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Abstract: When attempting to use digital clinical data to predict the spread and threat of COVID-19, data available at a particular site is 

not sufficient for detecting COVID-19 detection. It also includes certain issues that include integrating data from multiple sources, and 

the concerns relevant to privacy while handling centralized database that comprises of sensitive data. Provides a framework which 

involves federated learning approach, that may use locally stored clinical data from several sites to develop a centralized COVID-19 

prediction model. Suggest two unique approaches to local model aggregation to enhance the global model's predictive performance. This 

suggested method achieves performance on par with centralized learning and is better than localized learning models through extensive 

experimental assessment utilizing real-world health data from government sites. Additionally, aggregate approaches beat novel 

techniques in terms of Recall, Accuracy and Precision for a wide range of data distributions. 
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1. Introduction 

Predicting the menace of COVID-19 is a significant concern for 

medical practitioners, the healthcare system, and the 

pharmaceutical industry. As patients can experience expected and 

sometimes unexpected symptoms from COVID-19, delayed 

detection of the disease can pose life-threatening risks to corona 

victims, posing unrest in society and the government. Clinical 

data, such as claims and electronic health records (EHR), has 

become common in providing rich insights into health services 

and supporting clinical investigation. Advancements in machine 

learning and artificial intelligence have produced several analytic 

methods that can be applied to high-dimensional data for 

impediment study[1]. However, making timely and accurate 

predictions remains a challenge. Due to the distributed nature of 

healthcare data, generating huge volumes of data for identifying 

rarely occurring events demands integrating of data across 

various sites. The analysis generated from various data sources 

can be conflicting or imprecise, necessitating methods to 

appropriately aggregate results. 

Prior work to resolve these issues often has limitations in its 

approach. The medical research centers of the nation collect 

clinical data into a traditional, centralized database. A single 

database approach is the most straightforward way to explore the 

menace of the disease, but information owned by different 

entities is seldom shared due to significant privacy concerns. 

Moreover, creating and maintaining such a large data repository 

incurs resource and system-level constraints, including high 

latency and single points of vulnerability (failure, breach). To 

avoid such overhead and risks, the Indian Council of Medical 

Research created the sentinel system to monitor the safety of its 

regulated products using a distributed data network [2]. The 

network comprises multiple stakeholders, each maintaining a 

large claims database. Despite the distributed framework and 

large-scale data amassed from the active participation of data 

partners, it has limited analytic capabilities. Limitations of other 

progressive systems include access to potentially small-scale, 

sparse, and low-quality hospital records [3]. In addition, current 

claims-based frameworks experience a time lag between COVID-

19 instances, claim submission, adjudication, and consolidation 

of the claim into a database. EHR data, collected in near real-

time, is, therefore, a promising alternative but comes with the 

quality as mentioned earlier concerns. Hence, there is an unmet 

need for accurate, scalable, and efficient solutions for predicting 

COVID-19 using distributed health data that protects patients' 

privacy. 

To address this challenge, we present a federated learning-based 

framework that permits health data to be distributed across 

multiple sites. Federated learning [4] has brought a paradigm shift 

in constructing machine learning models from distributed data 

sources maintained by various organizations. Under such a 

collaborative and decentralized setting, each site contributes to 

the computation of a global model while shielding its data from 

leakage to distrusted third parties. Our methodology enables us to 

train a global model using each site's local data without 

transferring the raw data from each site. To the preeminent of our 

ability, this is the first implementation of federated machine 

learning algorithms that leverage distributed digital clinical data 

for predicting the menace of COVID-19. COVID-19 prediction 
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itself brings significant challenges for federated learning due to 

the huge imbalance between the majority class of individuals who 

do not have any of the presented symptoms of the disease and the 

minority class of individuals with severe symptoms. To address 

this issue, we introduce two methods with a novel approach for 

aggregating model updates from the sites and collating their 

performance with the progressive alternative.  

 
Fig. 1. The governance structure of the National Clinical 

Registry of COVID-19 (Source: 

https://www.icmr.gov.in/img/ncr/cncr_2.jpg) 

 

 
Fig. 2. Central Depots of COVID-19 (Source: 

https://www.icmr.gov.in/cdepot.html) 
 

Figure 1 presents the organization in-charge of administering the 

COVID-19 national clinical registry. The figure indicates how the 

data is being managed at various levels. The monitoring, central 

implementation, and data management committees handle the 

data. The data is collected through clinical registry centers by 

capturing the data from the satellite centers. The data is centrally 

deposited at the main center after passing through the steering 

committee.  

The data is collected from the respective zones, such as north, 

west, south, and east, where respective institutes monitor each 

zone. These zones are a collection of regional depots, as shown in 

figure 2. The over scenario indicates that the data is centrally 

being collected and stored. 

To show the effectiveness of our proposed approach, we consider 

one use case i.e. prediction of growth rate and menace of 

COVID-19 across various centers. We conduct a comprehensive 

experimental evaluation using real-world patient data. 

The key contributions of our work include in the following steps: 

Step 1: implementing federated models for prediction of the 

growth and menace of COVID-19 based on three supervised 

learning algorithms; Step 2: proposing and implementing two 

novel methods of aggregating local model updates in a federated 

setup; Step 3 demonstrating the effectiveness of our approach in 

analyzing sensitive, distributed, and highly imbalanced real-world 

digital clinical data; Step 4 conducting a comparative analysis to 

evaluate our approach against progressive alternatives; and Step 5 

demonstrating scalability of our approach for varying number of 

sites, data size, and data distribution. 

2. Background 

In real-world circumstances, the sensitive and dispersed nature of 

electronic health information necessitates a method that can learn 

from data lying in silos while maintaining data privacy. This 

pushes us to investigate the capability and utility of federated 

learning for forecasting the development rate and threat of 

COVID-19. Federated learning allows the training of a global 

model from dispersed data without requiring the exchange of 

sensitive raw data across locations. The global model is dispersed 

to each location, where a local instance is trained. The changes 

from locally trained instances are then combined to enhance the 

globally developed model, which is subsequently notified to the 

participating sites for a second training session. Figure 3 depicts 

the conclusion of this iterative procedure when a performance 

condition is reached. 

 

 
Fig. 3. System design of federated learning for prediction of 

growth rate and menace of COVID-19 

 

Each Multiple patients' electronic health records are kept at each 

location. Once the parameters of the global model are provided to 

the participating sites, the model is trained using the local data of 

each site. The parameters of the local models are combined in 

order to enhance the global model. This is continued until a 

convergence requirement for the global model is met. 

Initial implementations of federated learning were intended for 

image classification and language modeling on mobile devices [4, 

5]. Existing literature aims to improve the performance of deep 

networks in a federated setting [6-9]. There is currently very 

limited research focusing on the application of federated learning 

in healthcare. Recent work noted the effectiveness of federated 

models in predicting hospital admissions using EHR data [10]. 

However, the potential of federated learning in healthcare 

applications that make use of claims or EHR data for prediction 

of growth rate and menace of COVID-19 is yet to be explored. 

Moreover, the existing method of aggregating updates from local 

models [4] relies on the size, rather than the inherent 

characteristics, of the data. This approach may not work well in 

healthcare applications, which often deal with skewed, sparse, 

and imbalanced datasets. Hence, exploring the underlying 

characteristics of distributed data to better the prediction accuracy 

of the global model is also an important research direction. 

The usage of machine learning and deep learning methods 

for predicting various diseases [19-31] have been discussed 

by various authors. All the authors have considered 

centralized approach for analysis the results for various 

types of diseases.  
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Unlike the methods that focus on trend of COVID-19 [17-

18] for given medications, specific prediction typically 

employs supervised learning algorithms. Decision Trees 

(DT), Logistic Regression (LR), Random Forest (RF), 

Support Vector Machine (SVM), and Neural 

Networks(NN) are often used methods. Prior works on 

COVID-19 with machine learning methods are largely 

limited to centralized models, where all data are available 

to the researcher in a centralized data store. A majority of 

these works also lack evaluation on real-world datasets. 

For instance, distributed logistic regression based on multi-

party computation, was studied using simulated data. 

In this paper, we use three supervised learning algorithms 

viz., logistic regression, single-layer perceptron, and 

support vector machines to realized federated learning 

model, using stochastic gradient descent (SGD)-based 

optimization, which provides a generic approach for the 

algorithms to learn local models and aggregate their 

parameters to improve the global model and is the method 

currently supported by federated learning. 

3. Methods 

3.1 Data and Cohort Selection  

To evaluate our approach, we collected data from clinical centers 

and used the data from 

https://www.kaggle.com/imdevskp/corona-virus-report/data.  

3.2 COVID-19 Prediction Model  

The model explores the existing binary classification problem. 

The features are selected from the feature space X and are 

represented as xk (for the kth feature). The labels necessary for 

forming yk are picked up from the label space Y := {−1, 1}. The 

features representing positive labels are denoted by X+ and the 

feature relevant to negative labels are denoted by X−, that is 

𝑋+ = {𝑥𝑘 ∈ 𝑋: 𝑦𝑘 = +1} 𝑎𝑛𝑑 𝑋− = {𝑥𝑘 ∈ 𝑋: 𝑦𝑘 = −1} 

For any 𝑥𝑘
+ ∈ 𝑋+𝑎𝑛𝑑 𝑥𝑘

− ∈ 𝑋− , the primary goal of the binary 

classification is to build a function  f : X → Y such that 

𝑓(𝑥𝑘
+) = +1 𝑎𝑛𝑑 𝑓(𝑥𝑘

−) = −1 

In this paper, we denote yk = +1to indicate the positive COVID-

19 cases, and yk = −1 to represent negative non-COVID-19 cases. 

3.3 Cost Sensitive Learning  

Class imbalance is intrinsic to COVID-19 prediction. Since most 

classification algorithms assume balanced class distributions or 

equal misclassification costs, they fail to represent the 

characteristics of imbalanced data and are more likely to classify 

new observations to the majority class [11]. For COVID-19 

prediction, the cost of a false negative classification should be 

much higher than that of a false positive classification. Recent 

work on imbalanced learning can be categorized into sampling 

methods [12], cost-sensitive methods [13], and active learning 

methods [14]. As discussed in [15], sampling methods, such as 

under sampling the majority class or oversampling the minority 

class, either discard potentially useful data or can lead to 

overfitting. Since our dataset does not comprise unlabeled 

samples, active learning is not applicable. Hence, to mitigate the 

challenge of skewed data distribution, we incorporate cost-

sensitive learning, wherein we in-crease the cost associated with 

misclassifying a minority class sample. Specifically, if CFN and 

CFP denote the cost of false negative and false positive in a cost 

matrix, respectively, then we set CFN > CFP. The magnitude of 

cost depends on the problem at hand and we determine their 

values using grid search. 

3.4 Centralized Model   

For the purpose of binary classification of samples into COVID-

19 and non-COVID-19 cases, we consider three supervised 

classification methods: SVM, single-layer perceptron, and 

logistic regression. We implemented these algorithms using 

scikit-learn version 0.20.2. In order to produce standard results, 

the performance of the classifiers in a centralized learning 

approach is evaluated initially. This represents the scenario of 

gathering data from multiple sites for training a machine learning 

model. For each cohort, the dataset is partitioned into training and 

testing datasets with 70% and 30% respectively. The training 

features are labeled by Xtrain and Ytrain and the testing features are 

labeled as Xtest and Ytest. As the splits are stratified, the proportion 

of positive and negative cases in each split is the same as the 

entire dataset. After standardizing the features, we use 5-fold 

cross-validation to train the models on Xtrain and Ytrain, and test 

them on Xtest. To incorporate cost-sensitive learning, we update 

the class_weight parameter in scikit-learn based on class 

frequencies. 

3.5 Localized Model   

Since healthcare and biomedical data is rife with sensitive 

information, sharing such data across sites or transferring it to a 

centralized database is often restricted. In such a scenario, the 

model uses its own predictive analytics measures on its own data. 

We consider this scenario while designing localized models for 

COVID-19 prediction. We train each classifier on a site’s data 

with no dependence on the data existing at other sites. Let us 

suppose there are N sites, representing hospitals or data owners. 

We use horizontal partitioning to split the training data into N 

disjoint subsets. We partition Xtraininto {𝑋𝑡𝑟𝑎𝑖𝑛
𝑖 }

𝑖=1

𝑁
, where 

⋃ 𝑋𝑡𝑟𝑎𝑖𝑛
𝑖𝑁

𝑖=1 = 𝑋𝑡𝑟𝑎𝑖𝑛 𝑎𝑛𝑑 𝑋𝑡𝑟𝑎𝑖𝑛
𝑖 ∩ 𝑋𝑡𝑟𝑎𝑖𝑛

𝑗
= ∅, ∀𝑖,𝑗∈

{1, ⋯ , 𝑁}, 𝑓𝑜𝑟 𝑖 ≠ 𝑗.  We follow the same logic to partition the 

corresponding label set Ytrain into {𝑌𝑡𝑟𝑎𝑖𝑛
𝑖 }

𝑖=1

𝑁
. In the case of 

localized learning, the classifiers are trained on a single site’s 

data {𝑋𝑡𝑟𝑎𝑖𝑛
𝑖 }

𝑖=1

𝑁
 𝑎𝑛𝑑 {𝑌𝑡𝑟𝑎𝑖𝑛

𝑖 }
𝑖=1

𝑁
, and tested on Xtest. The limited 

availability of data may fail to account for detection of rare events 

[16]. We consider the results obtained from the localized models 

for benchmark analysis with federated and centralized learning 

models.    

3.6 Federated Model   

In this paper, we focus on classification models that can be 

trained using gradient descent optimization, as currently 

supported by federated learning. Similarly to the scenario of 

localized model, for N sites, we randomly partition the training 

data into N disjoint subsets of feature set {𝑋𝑡𝑟𝑎𝑖𝑛
𝑖 }

𝑖=1

𝑁
 and 

corresponding label set {𝑌𝑡𝑟𝑎𝑖𝑛
𝑖 }

𝑖=1

𝑁
. Let T denote the rounds of 

aggregating local round updates. For stochastic gradient descent, 

let η, E, and Batch denote the learning rate, number of epochs, 

batch based on a given batch size B, respectively. Let Fi(W) be 

the local loss function of the ith site with respect to its model 

parameter w. As described in Section 2, the universal model 

developed is sent to all the participating sites, where in turn the 

received global model in trained on the local data. During local 

model training, based on given η, E, and Batch, at each site, the 

average gradient (∇𝐹𝑖(𝑤))  is computed by considering the 

current model parameter w. The parameter updates form the local 

participating sites are collected and their weighted average is 

calculated for aggregation. The process iterates as long as the 
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convergence criterion is not achieved. The converge function 

could be something like loss function minimization. The overall 

training of the global model depends on the continuous updates 

received from the models existing at the local sites [35]. 

Algorithm 1 presents the core algorithm of federated learning, 

where the weight 𝑤𝐷
𝑖  is equal to 

𝐷𝑖

𝐷
, where |𝐷𝑖| and |𝐷| denote the 

size of data at the ith site and the entire dataset, respectively.  

Such an approach may fail to consider the inherent characteristics 

of data distribution at the sites. For the use case of COVID-19 

growth rate prediction, federated averaging would not account for 

imbalanced data and the varying distribution of COVID-19 cases 

across sites. Since such scenarios are common when dealing with 

real-world health data, particularly in predicting rare events, it is 

important to explore other aggregation approaches. 

3.7 Aggregation of Local Model Updates   

In this paper, we suggest two novel approaches for aggregating 

updates of the model trained locally. The first method is 

particularly designed for training data with imbalanced classes. 

For each site, we estimate the class ratio of its training data to 

assign a corresponding weight, as denoted by 𝑤𝐷
𝑖 . This would 

imply that sites with cases of rare events would have higher 

impact when improving the global model. For the second 

approach, we consider loss per sample, the change in the loss 

function during local model training. Since a gradient descent-

based method attempts to minimize the loss function, we 

determine its rate of convergence [36]. This is measured by the 

metric epoch, which is the maximum number of passes over the 

training data until convergence. Based on each site’s epoch and 

training data size, we assign a weight, corresponding to 𝑤𝐷
𝑖 , for 

future aggregation. Using this approach, sites that require less 

training samples to reach convergence faster will be assigned a 

higher weight during aggregation. 

To evaluate these methods, we create a separate partition of the 

training data, based on the opioid cohort, to represent unequal 

distribution of class labels, as shown in Table 1. We do not 

conduct the same experiment with the antipsychotic cohort due to 

the limited number of minority class labels (COVID-19). 

 

 

 

 

 

 

 

 

 

4. Empirical Results 

This section highlights the results of the proposed approach. We 

evaluate the results to state the efficiency of the proposed model. 

We consider the classification metrics used for the study, and 

then compare the results to the existing models the illustrate the 

accuracy of the proposed system. 

4.1 Evaluation Metrics  

To measure the capability in terms of prediction accuracy and 

analysis, of the centralized, localized, and federated learning 

models, we compute precision, recall, and accuracy scores. As 

noted in prior work [12,32], precision and recall are better 

indicators for models dealing with imbalanced data. We also 

report the runtime incurred in training the models for each of the 

setups. The system with Intel(R) Xeon(R) E5-2683 v4 2.10 GHz 

CPU equipped with 16 cores and 64 GB of RAM configuration is 

used to run the experiments. 

Algorithm 1 Federated Learning Model for COVID-19 

growth rate Prediction 

1: function UPDATEGLOBALMODEL 

2: initialize w0 

3: for t = 1 to T do 

4: for i = 1 to N do 

5:  𝑤𝑡+1
𝑖 = 𝑈𝑃𝐷𝐴𝑇𝐸𝐿𝑂𝐶𝐴𝐿𝑀𝑂𝐷𝐸𝐿(𝑖, 𝑤𝑡) 

6: 𝑤𝑡+1 =  ∑ 𝑤𝐷
𝑖 ∗ 𝑤𝑖+1

𝑖𝑁
𝑖=1  

 

7: function UPDATELOCALMODEL(i, w) 

8: for e = 1 to E do 

9: for b ɛ Batch do 

10: 𝑤 = 𝑤 −  𝜂∇𝐹𝑖(𝑤) 

11: return w 

For the set of experiments comparing centralized, localized, and 

federated learning models, we examine the observed differences 

in performance metrics in two ways: (a) by calculating the % 

relative error of federated learning and localized learning with 

respect to centralized learning when using federated averaging 

[5], and (b) by testing the statistical significance of the difference 

using the Wilcoxon signed-rank test at 0.05 significance level. 

4.2 Comparative Analysis    

The classification metrics such as accuracy, recall, and precision 

of the proposed federated learning model (FL) are compared the 

standard approaches centralized learning model (CL) and 

localized learning model (LL). The experiment is run for a finite 

number of times, for example 10 times, for every setup to 

consider aggregate classification accuracy of the models. Figures 

4, 5, and 6 report these metrics for the COVID-19 dataset. As 

seen in Figure 4, SVM and perceptron yield similar scores and 

perform better than logistic regression. For all classifiers and 

datasets, the federated learning model performs better than the 

centralized learning model. At the same time, due to the lack of 

sufficient training data, localized models do not perform well.   

 

 

 

 

 

 

 

 

 

 

It must be noted that the precision score for the antipsychotic data 

is higher than that for the opioid data. This is due to having a 

lower number of false positives, possibly because the former 

dataset is severely imbalanced with a class ratio of 1:65.  

Figure 5 presents the recall scores of the models for the two 

datasets. Perceptron generated the highest recall score, followed 

by SVM and logistic regression. Federated learning performed as 

good as centralized learning and outperformed the localized 

learning models. Since the implementation of cost-sensitive 

learning reduced the cases of false negative, even with such 

imbalanced data, centralized and federated learning models for 

SVM and perceptron achieved high recall. 

The relevance of accuracy metric for logistic regression, single-

Table 1 Partitioning of the COVID-19 cohort training data with varying class ratio 

Site# 1 2 3 4 5 6 7 8 9 10 

# COVID-19 5,000 5,000 5,000 5,000 5,000 5,000 5,000 5,000 5,000 5,000 

#Non-COVID-19 5,000 5,000 5,000 100,000 150,000 200,000 250,000 16,258 16,258 16,258 

Class Ration 1:1 1:1 1:1 1:20 1:30 1:40 1:50 1:3.2 1:3.2 1:4.1 
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layer perceptron, and the support vector machines is depicted in 

Figure 6 for the given dataset. Similarly, to previous 

observations, Perceptron and SVM perform better than logistic 

regression. The proposed learning algorithm yields acceptable 

results as compared to centralized and localized approaches, 

respectively.  

We observe that the % relative error values from federated 

learning are smaller than those from localized learning (Table 3). 

To put the numbers into a context, a difference of 5% in recall 

can translate to missing 5 out of 100 COVID-19 cases compared 

to using centralized learning. Higher recall is desirable given the 

potential cost of missing severe COVID-19 cases, and therefore 

federated learning with low % relative error is preferred. Based 

on statistical testing, we observe acceptable results from 

federated and centralized approaches for all the considered 

metrics, in both opioid and antipsychotic data. On the other hand, 

localized learning shows no encouraging results compared to 

either centralized or federated learning for the three evaluated 

metrics (all p values < 0.05). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In Table 4, we report the running time (in seconds) incurred in 

training the models for different setups. As expected, centralized 

learning requires a lot of time as it involves training the models 

on the entire training dataset. Federated learning requires 

significantly less time to train the models. Localized learning 

models train on a subset of the data on a single round, due to 

which they incur the lowest running time. For both datasets, 

perceptron required higher running time, compared to SVM and 

logistic regression. Due to the considerably large scale of opioid 

data, it consistently required more time to train the models. 

To demonstrate the scalability of federated learning models, we 

further measure their predictive capability, in terms of precision 

and recall, for a varying number of sites and data sizes. As the 

number of sites increases, the size of training data residing at 

each site proportionally decreases. Due to the imbalanced nature 

of the data, this has a pronounced impact on the recall score, as 

evident in Figure 7. This scenario also accounts for the ability of 

the system to handle varying sizes of training data. 

As previously discussed, we partition the COVID-19 cohort such 

that the sites have a varying distribution of COVID-19 and non-

COVID-19 cases (see class ratios in Table 1). We compare the 

effectiveness of our two proposed aggregation methods, in terms 

of precision, recall, and accuracy, with respect to default 

averaging (without weights) and federated averaging (based on 

data size). As seen in Table 5, for all evaluation metrics, our 

methods, particularly aggregation based on loss per sample, 

outperforms the progressive method of aggregation. This result 

implies that for skewed datasets, it is very important to consider 

the underlying characteristics of the data when aggregating local 

models. 

4.3 Discussion 

The accessibility of electronic health data brings countless scope 

to investigate and predict the growth rate of COVID-19, provided 

that the hurdles in gathering and using such data are overcome. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In this work, federated learning approach has been proposed and 

the model is evaluated to address the COVID-19 growth rate 

prediction frameworks based on centralized learning. We 

demonstrated that SVM and perceptron perform better than 

logistic regression with respect to precision, recall, and accuracy. 

Perceptron has higher recall values, making it the preferable 

classifier for COVID-19 growth predication, where false 

negatives generally have more significant consequences than 

false positives. We also demonstrated that the performance of 

federated learning models is comparable to that of centralized 

learning, implying that a federated learning framework can be 

used to predict growth rate of COVID-19 without affecting the 

performance of the proposed model, and thereby the addressing 

the limitations of the centralized model. An important finding of 

our evaluation regards the quality of our proposed aggregation 

approach with loss to sample ratio weighting, which achieves 

superior performance compared to progressive federated 

averaging. This approach is advantageous in federated learning 

applications with real-world health data, where severe class 

polarity is a norm, rather than an anomaly. 

 
Fig. 4 Comparison of precision score for centralized learning 

(CL), federated learning (FL), and localized learning (LL) models 

using SVM, perceptron, and logistic regression with COVID-19 

data 

Table 2. Comparison of relative error (%) for federated learning (FL) and localized learning (LL) with respect to centralized learning 

(CL). The values denote average (standard deviation) over 10 iterations 
  

Precision Recall Accuracy 

Dataset 
Classifier FL vs CL LL vs CL FL vs CL LL vs CL FL vs CL LL vs CL 

COVID-19 

SVM  
2.84(1.64) 

 
6.44(1.59) 

 
3.10(2.58) 

 
8.49(3.88) 

 
3.96(2.33) 

 
13.34(2.50) 

Perceptron  

1.11(.73) 

 

7.16(2.49) 

 

7.32(5.45) 

 

9.06(6.06) 

 

5.31(3.99) 

 

12.88(4.58) 

LogReg  

1.86(1.11) 

 

11.28(2.56) 

 

3.21(2.81) 

 

11.55(3.37) 

 

2.66(2.54) 

 

12.55(4.49) 

 

Table 3. Time (in seconds) incurred in training the 

centralized learning (CL), federated learning (FL), and 

localized learning (LL) models using SVM, perceptron, and 

logistic regression. The times denote average (standard 

deviation) over 10 iterations. 

COVID-19 

 CL FL LL 

SVM  
612.8 (8.5) 

 
122.2 (3.4) 

 
4.1 (.3) 

Perceptron  

842.8 (9.0) 

 

117.6 (2.9) 

 

6.3 (.7) 
LogReg  

513.7 (6.4) 

 

102.7 (3.4) 

 

4.8 (.6) 
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Fig. 5 Comparison of recall score for centralized learning (CL), 

federated learning (FL), and localized learning (LL) models using 

SVM, perceptron, and logistic regression with COVID-19 data 

 

 
Fig. 6. Comparison of accuracy score for centralized learning 

(CL), federated learning (FL), and localized learning (LL) models 

using SVM, perceptron, and logistic regression with COVID-19 

data 

Fig. 7 Effect of varying number of sites on precision and recall 

scores of federated learning models (SVM, perceptron, logistic 

regression) with COVID-19 data 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5. Conclusions and Future Work 

In this paper, we focused on taxonomy of algorithms that are 

adaptable to distributed solution using Gradient Descent(GD), as 

currently supported by the federated learning paradigm. In the 

future, we aim to encompass other supervised learning algorithms 

into the proposed federated learning framework, as well as 

applications where large-scale distributed datasets are common 

and deep learning models are applicable. Will leverage other 

characteristics of data, such as quality, relevance, and rate of 

generation, to determine the impact of sites when aggregating 

their local model updates. Will also explore potential approaches 

for tuning hyper-parameters of the global model in a federated 

setup. Intend to work on approaches for privacy-preserving 

federated learning, which protect patients’ privacy against 

adversarial attacks, in addition to not exchanging raw data while 

training the models. 
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