑎𝑙𝑙 𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝐸𝑥𝑡𝑟𝑎𝑐𝑡𝑖𝑜𝑛(𝐹) 𝑡𝑜 𝑒𝑥𝑡𝑟𝑎𝑐𝑡 𝐿𝐵𝑃 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 𝑓𝑟𝑜𝑚 𝑡ℎ𝑒 𝑣𝑖𝑑𝑒𝑜 𝑓𝑟𝑎𝑚𝑒𝑠 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝐹.    

The above pseudo code outlines the process of feature 

extraction using LBP for background subtraction from 

moving video frames. It iterates over each pixel in each 

frame, computes the LBP code by comparing intensities 

with neighboring pixels, and constructs a sequence of 

LBP features for each frame. These extracted features 

can then be used for subsequent tasks such as 

classification, object recognition, or anomaly detection. 

B. Robust Principal Component Analysis  

Robust Principal Component Analysis (RPCA) is a 

powerful technique used for background subtraction 

from moving video frames. RPCA aims to decompose 

the input video into a low-rank matrix representing the 

background information and a sparse matrix capturing 

the foreground objects or anomalies. By separating the 

background and foreground components, RPCA enables 

accurate detection and segmentation of moving objects, 

such as faces, in the video. 

Mathematical Formulations: 

Robust Principal Component Analysis (RPCA): It is a 

technique used to decompose a given matrix into a low-

rank component and a sparse component. In the context 

of background subtraction from moving video frames, 

RPCA is employed to separate the background 

information (low-rank component) from the foreground 

objects or anomalies (sparse component). The underlying 

assumption is that the majority of the video frames 

belong to the background, which can be modeled as a 

low-rank matrix, while the foreground objects or 

anomalies introduce sparsity in the matrix representation. 

Mathematically, given an input video matrix 𝑋 ∈ 𝑅𝑑 ×

𝑇, where 𝑑 represents the number of pixels and T 

represents the number of frames, RPCA aims to find the 

decomposition: 

min(‖𝐿‖∗ + 𝜆∗‖𝑆‖1)    𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑋 = 𝐿 + 𝑆              

(3) 

Where, 𝐿 denotes the low-rank matrix representing the 

background, 𝑆 represents the sparse matrix capturing the 

foreground objects or anomalies, ‖𝐿‖∗ is the nuclear 

norm of matrix 𝐿 (a convex relaxation of the rank 

function), ‖𝑆‖1 is the ℓ1 norm of matrix 𝑆, and 𝜆 is a 

regularization parameter that controls the trade-off 

between the low-rank and sparse components. By 

solving this optimization problem, RPCA separates the 

background and foreground components, enabling 

accurate background subtraction. 

Singular Value Thresholding (SVT): It is a key step in 

the RPCA algorithm, specifically in enforcing the low-

rankness of the background matrix. The idea behind SVT 

is to perform soft-thresholding on the singular values of 

the matrix, effectively shrinking small singular values 

towards zero. By applying SVT, the low-rank component 

is enhanced while promoting sparsity in the sparse 

component. 

Mathematically, given an input matrix 𝐿 and a threshold 

value 𝜏, the singular value thresholding operation 

𝑆𝑉𝑇(𝐿, 𝜏) is performed as follows: 

𝑆𝑉𝑇(𝐿, 𝜏) = 𝑈 ∗ 𝑑𝑖𝑎𝑔(𝜎𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑) ∗ 𝑉𝑇        (4) 

Where, 𝑈 and 𝑉 are the left and right singular vectors of 

𝐿, and 𝜎𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑  represents the singular values after soft-

thresholding. By setting small singular values below the 

threshold 𝜏 to zero and keeping the larger singular 

values, SVT helps to emphasize the low-rank structure of 

the background matrix. 

Sparse Component Recovery: It is the process of 

reconstructing the sparse matrix 𝑆, which captures the 

foreground objects or anomalies, given the observed 

video frames and the estimated low-rank background 

matrix 𝐿. The goal is to recover the sparse component by 
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solving an ℓ1-minimization problem, which promotes 

sparsity in the foreground representation. 

Mathematically, the sparse component recovery problem 

is formulated as follows: 

min‖𝑆‖1 , 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑋 = 𝐿 + 𝑆       (5) 

Where, 𝑋 represents the observed video frames and 𝐿 is 

the estimated low-rank background matrix. The 

optimization problem seeks to find the sparse matrix 𝑆 

that minimizes the ℓ1 norm while satisfying the 

constraint that the sum of the background matrix 𝐿 and 

the sparse matrix 𝑆 equals the observed frames 𝑋. By 

solving this optimization problem, the sparse component 

is effectively recovered, allowing for accurate 

foreground object detection and segmentation.

Pseudo Code for Robust Principal Component Analysis (RPCA): 

1. 𝐼𝑛𝑝𝑢𝑡: 𝑉𝑖𝑑𝑒𝑜 𝑓𝑟𝑎𝑚𝑒𝑠 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝐹 =  {𝐹1, 𝐹2, . . . , 𝐹𝑇} (𝑇 𝑓𝑟𝑎𝑚𝑒𝑠)   

2.  𝑂𝑢𝑡𝑝𝑢𝑡: 𝐿𝑜𝑤 − 𝑟𝑎𝑛𝑘 𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑 𝑚𝑎𝑡𝑟𝑖𝑥 𝐿, 𝑆𝑝𝑎𝑟𝑠𝑒 𝑓𝑜𝑟𝑒𝑔𝑟𝑜𝑢𝑛𝑑 𝑚𝑎𝑡𝑟𝑖𝑥 𝑆   

3.  𝑃𝑟𝑜𝑐𝑒𝑑𝑢𝑟𝑒 𝑅𝑃𝐶𝐴(𝐹, 𝜆, 𝜏):   

    3.1. 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 𝑚𝑎𝑡𝑟𝑖𝑐𝑒𝑠 𝐿 𝑎𝑛𝑑 𝑆 𝑤𝑖𝑡ℎ 𝑧𝑒𝑟𝑜𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑎𝑚𝑒 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑠 𝑎𝑠 𝑡ℎ𝑒 𝑖𝑛𝑝𝑢𝑡 𝑓𝑟𝑎𝑚𝑒𝑠.   

    3.2. 𝑆𝑒𝑡 𝑡ℎ𝑒 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 𝑁 𝑎𝑛𝑑 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝜀.   

    3.3. 𝐹𝑜𝑟 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑘 =  1 𝑡𝑜 𝑁:   

        3.3.1. 𝐶𝑜𝑚𝑝𝑢𝑡𝑒 𝑡ℎ𝑒 𝑠𝑖𝑛𝑔𝑢𝑙𝑎𝑟 𝑣𝑎𝑙𝑢𝑒 𝑑𝑒𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 (𝑆𝑉𝐷)𝑜𝑓 𝑚𝑎𝑡𝑟𝑖𝑥 𝑋 = 𝐹 − 𝑆 + 𝐿: 

𝑋 = 𝑈 ∗ 𝛴 ∗ 𝑉𝑇 

        3.3.2. 𝐴𝑝𝑝𝑙𝑦 𝑠𝑖𝑛𝑔𝑢𝑙𝑎𝑟 𝑣𝑎𝑙𝑢𝑒 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑖𝑛𝑔 (𝑆𝑉𝑇) 𝑡𝑜 𝑡ℎ𝑒 𝑠𝑖𝑛𝑔𝑢𝑙𝑎𝑟 𝑣𝑎𝑙𝑢𝑒𝑠:   

𝛴𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 𝑆𝑜𝑓𝑡 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑(𝛴, 𝜏) 

        3.3.3. 𝑈𝑝𝑑𝑎𝑡𝑒 𝑡ℎ𝑒 𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑 𝑚𝑎𝑡𝑟𝑖𝑥 𝐿:   

𝐿 = 𝑈 ∗ 𝛴𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ∗ 𝑉𝑇  

        3.3.4. 𝑈𝑝𝑑𝑎𝑡𝑒 𝑡ℎ𝑒 𝑠𝑝𝑎𝑟𝑠𝑒 𝑚𝑎𝑡𝑟𝑖𝑥 𝑆:   

𝑆 = 𝑆𝑜𝑓𝑡 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑(𝐹 −  𝐿, 𝜆) 

        3.3.5. 𝐶ℎ𝑒𝑐𝑘 𝑡ℎ𝑒 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒 𝑐𝑟𝑖𝑡𝑒𝑟𝑖𝑜𝑛:       

𝐼𝑓 ‖𝑋 − 𝐿 − 𝑆‖𝐹 ≤ 𝜀, 𝑏𝑟𝑒𝑎𝑘 𝑡ℎ𝑒 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑙𝑜𝑜𝑝. 

    3.4. 𝑅𝑒𝑡𝑢𝑟𝑛 𝑡ℎ𝑒 𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑 𝑚𝑎𝑡𝑟𝑖𝑥 𝐿 𝑎𝑛𝑑 𝑡ℎ𝑒 𝑠𝑝𝑎𝑟𝑠𝑒 𝑚𝑎𝑡𝑟𝑖𝑥 𝑆.   

4. 𝐶𝑎𝑙𝑙 𝑅𝑃𝐶𝐴(𝐹, 𝜆, 𝜏)𝑡𝑜 𝑝𝑒𝑟𝑓𝑜𝑟𝑚 𝑅𝑜𝑏𝑢𝑠𝑡 𝑃𝑟𝑖𝑛𝑐𝑖𝑝𝑎𝑙 𝐶𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 𝐴𝑛𝑎𝑙𝑦𝑠𝑖𝑠 𝑜𝑛 𝑡ℎ𝑒 𝑣𝑖𝑑𝑒𝑜 𝑓𝑟𝑎𝑚𝑒𝑠 

𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝐹, 𝑤𝑖𝑡ℎ 𝑟𝑒𝑔𝑢𝑙𝑎𝑟𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 𝜆 𝑎𝑛𝑑 𝑠𝑖𝑛𝑔𝑢𝑙𝑎𝑟 𝑣𝑎𝑙𝑢𝑒 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝜏.    

The above pseudo code outlines the process of Robust 

Principal Component Analysis (RPCA) for background 

subtraction from moving video frames. It iteratively 

updates the low-rank background matrix 𝐿 and the sparse 

foreground matrix 𝑆 by applying singular value 

thresholding and ℓ1-minimization. This decomposition 

enables the separation of the background and foreground 

components, facilitating accurate background subtraction 

and foreground object detection. 

C. Robust Principal Component Analysis with 

Grassmann Average 

The RPCA-GA (Robust Principal Component Analysis 

with Grassmann Average) algorithm combines Robust 

Principal Component Analysis (RPCA) with the 

Grassmann Average (GA) technique to perform 

background subtraction in video sequences. This 

algorithm aims to separate the background information 

(low-rank component) from the foreground objects 

(sparse component) while incorporating the Grassmann 

Average for enhanced robustness. The following is a 

detailed description, including mathematical 

formulations and pseudo code, for the RPCA-GA 

algorithm. 

1. Problem Formulation 

Given an input video matrix 𝑋 ∈ 𝑅𝑑 × 𝑇, where 𝑑 

represents the number of pixels and 𝑇 represents the 

number of frames, the goal is to decompose X into a 

low-rank matrix 𝐿 (representing the background) and a 

sparse matrix 𝑆 (representing the foreground) using 

RPCA. The Grassmann Average (GA) technique is then 

incorporated to improve the robustness of the 

background subtraction. 
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2. RPCA-GA Algorithm 

2.1. Initialization 

• Set the maximum number of iterations 𝑁 and convergence threshold 𝜀. 

• Initialize the low-rank matrix 𝐿 and sparse matrix 𝑆 with zeros. 

• Initialize the background model 𝐵𝑎𝑣𝑔 with an arbitrary frame from the video. 

2.2. RPCA Decomposition 

• For iteration 𝑘 = 1 to 𝑁: 

o Update the sparse matrix 𝑆 by solving the ℓ1-minimization problem: 

𝑆 = arg min‖𝑆‖1  , 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑋 = 𝐿 + 𝑆 

(6) 

o Update the low-rank matrix L by applying singular value thresholding (SVT): 

𝐿 = 𝑆𝑉𝑇(𝑋 − 𝑆, 𝜏) 

(7) 

Where, SVT represents the singular value thresholding operation. 

o Check the convergence criterion: If the change in 𝐿 and 𝑆 is smaller than 𝜀, break the iteration loop. 

2.3. Grassmann Average Update 

• Compute the Grassmann Average of the background models: 

𝐵𝑎𝑣𝑔 = 𝐺𝑟𝑎𝑠𝑠𝑚𝑎𝑛𝑛 𝐴𝑣𝑒𝑟𝑎𝑔𝑒({𝐵1, 𝐵2 , … , 𝐵𝑘}) 

(8) 

Where, {𝐵1, 𝐵2, … , 𝐵𝑘} represents the set of background models obtained during the iterations. 

2.4. Foreground Detection 

• Compute the residual matrix 𝑅 = 𝑋 − 𝐵𝑎𝑣𝑔. 

• Apply a thresholding operation to identify the foreground pixels: 

𝐹 =  𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑(𝑅) 

(9) 

Where, 𝐹 represents the binary foreground mask. 

 

3. Pseudo Code for RPCA-GA Algorithm: 

Input: Video matrix 𝑋 ∈ 𝑅𝑑 × 𝑇, convergence threshold 𝜀, maximum iterations 𝑁, threshold 𝜏. 

Output: Binary foreground mask 𝐹. 

Procedure 𝑅𝑃𝐶𝐴 − 𝐺𝐴(𝑋, 𝜀, 𝑁, 𝜏): 

Initialization: 

Initialize 𝐿, 𝑆, 𝐵𝑎𝑣𝑔, and set 𝑘 =  1. 

RPCA Decomposition: 

For iteration 𝑘 = 1 to 𝑁: 

Update 𝑆: 

𝑆 = arg min‖𝑆‖1  , 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑋 = 𝐿 + 𝑆. 

Update 𝐿: 

𝐿 = 𝑆𝑉𝑇(𝑋 − 𝑆, 𝜏), where SVT represents singular value thresholding. 

Check convergence: 

If ‖𝐿𝑜𝑙𝑑 − 𝐿‖ ≤ 𝜀 and ‖𝑆𝑜𝑙𝑑 − 𝑆‖ ≤ 𝜀, break the loop. 
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Update 𝐿𝑜𝑙𝑑 = 𝐿 and 𝑆𝑜𝑙𝑑 = 𝑆. 

Grassmann Average Update: 

𝐵𝑎𝑣𝑔 = 𝐺𝑟𝑎𝑠𝑠𝑚𝑎𝑛𝑛 𝐴𝑣𝑒𝑟𝑎𝑔𝑒({𝐵1, 𝐵2, … , 𝐵𝑘}), where {𝐵1 , 𝐵2, … , 𝐵𝑘} represents the set of background models. 

Foreground Detection: 

R = X - B_avg. 

F= Threshold(R). 

Return 𝐹. 

The RPCA-GA algorithm begins by initializing the 

necessary variables and matrices. The low-rank matrix 𝐿 

and sparse matrix 𝑆 are set to zero, and the background 

model 𝐵𝑎𝑣𝑔 is initialized with an arbitrary frame from the 

video. 

The algorithm then proceeds with the RPCA 

decomposition. It iterates from 𝑘 = 1 to 𝑁, where 𝑁 is 

the maximum number of iterations. In each iteration, the 

sparse matrix S is updated by solving the ℓ1-

minimization problem, aiming to minimize the ℓ1-norm 

of 𝑆 while satisfying the constraint 𝑋 = 𝐿 + 𝑆. The low-

rank matrix 𝐿 is then updated using the singular value 

thresholding (SVT) operation, where the difference 

between 𝑋 and 𝑆 is thresholded based on the parameter 

𝜏. 

After each iteration, the convergence criterion is 

checked. If the change in 𝐿 and 𝑆 is smaller than the 

convergence threshold 𝜀, the iteration loop is broken. 

Next, the Grassmann Average update step is performed. 

The background models obtained during the iterations, 

represented as {𝐵1, 𝐵2, . . . , 𝐵𝑘}, are used to compute the 

Grassmann Average 𝐵𝑎𝑣𝑔. This step enhances the 

robustness of the background subtraction process. 

Finally, the foreground detection is carried out. The 

residual matrix 𝑅 is computed as the difference between 

the input video matrix 𝑋 and the background model 

𝐵𝑎𝑣𝑔. A thresholding operation is applied to 𝑅 to identify 

the foreground pixels, resulting in the binary foreground 

mask 𝐹. 

The input parameters are the video matrix 𝑋, 

convergence threshold 𝜀, maximum iterations 𝑁, and 

threshold 𝜏. The algorithm returns the binary foreground 

mask 𝐹. 

The RPCA-GA algorithm combines the strengths of 

RPCA and GA to improve background subtraction in 

video sequences. The integration of RPCA separates the 

video frames into low-rank and sparse components, 

while the Grassmann Average reduces the impact of 

outliers and provides a robust estimate of the 

background. This hybrid approach enhances the accuracy 

and robustness of foreground object detection and 

segmentation, making it suitable for various computer 

vision applications such as surveillance, video analytics, 

and object tracking. 

4. Simulation Results 

A comparative analysis of four background subtraction 

techniques using the CD Net dataset [31] is presented. 

The database contains 1700 frames with a resolution of 

320×240, the first 100 frames are used for background 

initialization, and the rest of the images are used for 

background updates for object detection. Each frame has 

a separate ground truth. Four techniques of background 

subtraction are compared. Following are the evaluation 

parameters: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

 (10) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

        (11) 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

                                          (12) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑁
 

      (13) 

𝐸𝑟𝑟𝑜𝑟 𝑅𝑎𝑡𝑒 =
𝐹𝑃 + 𝐹𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

     (14) 
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𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 (𝐹𝑃𝑅) =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
 

     (15) 

𝐹 − 𝑆𝑐𝑜𝑟𝑒 =
2𝑇𝑃

2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 

      (16) 

𝑀𝑎𝑡𝑡ℎ𝑒𝑤𝑠 𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 (𝑀𝐶𝐶) =
(𝑇𝑃 × 𝑇𝑁) − (𝐹𝑃 × 𝐹𝑁)

√(𝑇𝑃 + 𝐹𝑁)(𝑇𝑃 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)
 

 (17) 

𝐾𝑎𝑝𝑝𝑎 𝑆𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐𝑠 =
𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 − 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦

1 − 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦
 

    (18) 

 

Fig 4: Simulation performed on Highway image-1 

 

 

Fig 5: Simulation performed on Highway image-2 

The proposed method will be evaluated against another benchmark method. The reference videos “Overpass”, “Fountain 

02”, “Canoe” and “Boats” were taken from the CDNet dataset [31]. 
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Table 1: Information of benchmark videos from CDNet dataset 

 Overpass  Fountain02 Canoe Boats  

Frame size 240 × 320 × 3 288 × 432 × 3 240 × 320 × 3 240 × 320 × 3 

Start-end 2001-3000 1-1000 101-1100 7000-7999 

Dynamic texture Waving tree Fountain  Flowing water Flowing water 

 

“Start-end means the frame number of the start frame and the end frame of a full sequence” 

 

 

Fig 6: Comparative results with different images 

Table 2: Comparative results 

[%] CANDID [33] SuBSENSE [34] CD Net [35] Proposed method 

Overpass 

Precision 87.24 95.21 93.29 95.66 

Recall 98.81 97.52 98.40 99.69 

F-Score 92.67 96.35 95.78 97.63 

Fountain02 

Precision 71.80 89.65 85.65 78.53 

Recall 27.92 27.81 69.70 63.35 

F-Score 40.21 42.45 76.86 70.13 

Canoe 

Precision 49.04 81.29 57.15 89.91 

Recall 54.99 57.46 63.07 90.56 

F-Score 51.85 67.33 59.97 90.23 

Boats 

Precision 94.52 96.67 88.97 96.34 

Recall 77.78 94.99 99.88 87.37 

F-Score 85.34 95.83 94.11 91.63 

Average 

F-Score 67.51 75.49 81.68 87.41 
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For CD Net data, the authors of [35] generated several 

false positive (FP) pixels, but also several true positive 

(TP) pixels, which represent low F-score values. BF-

LRGB showed the second best specificity in “Overpass, 

Canoe, and Boats”, but produced many false positive 

pixels in “Overpass”. Methods based on CANDID [33] 

and SuBSENSE [34] samples yielded more false positive 

pixels in all CD Net videos. For precision, they took first 

and second places in all video tests, except for “Boats”. 

5. Conclusion 

This article introduces a new dynamic background 

reduction technique known as RPCA-GA. The proposed 

method estimates the background by minimizing the 

multiplication of the term “background mask” and 

“rank”. The computational costs due to the iteration of 

the proposed method are almost linear. Although this 

method does not yield the best quantitative results in all 

respects compared to the previous method, it exceeds the 

average F-score of other algorithms for the dataset (CD 

Net dataset). Different methods are implemented 

SuBSENSE and CANDID methods due to balanced high 

precision (96.34% in proposed method) and recall 

(99.69% in proposed method). It can be seen F-Score of 

overpass is 97.63% as compared to other methods.  
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