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Abstract: The maritime industry has been incorporating advanced technology to enhance mission planning and ensure safe navigation, 

including autonomous collision avoidance systems that follow International Regulations for Preventing Collisions at Sea (COLREG). 

Ongoing research in this field encompasses a wide range of approaches, from optimal control analysis to heuristic and metaheuristic 

methods, and solutions based on artificial intelligence. In this study, we propose an autonomous collision avoidance algorithm for ships 

based on Markov decision process. This work focuses on the development of a COLREG-compliant autonomous collision avoidance 

algorithm for ships using a Markov decision process. The algorithm considers the subject ship's position and aims to resolve potential 

collision conflicts with target ships while keeping the vessel on its initial trajectory, in compliance with regulations. The system is modeled 

as a Markov decision process using the ship's three coordinates position as states, actions generated from degrees-of-freedom, and 

constraints such as safe path, trip cost, and respect for rules to design the reward. The proposed policy search algorithm is implemented 

using python and its convergence and efficiency are tested through multiple scenarios. 

Keywords: autonomous navigation, collision avoidance, colreg rules, decision-process, grid-world, markov property, optimization, policy 

search, safe trajectory, ship motion, value iteration. 

1. Introduction 

Maritime navigation integrates sophisticated technology, including 

mission planning systems, guidance, navigation, and control systems, 

such as path and trajectory tracking, dynamic weather routing, and 

dynamic positioning. These technologies form a major foundation for 

realizing future expectations for the deployment of commercial 

autonomous ships. To ensure safe maneuvering, keep the planned 

trajectories, and comply with the core of International Regulations for 

Preventing Collisions at Sea (COLREG), both academia and industry 

are investing in research and development of autonomous collision 

avoidance systems. Different approaches have been proposed to 

improve maritime safety, including the analysis of the problem as an 

predictive control problem [1], [2] and, [3], the use of stochastic 

techniques or heuristic and metaheuristic algorithms [4], [5] and, [6], 

and the integration of artificial intelligence [7]. 

The use of Markov Decision Process (MDP) has been established as the 

preferred framework for addressing the optimal control of autonomous 

collision avoidance systems that aims to simultaneously maximize 

safety and minimize trajectory cost. The efficacy of MDP in solving 

sequential decision-making problems in unmanned aircraft has been 

demonstrated in previous studies. The collision avoidance problem is 

formulated as an MDP problem to balance both the risk of collision and 

the cost of deviation in unmanned aircraft [8]. The proposed approach 

in [9] adds a decomposition and coordination mechanism to MDP, 

utilizing closest threat heuristics and an uncoordinated algorithm to 

resolve multi-aircraft conflicts. The research in [10] addresses the 

computational complexity of higher-dimensional and uncontrollable 

aspects in the conflict environment of unmanned airborne collision 

avoidance, which is formulated as a Markov Decision Problem . A 

decision-based strategy is proposed to counteract delayed remote human 

pilot commands and control collision avoidance in unmanned aircraft 

[11]. The method optimizes the decision between generating a safe path 

and taking evasive action, or waiting for the pilot command, and 

provides an effective solution to the computational challenges of the 

collision avoidance problem. A study employs a gridding system to 

construct an algorithm that generates multiple threat resolutions for 

autonomous collision avoidance in unmanned aerial vehicles [12]. 

Previous studies have demonstrated the advantages of using MDP-based 

problem formulation and Q-learning to address COLREG rules and 

multiple actors in ship collision avoidance problems [13]. This study 

proposes and develops a collision avoidance framework that adheres to 

COLREG rules and employs a Q-learning algorithm to ensure safe 

navigation of unmanned ships. In [7], the author proposes a method that 

combines the asynchronous advantage actor-critic (A3C) algorithm, a 

long short-term memory neural network (LSTM), and Q-learning to 

overcome the low performance issue of model-free reinforcement 

learning in multi-ship collision avoidance under unknown 
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environments. Other studies have demonstrated the effectiveness of 

MDP in solving a variety of problems. For example, [14] introduces 

linear temporal logic with MDP to develop a dynamic programming 

algorithm that generates an optimal policy for robotic applications. The 

authors formulate the state and cost function using MDP and use linear 

temporal logic to formulate constraints, aiming to solve dynamic 

programming problems by providing an optimal policy that meets a set 

of specifications. Another study applies the Markov Decision Process to 

control and optimize the management of human resources in a multi-

level hierarchical system, taking into account different types of state 

transitions [15].  

 

The aim of this paper is to advance the development of an autonomous 

collision avoidance system. The proposed algorithm solves the collision 

conflict between the subject ship and a target ship while adhering to 

COLREG rules and maintaining the initial trajectory. The system is 

formulated as a Markov Decision Process, using the three coordinates of 

ship position in a limited encounter as states, degrees-of-freedom as 

actions, and constraints such as safe path, trip cost, and COLREG 

compliance to design rewards and policies driven by the rudder and 

thrusters controls. Previous studies have used MDP to solve ship 

collision avoidance, but only considered the subject ship as the agent. 

This paper extends the MDP formulation to a dynamic collision 

avoidance system, modifying the reward design to account for the 

actions of target ships and manage multi-ship collision risk in real-time. 

A value iteration-based policy search algorithm is presented and 

implemented using Python. The algorithm's convergence is verified, and 

its efficiency is evaluated through multiple scenario tests.  

 

The structure of this paper is outlined as follows. Section I presents the 

background and motivation of the study. In Section II, the mathematical 

model for ship motion and the safe trajectory in a multi-ship 

environment, as well as the formulation of COLREG collision 

avoidance rules, are discussed. The formulation of the MDP problem 

and the policy search using value iteration are presented in Section III. 

Section IV provides an explanation of the proposed collision avoidance 

algorithm and demonstrates its effectiveness through a multi-ship 

collision avoidance use case and numerical simulation results. Finally, 

the paper concludes by summarizing the main results of the research. 

2. System Description 
  

2.1 Ship Motion 

The ship exhibits horizontal plane motion, typically represented in 

maneuvering and control models by three degrees of freedom (DOF) 

equations describing its three motions in a rigid body frame 

𝑶𝑩(𝒙𝑩, 𝒚𝑩, 𝒛𝑩) as shown in Fig. 1. 

• Surge, translation following 𝒙 axis.  

• Sway, translation following 𝒚 axis. 

• Yaw, rotation about 𝒛 axis. 

 

The motion can be expressed as a vector in the earth-fixed frame 

𝑶(𝒙, 𝒚, 𝒛) [16], [17].  

 

{
   𝜼̇ = 𝑹(𝝍)𝝂

   𝑴𝝂̇ + 𝑪(𝝂)𝝂 + 𝑫(𝝂)𝝂 = 𝝉
 

 

The state of the ship in the earth-fixed frame can be represented by 𝜼 =
 [𝒙  𝒚  𝝍]𝑻. The velocity vector is denoted as 𝝂 = [𝒖  𝒗  𝒓]𝑻, while the 

mass matrix, Coriolis matrix, and damp matrix are represented by 𝑴, 𝑪, 

and 𝑫 respectively. The actuators forces and moments are represented 

by 𝝉. 𝑰𝒁 represents the inertial moment about the first component of the 

center gravity (𝒙𝒈, 𝒚𝒈, 𝒛𝒈), 

 

𝑹(𝝍) =  (
𝐜𝐨𝐬 (𝝍) −𝐬𝐢𝐧 (𝝍) 𝟎
𝐬𝐢𝐧 (𝝍) 𝐜𝐨𝐬 (𝝍) 𝟎

𝟎 𝟎 𝟏

) 

 

𝑴 = (

𝐦 − 𝐗𝐮̇ 𝟎 𝟎
𝟎 𝐦 − 𝐘𝒗̇  𝐦𝐱𝐠 − 𝐘𝐫̇

𝟎 𝐦𝐱𝒈 − 𝐍𝒗̇ 𝐈𝐳 − 𝐍𝐫̇

) 

 

 

𝑪 =  (

𝟎 𝟎 −𝐦(𝐱𝒈𝐫 + 𝒗) + 𝐘𝒗̇𝒗 + 𝐘𝐫̇𝐫 

𝟎 𝟎 𝐦𝐮𝟎 − 𝐗𝒖̇ 𝐮𝟎

−𝐘𝒗̇𝒗𝐍𝒗̇𝐫 −𝐦𝐮𝟎 + 𝐗𝐮𝐮𝟎 𝟎
) 

 

 

𝑫 =  (

𝐗𝐮 − 𝐗{𝐮|𝐮}|𝐮| 𝟎 𝟎

𝟎 −𝐘𝒗 − 𝐘𝒗|𝒗|𝒗| − 𝐘𝐫|𝒗|𝐫 | −𝐘 − 𝐘𝐫|𝐫|𝐫| − 𝐘𝒗|𝒓|𝒗| 

𝟎 −𝐍𝒗 − 𝐍𝒗|𝒓|𝒗| − 𝐍𝐫|𝒗|𝐫| −𝐍𝐫 − 𝐍𝐫|𝐫|𝐫| − 𝐍𝒗|𝒓|𝒗| 
) 

 

𝝉 denotes the actuator forces and moments [18]. 

 

2.2 Safe Ship Trajectories  

The simplest form of the ship's trajectory is represented as a time-

varying state 𝜼(𝒕)  = [𝒙(𝒕) 𝒚(𝒕)  𝝍(𝒕) ]𝑻. To ensure the ship's safety 

and avoid any collision risk with other vessels, its trajectory should 

belong to a set of safe ship trajectories 𝑪𝟎(𝒕) [19], which is defined as: 

 

𝑪{𝟎}(𝒕) =  { 𝜼{𝟎}  (𝒕)   ∕  𝜼{𝟎}(𝒕) ∩  𝜼{𝒊}(𝒕)  =  ∅   ; ∀  𝒊 ∈  𝑵 } 

 

Where 𝑵 is the number of target ships detected by Automatic 

Identification System (AIS). 

 

The maritime safety protocol requires ships to maintain a safe distance, 

𝑫𝒔𝒂𝒇𝒆
𝒊 , to prevent collisions [20] 

 

(𝒙𝟎(𝒕) − 𝒙𝟎(𝒕))
𝟐

 +  (𝒚𝟎(𝒕) − 𝒚𝒊(𝒕))
𝟐

≥   𝑫𝒔𝒂𝒇𝒆
𝟐  

 

𝑫𝒔𝒂𝒇𝒆
𝒊  =   𝑹𝒊  +  𝑫𝟎

𝒊  +  
𝑳

𝟐
 

 

• 𝑹𝒊: The domain radius of the 𝒊𝒕𝒉 target ship.  

• 𝑳: The subject ship length.  

• 𝑫𝟎
𝒊 : The safety distance between the target ship and the subject 

ship described in COLREG rules. 

Subsequently, consider. 

 

𝒅(𝜼𝟎(𝒕), 𝜼𝒊(𝒕)) =  (𝒙𝟎(𝒕) − 𝒙𝒊(𝒕))
𝟐

 +  (𝒚𝟎(𝒕) − 𝒚𝒊(𝒕))
𝟐
 

 

Fig. 1.  Three degrees of freedom of a ship. 
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The safe ship trajectories can be formulated by respecting the safety 

distance 𝑫𝒔𝒂𝒇𝒆
𝒊  to minimize collision risk between the subject ship and 

target ships [19]. 

 

𝑪{𝟎}(𝒕) =  { 𝜼{𝒐}(𝒕)  ∕ 𝒅 (𝜼{𝒐}(𝒕), 𝜼{𝒊}(𝒕))   ≥  𝑫{𝒔𝒂𝒇𝒆}
{𝒊}

;   ∀  𝒊 ∈   𝑵 } 

 

2.3 COLREG Rules 

 

 

The COLREG rules address collision avoidance in three scenarios, as 

depicted in Fig. 2. The heading angles of the subject ship and the target 

ship are represented by 𝝍𝟎  and 𝝍𝒊 respectively. 

• In the HEAD-ON situation as per COLREG rules, each ship must 

alter its course to starboard (right). This situation is determined 

when the angle between the target ship and the subject ship satisfies 

the conditions illustrated in Fig. 3. 

 
𝟔 𝝅

𝟖
  ≤  | 𝝍𝟎  − 𝝍𝒊| ≤  

𝟏𝟎 𝝅

𝟖
 . 

 

• In the CROSSING situation, the ship on the port side should alter its 

course to starboard and the other ship should maintain its course. 

This situation is determined by the angle between the target ship 

and the subject ship, as shown in Fig. 3. 

 
𝟐 𝝅

𝟖
≤  | 𝝍𝟎  − 𝝍𝒊| ≤

𝟔 𝝅

𝟖
    𝒐𝒖  

𝟏𝟎 𝝅

𝟖
≤  | 𝝍𝟎  − 𝝍𝒊| ≤

𝟏𝟒 𝝅

𝟖
 

 

• In the OVERTAKING situation, the ship that is being overtaken 

should alter to starboard and the overtaking ship should maintain 

its course. This scenario is determined by the inequality shown in 

Fig. 3. 

 

 | 𝝍𝟎  − 𝝍𝒊| ≤
𝟐 𝝅

𝟖
  𝒐𝒖   | 𝝍𝟎  − 𝝍𝒊| ≥

𝟏𝟒 𝝅

𝟖
 

3. MDP Implementation 
 

3.1 Problem Formulation 

The collision avoidance problem with multiple ship is a sequential 

decision process which is defined as a dynamic system model controlled 

by a decision maker [21]. The decision process depends on: 

 

• The time epochs of decision making,  

• The length of the decision-making horizon,  

• The mathematical properties of the state and action spaces, 

• The optimality criteria   

 

Furthermore, in each time step, the decision maker must assess the 

current states of the subject ship and target ships to choose the optimal 

action based on their expertise and the COLREG rules. The current 

selected action is not dependent on the history of previous actions. The 

system's evolution is stochastic and history-independent, thus the 

collision avoidance process can be modeled as a Markov Decision 

Process [22].  

 

The proposed MDP-based multi-ship collision avoidance system is 

designed to minimize the risk of collision between ships, which are 

treated as agents. The system is shown in Fig. 4 and can be represented 

as a tuple, denoted as ⟨𝑺, 𝑨, 𝑷, 𝑹, 𝜸 ⟩: 

 

• 𝑺 : The set of states is defined by the distinction between safe actor 

ship trajectories 𝜼𝒔𝒂𝒇𝒆(𝒕) ∈  𝑪𝟎(𝒕) and unsafe actor ship 

trajectories 𝜼𝒖𝒏𝒔𝒂𝒇𝒆(𝒕) ∉  𝑪𝟎(𝒕):  

 

𝑺 = 𝑪𝟎(𝒕) ∪  𝑪𝟎(𝒕)̅̅ ̅̅ ̅̅ ̅ 

 

• 𝑨: The set of actions available in the system is determined by the 

longitudinal speed and the change in cap angle, represented as 

{ 𝝁 =  (𝒏, 𝜹) }. These actions include Up, Up Right, Right, Down 

Right, Down, Down Left, Left, and Up Left, as well as a No Action 

option to comply with COLREG rules, that requires the ship to 

maintain its course and speed in some cases. The finite set of 

actions is expressed as, 

 

 𝑨 =  { 𝑼, 𝑼𝑹, 𝑹, 𝑫𝑹, 𝑫, 𝑫𝑳, 𝑳, 𝑼𝑳, 𝑵𝑨 } 

 

• 𝑷: 𝑺 × 𝑨 × 𝑺  → [𝟎 𝟏]:  The transition from the current state 𝒔 to the 

next state 𝒔′ is characterized by a probability density function 

𝑷(𝒔′|𝒔, 𝒂) that represents the conditional distribution of the next 

state, given the current state and the selected action 𝒂. This 

dependence is in accordance with the Markov property, meaning 

that it only depends on the current state and action and not on any 

previous states or actions. 

  

• 𝑹 : The reward function evaluates the action taken by an actor ship, 

with the aim of optimizing its strategy to maximize the return. The 

next action selection is dependent on the outcome of the reward 

function. 

 

• 𝜸 : The discount factor is a scalar in the interval [𝟎, 𝟏] that represents 

the relative importance of future rewards in determining the 

present-time action selection strategy. The use of a discount factor 

ensures the convergence of the algorithm by factoring in the effect 

of future rewards on the present decision-making process. 

 

Fig. 2.  Maneuvers required for various COLREG situations. 

Fig. 3.  Cap angles design. 
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3.2 Reward Design 

The Markov decision process utilizes rewards to evaluate the 

effectiveness of actions taken by agents in resolving problems. In the 

case of collision avoidance, non-negative rewards are constructed based 

on states and actions by incorporating three desired behaviors: avoiding 

collisions, compliance with rules, and cost minimization.  

 

First, we define the reward for collision avoidance 𝚫𝒄𝒐𝒍 as: 

 

{
𝚫𝒄𝒐𝒍 =  +𝟎. 𝟐𝟓 𝒊𝒇 𝜼𝟎 ∈ 𝑪𝟎(𝒕)
𝚫𝒄𝒐𝒍 =  −𝟎. 𝟐𝟓 𝒆𝒍𝒔𝒆

 

 

There exist two cases to define the reward for respecting rules, 

depending on colreg rules:  

Case 1 

 The subject ship is on the port, which means it should take actions to 

the starboard:  

𝟎 ≤  | 𝝍{𝟎}  − 𝝍𝒊| ≤  
𝟏𝟎 𝝅 

𝟖
  𝒐𝒓 | 𝝍𝟎  − 𝝍{𝒊}| ≥

𝟏𝟒 𝝅

𝟖
 

Then:  

{
𝚫𝒓𝒖𝒍𝒆𝒔 =  +𝟎. 𝟐𝟓 𝒂(𝒔(𝒕)) ∈ {𝑼𝑹, 𝑫𝑹, 𝑹}

𝚫𝒓𝒖𝒍𝒆𝒔 =  𝟎 𝒆𝒍𝒔𝒆
 

Case 2 

The subject ship is on the starboard side, which means it should not act:  

 
𝟏𝟎 𝝅 

𝟖
≤  | 𝝍{𝟎}  − 𝝍𝒊| ≤  

𝟏𝟒 𝝅 

𝟖
   

Then:  

{
𝚫𝒓𝒖𝒍𝒆𝒔 =  +𝟎. 𝟐𝟓 𝒂(𝒔(𝒕)) ∈ {𝑼, 𝑫, 𝑵𝑨}

𝚫𝒓𝒖𝒍𝒆𝒔 =  𝟎 𝒆𝒍𝒔𝒆
 

 

To guarantee the selection of the short safe path, we define the reward 

for minimizing cost that can be expressed as: 

 

{
𝚫𝒄𝒐𝒔𝒕 =  −𝟎. 𝟐𝟓 ‖𝜼𝟎(𝒕𝒇𝒊𝒏𝒂𝒍) − 𝜼𝟎(𝒕 + 𝟏)‖ ≥  ‖𝜼𝟎(𝒕𝒇𝒊𝒏𝒂𝒍) − 𝜼𝟎(𝒕)‖

𝚫𝒄𝒐𝒔𝒕 =  +𝟎. 𝟐𝟓 𝒆𝒍𝒔𝒆
 

 

The proposed total reward function is defined as the sum of three 

rewards previously defined: collision avoidance, respecting rules, and 

minimizing cost.  

  

𝚫 =  𝚫𝒄𝒐𝒍 +  𝚫𝒓𝒖𝒍𝒆𝒔 +  𝚫𝒄𝒐𝒔𝒕 

 

The cumulative reward function from a state 𝒔 and action 𝒂 over a finite 

horizon 𝑻 is defined as the discounted sum of future rewards, as follows: 

 

𝑹(𝒔, 𝒂) =  ∑ 𝜸𝒌

𝑻−𝟏

𝒌=𝟎

𝚫𝒌 

 

3.3 Optimal Policy Search Method 

The decision maker selects an action from the available actions set 𝑨 

based on the system state observation at each time step when a decision 

is made. The policy function maps actions to states sets and is denoted 

by 𝚷. The set of non-stationary Markovian policies, is defined as 𝝅 =

{𝝅𝒕, 𝒕 =  𝟎, 𝟏, . . . }, where 𝝅𝒕: 𝑺 →  𝑨 $ is a function that maps states to 

actions such that 𝝅𝒕(𝒔) ∈  𝑨(𝒔) for each 𝒔 ∈ 𝑺 [21]. The objective of the 

MDP is to find the optimal policy 𝜋∗ that maximizes the expected 

discounted cumulative reward. The proposed algorithm trains the ship 

actor to learn a policy as close as possible to the optimal policy. To 

evaluate the next state, a value function is determined, which associates 

a real number with each state. The value function, expressed as the 

expected discounted cumulative reward for a ship actor starting from a 

state 𝒔 [23], is defined as:  

 

𝑽𝝅(𝒔) =   𝚬  [∑ 𝜸𝒌

𝑻−𝟏

𝒌=𝟎

𝚫𝒌] 

 

A state where the ship is safe, follows COLREG rules, and remains on 

its original trajectory is rated highly. The optimal value function 𝑽∗(𝒔) 

maximizes the value function and results in a higher score. The optimal 

policy function is then defined as 𝝅(𝒔) =  𝒂𝒓𝒈𝒎𝒂𝒙 𝑽𝝅(𝒔). The 

Bellman Equation helps determine the value function and reach the goal 

[23]. The Q-value function, defined as the expected total discounted 

reward starting from state 𝒔 and selecting action 𝒂, is a useful tool in this 

regard and is expressed as 𝑸(𝒔, 𝒂)  =  𝒎𝒂𝒙 𝑽(𝒔). The optimal Q-

function 𝑸∗(𝒔, 𝒂) is given explicitly by: 

 

𝑸∗(𝒔, 𝒂) = 𝚫(𝒔, 𝒂) + 𝜸 ∑ 𝑷(𝒔′|𝒔, 𝒂)

𝒔′

 ×   𝑽∗(𝒔′) . 

 

Then, the Bellman equation is written as following:  

 

𝑽∗(𝒔)  =  𝐦𝐚𝐱
𝒂

[𝚫(𝒔, 𝒂) + 𝜸 ∑ 𝑷(𝒔′|𝒔, 𝒂)𝒔′  ×  𝑽∗(𝒔′)]  . 

 

Using the value iteration method to solve the problem, this method 

calculates the optimal value function 𝑽∗(𝒔) by iteratively improving the 

estimating 𝑽𝝅(𝒔).  

 

4. Simulation and Numerical Results 
 

4.1 MDPCA Algorithm 

The initial states and actions of the markov decision process collision 

avoidance algorithm (MDPCA) are defined based on pre-established 

transition mappings. The number 𝑵 of target ships in the encounter is 

determined through the use of Automatic Identification System (AIS) 

technology [24]. The speed and safe distances 𝑫𝒔𝒂𝒇𝒆
𝒊  are calculated to 

determine the final time 𝒕𝒇𝒊𝒏𝒂𝒍, which is the moment when the subject 

ship is no longer at risk of collision and has returned to its initial 

trajectory. 

Fig. 4.  Markov decision process schema. 
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Considering the dynamic nature of target ships, their positions, and 

distances from the subject ship change over time. Hence, the optimal 

policy must be recalculated for each state at every time step, considering 

the updated knowledge of positions and distances. The time interval is 

discretized into multiple constant steps. At each step, the subject vessel 

calculates the positions and distances from target ships. The algorithm 

updates the Q(s, a) and V(s) values until the convergence criteria are 

met as observed in Fig. 5. The resulting optimal policy is appended to 

the sequence of optimal policies. 

 

Algorithm: Markov decision process collision avoidance. 

initialize: 

states ←  from the transitions function. 

actions ← from the transitions function. 

subject_vessel_initial_position ← real position of the subject        

ship. 

𝑵 ←  number of encounter target ships. 

for  𝒕 ∈ [𝒕𝟎 𝒕𝒇𝒊𝒏𝒂𝒍]: 

initialize: 

target_positions ← dictionary of target ship: position. 

do 

for all s states: 

  for all a actions: 

𝑸(𝒔, 𝒂) ← 𝚫(𝒔, 𝒂) + 𝜸 ∑ 𝑷(𝒔′|𝒔, 𝒂) ×  𝑽∗(𝒔′)

𝒔′

 .  

𝑽(𝒔) ←  𝒎𝒂𝒙 𝑸(𝒔, 𝒂) 

until V(s) converges 

optimal_policy ←  𝒂𝒓𝒈𝒎𝒂𝒙  𝑸(𝒔, 𝒂) 

optimal_policies_sequence  ←  add optimal_policy to the 

sequence. 

 

 

The objective of this section is to represent a simulation of the algorithm 

to adequately demonstrate the collision avoidance ability and 

effectiveness of the proposed method. The development of the algorithm 

is carried out using Python programming language via the PyCharm 

platform. 

 

Based on the study in [25], a collision avoidance algorithm can be 

demonstrated in a static grid environment. The environment is illustrated 

by a 6x5 cell rectangular grid, as shown in Fig. 6. and Fig. 7. The 

movement of the ship is defined as 𝑿𝒀 plane. The ship can move to an 

adjacent grid at regular time intervals. The cells of the grid represent the 

ships states with three coordinates following 𝒙 axis, 𝒚 axis and the head 

angle  𝝍.   

 

For each ship state, all actions in set  𝑨 are possible, causing the agent 

to move one cell in the corresponding direction on the grid, as 

determined by the transition function. Given an action and an initial 

state, the function maps the next state to a probability value within the 

range of [𝟎, 𝟏], with the sum of values for a specific action and initial 

state equaling 𝟏. The transition of the ship from one state to other results 

in a reward based on its position relative to a fixed target ship, while 

adhering to the colreg rules and minimizing cost, as outlined in the 

section on reward design. Target ships follow their own trajectories, 

represented as a sequence of states per time step. In each iteration, the 

reward for collision avoidance is calculated based on the detected state 

of target ships.  

 

 

 

The position of the subject vessel is evaluated in relation to an opposing 

target vessels in various configurations. Specifically, the position of the 

subject vessel is established at coordinates (𝟏, 𝟑, 𝟎) with a 

predetermined final destination of (𝟔, 𝟑, 𝟎) as can be observed Fig. 6 

and Fig. 7. The algorithm was tested using various encounter situations. 

Including easy one like one target per colreg collision case to difficult 

one like encounter of three targets with different colreg cases. The blue 

cell corresponds to the subject ship and the yellow cells to target ships.  

 

 

 

Case1 

The three scenarios considered in the first case are the crossing, head-

on, and overtaking situations, shown in Fig. 6. The algorithm allows the 

subject vessel to avoid collision with the target vessel in the fewest steps, 

as shown in Fig. 8, Fig. 9, and Fig. 10. The subject ship's proposed 

actions are shown with blue arrows and the target ships with yellow 

arrows. The algorithm ensures COLREG compliance with a starboard 

maneuver. 

 

 

 

 

 

 

 

Fig. 5.  Convergence of the algorithm in a finite number of steps. 

Fig. 6.  One-ship encounter COLREG cases. 

Fig. 7.  Multi-ship encounter COLREG cases. 
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Case 2 

In Fig. 7, the subject vessel is shown to be in encounters with multiple 

ships. The figure illustrates two scenarios, with two and three target 

ships positioned differently. The algorithm demonstrates its 

effectiveness in avoiding collision with the target ships, as depicted in 

Fig. 11, Fig. 12, and Fig. 13. In case of cooperative target ship that 

follows the COLREG rules to avoid collision, the proposed maneuvers 

are still effective, as shown in Fig. 12. Furthermore, the algorithm abides 

by the COLREG rules by implementing a turn to the starboard side. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Conclusion 

In conclusion, this paper presents a significant contribution to the 

development of an autonomous collision avoidance system. We 

proposed an algorithm that considers both the subject ship and target 

ships, and we designed a system that respect COLREG rules while 

keeping the ship on its initial trajectory, we advanced the field of 

collision avoidance for autonomous ships. We formulated the system as 

a Markov Decision Process, using three coordinates of ship position as 

the set of states, degrees-of-freedom as the set of actions, and constraints 

such as safe path, trip cost, and respect for COLREG rules to design 

rewards. Additionally, we implemented a policy search algorithm using 

Python, and verified its convergence and efficiency through multiple 

scenarios. 
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